On the Linear Convergence rate of Policy Gradient methods

Tian Xu

School of Artificial Intelligence
Nanjing University

September 24, 2020

RL theory reading group
Mainly based on paper:
https://arxiv.org/abs/2007.11120

1/25

https://arxiv.org/abs/2007.11120

Markov Decision Process

m Consider an infinite-horizon discounted Markov Decision Process
M=(S, A g,P,7,p)
S and A are the state and action space, respectively.
g denotes the cost function.
P specifies the transition probability of s;;1 conditioned on s; and a:.
v € [0,1) is a discount factor.
p determines the initial state distribution.

2/25

Markov Decision Process

m We focus on finite state space S = {s1, s, -+ ,sp}. For each state s; € S, there is
a finite set of k actions to choose from.

m Let A = AK1 be the set of all probability distributions over k actions and a € A is
a probability vector where each component a; denotes the probability of taking it
action.

m A stationary policy 7 : S — A and we use 7(s, i) denote the i*" component of
7(s). M = A" denotes the set of all stationary policies.

3/25

Markov Decision Process

m Given policy m € I, the cost to go function J; : S — R is defined as

SoZS]

Ie(s) = Bx |45, 7(s))
t=0

m Given policy w € I, the Bellman operator T : R” — R" is defined as:

(Tod)(s) := g(s.7(s)) +7 Y P(sIs.w(s))J(s)

s'eS
m The cost to go function of policy 7 is the unique fixed point of T:

J7r = T7r J7r

4/25

Markov Decision Process

m The Bellman optimality operator T : R" — R"” is defined as

(TI)(s) = ming(s. w(s)) +7 3 P(s's. w(s)) (&) = min(T-J)(s)
s’eS

m The optimal cost-to-go function J*(s) = min, J(s) is the unique function of T:

Jr=TJ

5/25

Markov Decision Process

m The state-action cost-to-go function of a policy 7 € I1:

Qx(s,a) = sa—l—’yz s'ls, a)Jx(s).

s'eS

m The relationship between Q., J;, T and T:

Qr(s:7(5)) = Jr(s) Qu(s,7(5)) = (TwJr)(s) min Qu(s, a) = (TJ)(s)

6/25

Markov Decision Process

m The loss function of policy gradient methods:

() = (1=) 3 u(s)(s)

ses

where p is the initial state distribution.
m Under the assumption that p(s) >0 Vse S,

7 € argmin:/(7T) <= 7 € argmin-Jz(s) Vs S.

m The discounted state-occupancy measure under 7 and p is defined as
7 Zv Pr(s Z’Y pPr = (1= y)p(l = vPx) 7

where Pr = (P(s'|s, 7(s)))s,scs € R™".

7/25

Policy lteration

m Starting with policy 7, policy iteration (Pl) performs the following steps iteratively:
m Policy Evaluation: calculate @, by performing Bellman operator T.

m Policy Improvement: find the greedy policy 7 corresponding to Q;:
7T (s) € argmin,e 4 Qx(s, a).
m Pl enjoys the linear convergence rate:

||J7TJr - J*Hoo < 7”J7r - J*Hoo

8/25

Proof of the linear convergence rate

m Given a policy w € I, the Bellman operator T, and the Bellman optimality
operator T have the following properties:

m Monotonicity: VJi, b € R” s.t. J; < U, then it holds that
T < Tk, Th < Th.

m ~y-contraction: VJi, o € R”, it holds that
| Trdi — Trbolloo <[— Llloes | TH — Th|lee <7l — Loflso-

9/25

Proof of the linear convergence rate

Starting with policy , 7" acts greedily with respect to Q(s, a).

To+de = Ty = minzen Trdy < Trdr = Ui

e > Toide 2 T2 0 >0 > U

[Jr+ = S lloo = | Tat It = S [loo < [Tt I = S loo < [Tdr = TS ||oe <
VI = I lloo

10/25

Policy space v.s. Paramterization space

m In policy gradient methods, we often parametrize policy my with 6 and consider the
gradient of /(mp) with respect to 6.
For example, we consider a softmax policy g defined by mg(s, i) oc exp(6s,;), where 6 € R¥K,
m In this talk, we focus on policy gradients directly on the policy space (7 (s, 1)) nxk-
When we use direct policy parameterization that mg(s, i) = 05 ; s.t. Zie[k] Osi=1Vs e S, the

policy gradient w.p.t (s, i) is equivalent to the policy gradient w.p.t. 6; ;.
Mathematical analysis is much cleaner over the policy space since it is closed.

11/25

Connection between policy gradient and policy iteration

m Define the weighted policy iteration objective:

B(7[n, Jx Zn Z s.)(s,1) = D 1(s)(Tade)(s) = {Q@r. Mhyn
s=1

i=1

where (v, u)y = S0 S°K (s, i)u(s,))W(s, i).

m If the state distribution 7 supports on the entire state space, then we have

7t € argmin . B(7|n, Jr) <= 77(s) € argmin,c 4 Qx(s, a).

12/25

Connection between policy gradient and policy iteration

m The gradients of the cost function /(7) = .5 p(s)Jx(s) equal the gradients of

the weighted policy iteration objective

B(#[1r, Jn) = 30—y 1e(5) Xoley Que(s, i) (s,

i):

Val(m) = Egun,(),imn(1s) [V log (s, 1) Qr(s, i)]

= Z 1 (s)7 (s,)

0

1
m(s,i)

0

= (M(5) Qx(s, 1))ses,iclu]

= vﬁ'B(ﬁ-mﬂ'? Jﬂ')

Qx(s, 1)

13/25

Frank-Wolfe Algorithm

m Starting with policy 7 € I1, an iteration of the Frank-Wolfe method performs the
following two steps:

m Linear optimization:

7T = argmin; . (V./(7),) = argminzp Z Nr(S) Z Qx(s, N7 (s, 1)
- ;
= argminz . B(7|x, Jr)
m Line search and update:
™ =(1-a)r+ar” ae(0,1]

m When o = 1, the update of Frank-Wolfe method is exactly the update of policy
iteration.

14/25

Projected Gradient Descent

m Starting with policy 7 € 1, the update of projected gradient descent:

7 = argminzcn |7 — (7 — aVl(m))|3
. — 1 ot
= argminz n(V/(7), 7) + ﬁﬂﬁ — 7|3
. — 1 ik
= argminz nB(7|1x, Jr) + EHW — 7|3

m 7' converges to policy iteration when o — oo.

15/25

Mirror-descent

m Instead of using the squared Euclidean penalty - ||# — 7|3, Mirror-descent method
uses the KL divergence D1, (7(s)||7(s)):

7' = argmin: . (VI(r), 7 Z Dxr(7(s)||7(s))

= argminz nB(7|nr, Jr) ZDKL s)l[m(s))

m The closed-form solution:
P(ori) = T e{an(5)0u(s.)}
2 j=17(s:J) exp{—anx(s)Qx(s,/)}
(s, i)
o1 (s,) explans(s)(Qa(s, 1) = Qn(s.)))}

m When a — oo, 7'(s, i) = argmin; Q(s,/) VseS.

16/25

Natural Policy Gradient

m Starting with policy w € I1, natural policy gradient method penalizes changes to the
action distribution at states in proportion to 7;:

7' = argminzcn(VI(7 ZTM)DxL(7(s)[7(s))
= argminz cnB(7|nx, Jr) Z'?n) Dk (7 (s)|7(s))

:< (s,) exp{ ~aQx(s. 1)} > |
Zlew(s,j)exp{—oz(?ﬂ(s,j)} s€S,i€[K]

m When a — oo, 7'(s, i) = argmin; Q(s,/) VseS.

17/25

The Choice of step-size

m We consider an idealized step-size rule using exact line search. In the step t, we
calculate

t+1

' = argmin, cpea /()

where M+ = Closure({w%1}) denotes the curve of policies traced out by varying
a.

m For Frank-Wolfe method, M1 = {(1 — a)nt + art : a € (0,1]} is the line
segment connecting the current policy 7' and its policy iteration update 7% .

m For projected gradient descent, mirror-descent and natural policy gradient,
N+ = {751} is a curve where 75! = 7t and 75t — 7% as a — cc.

18/25

The Linear Convergence

Theorem

Suppose one of the policy gradient methods above is applied to minimize I(7) over

7 € M. Let 70 denote the initial policy and (zt :t € {0,1,2,---}) denote the sequence
of iterates. The following bounds holds:

m Exact line search. If the step-sizes are chosen by exact line search, then we have

“lro = Sl
Minses p(S)

s = 'l < (1= minpls)a)

m Constant step-size Frank-Wolfe. Under Frank-Wolfe with constant step-size
a € (0,1],

e = J*[loo < (1= (L = 7))" S0 = I lox

19/25

Proof of exact line search case

m Under each algorithm and at each iteration t, the policy iteration update 77 is
contained in the policy class M "1, we have that

I(x*) = min I(r) < I(r})

m Recall the property that J* < Jﬂ < TJpe < Jye, we have
(7% = (T4 > 170 = 1(78) = D p(s) (dme(5) = e (5))

2 pmin || Jre = Jrt lloo

2 pmin|[Jrt — Trelloo

2 pmin|[Jxt = J* = (Tt = J) [0

> pumin([[Jrt = I Joo = | Tdrt — TS ||)
2 pmin(1 = 7)[[Jre = oo

> pmin(1 = 7)(/(7") — I(7"))

20/25

Proof of exact line search case

m Rearranging terms gives
() = 1(7*) < (1 = pmin(1 = 7)) (I(xF) = I(7*)) < -+
< (1= pmin(L = 7))* (I(x°) = (7)) < (1 = panin(L = 7)) S0 — Il

< (I(xt+1)— (%))

Pmin

m The final result follows from that ||J;: — J*||

21/25

Proof of constant stepsize case

m The Frank-Wolfe update exactly equals a soft-policy iteration update:

T (s) = (1= a)m’(s) + anl (s)

where 7 is the policy iteration update to 7*.

m By the linearity of Bellman operator, for any state s,

(Treridrt)(s) = (1 — a)(Tredqe)(s) + a(Ty
=(1—a)Jdpe(s) + a(TIre)(s

:)(s)
) < Jne(s)

m By the monotonicty of T _++1, we have

Irt 2 Treridpe > T3t+1J7rt > > Jren

22/25

Proof of constant stepsize case

m From J_ 11 < Jie, it holds that

Jpti1 = Treridpen < Toendpe = (1 — a)dpe + aTde
m Subtracting J* from both sides shows
Jeern = S < (1 — @) (Jpt = J*) + o Thpe — J7)
m By the contraction property of T, we have that
[rers = S loe < (1 = a+70)|[Jr = S|l
m Applying the inequality obtains the final result:

et = S lloo < (1= (1 = 7)) [0 — S [loc

23/25

Questions and Discussions

Any questions or discussions about this talk?

24/25

Q¥

	Background
	Linear convergence of policy iteration

