
On the Linear Convergence rate of Policy Gradient methods

Tian Xu

School of Artificial Intelligence
Nanjing University

September 24, 2020

RL theory reading group
Mainly based on paper:

https://arxiv.org/abs/2007.11120

1/25

https://arxiv.org/abs/2007.11120

Markov Decision Process

Consider an infinite-horizon discounted Markov Decision Process
M = (S,A, g ,P, γ, ρ).
• S and A are the state and action space, respectively.
• g denotes the cost function.
• P specifies the transition probability of st+1 conditioned on st and at .
• γ ∈ [0, 1) is a discount factor.
• ρ determines the initial state distribution.

2/25

Markov Decision Process

We focus on finite state space S = {s1, s2, · · · , sn}. For each state si ∈ S, there is
a finite set of k actions to choose from.

Let A = ∆k−1 be the set of all probability distributions over k actions and a ∈ A is
a probability vector where each component ai denotes the probability of taking i th

action.

A stationary policy π : S → A and we use π(s, i) denote the i th component of
π(s). Π = An denotes the set of all stationary policies.

3/25

Markov Decision Process

Given policy π ∈ Π, the cost to go function Jπ : S → R is defined as

Jπ(s) = Eπ

[∞∑
t=0

γtg(s, π(s))

∣∣∣∣s0 = s

]

Given policy π ∈ Π, the Bellman operator Tπ : Rn → Rn is defined as:

(TπJ)(s) := g(s, π(s)) + γ
∑
s′∈S

P(s ′|s, π(s))J(s ′)

The cost to go function of policy π is the unique fixed point of Tπ:

Jπ = TπJπ

4/25

Markov Decision Process

The Bellman optimality operator T : Rn → Rn is defined as

(TJ)(s) := min
π∈Π

g(s, π(s)) + γ
∑
s′∈S

P(s ′|s, π(s))J(s ′) = min
π∈Π

(TπJ)(s)

The optimal cost-to-go function J∗(s) = minπ Jπ(s) is the unique function of T :

J∗ = TJ∗

5/25

Markov Decision Process

The state-action cost-to-go function of a policy π ∈ Π:

Qπ(s, a) = g(s, a) + γ
∑
s′∈S

P(s ′|s, a)Jπ(s ′).

The relationship between Qπ, Jπ, Tπ and T :

Qπ(s, π(s)) = Jπ(s) Qπ(s, π′(s)) = (Tπ′Jπ)(s) min
a∈A

Qπ(s, a) = (TJπ)(s)

6/25

Markov Decision Process

The loss function of policy gradient methods:

l(π) = (1− γ)
∑
s∈S

Jπ(s)ρ(s),

where ρ is the initial state distribution.

Under the assumption that ρ(s) > 0 ∀s ∈ S,

π ∈ argminπ̄ l(π̄) ⇐⇒ π ∈ argminπ̄Jπ̄(s) ∀s ∈ S.

The discounted state-occupancy measure under π and ρ is defined as

ηπ(·) = (1− γ)
∞∑
t=0

γt Pr(st = ·) = (1− γ)
∞∑
t=0

γtρPt
π = (1− γ)ρ(I − γPπ)−1.

where Pπ = (P(s ′|s, π(s)))s,s′∈S ∈ Rn×n.

7/25

Policy Iteration

Starting with policy π, policy iteration (PI) performs the following steps iteratively:

Policy Evaluation: calculate Qπ by performing Bellman operator Tπ.

Policy Improvement: find the greedy policy π+ corresponding to Qπ:

π+(s) ∈ argmina∈AQπ(s, a).

PI enjoys the linear convergence rate:

‖Jπ+ − J∗‖∞ ≤ γ‖Jπ − J∗‖∞

8/25

Proof of the linear convergence rate

Given a policy π ∈ Π, the Bellman operator Tπ and the Bellman optimality
operator T have the following properties:

Monotonicity: ∀J1, J2 ∈ Rn s.t. J1 ≤ J2, then it holds that
TπJ1 ≤ TπJ2, TJ1 ≤ TJ2.

γ-contraction: ∀J1, J2 ∈ Rn, it holds that
‖TπJ1 − TπJ2‖∞ ≤ γ‖J1 − J2‖∞, ‖TJ1 − TJ2‖∞ ≤ γ‖J1 − J2‖∞.

9/25

Proof of the linear convergence rate

Starting with policy π, π+ acts greedily with respect to Qπ(s, a).

Tπ+Jπ = TJπ = minπ̄∈Π Tπ̄Jπ ≤ TπJπ = Jπ.

Jπ ≥ Tπ+Jπ ≥ T 2
π+Jπ ≥ · · · ≥ Jπ+ .

‖Jπ+ − J∗‖∞ = ‖Tπ+Jπ+ − J∗‖∞ ≤ ‖Tπ+Jπ − J∗‖∞ ≤ ‖TJπ − TJ∗‖∞ ≤
γ‖Jπ − J∗‖∞

10/25

Policy space v.s. Paramterization space

In policy gradient methods, we often parametrize policy πθ with θ and consider the
gradient of l(πθ) with respect to θ.
• For example, we consider a softmax policy πθ defined by πθ(s, i) ∝ exp(θs,i), where θ ∈ Rn×k .

In this talk, we focus on policy gradients directly on the policy space (π(s, i))n×k .
• When we use direct policy parameterization that πθ(s, i) = θs,i s.t.

∑
i∈[k] θs,i = 1 ∀s ∈ S, the

policy gradient w.p.t π(s, i) is equivalent to the policy gradient w.p.t. θs,i .
• Mathematical analysis is much cleaner over the policy space since it is closed.

11/25

Connection between policy gradient and policy iteration

Define the weighted policy iteration objective:

B(π̄|η, Jπ) =
n∑

s=1

η(s)
k∑

i=1

Qπ(s, i)π̄(s, i) =
n∑

s=1

η(s)(Tπ̄Jπ)(s) = 〈Qπ, π̄〉η×1

where 〈v , u〉W =
∑n

s=1

∑k
i=1 v(s, i)u(s, i)W (s, i).

If the state distribution η supports on the entire state space, then we have

π+ ∈ argminπ̄∈ΠB(π̄|η, Jπ) ⇐⇒ π+(s) ∈ argmina∈AQπ(s, a).

12/25

Connection between policy gradient and policy iteration

The gradients of the cost function l(π) =
∑

s∈S ρ(s)Jπ(s) equal the gradients of
the weighted policy iteration objective
B(π̄|ηπ, Jπ) =

∑n
s=1 ηπ(s)

∑k
i=1 Qπ(s, i)π̄(s, i):

∇π l(π) = Es∼ηπ(·),i∼π(·|s)[∇π log π(s, i)Qπ(s, i)]

=
∑
s,i

ηπ(s)π(s, i)


0
...
1

π(s,i)
...
0

Qπ(s, i)

= (ηπ(s)Qπ(s, i))s∈S,i∈[k]

= ∇π̄B(π̄|ηπ, Jπ)

13/25

Frank-Wolfe Algorithm

Starting with policy π ∈ Π, an iteration of the Frank-Wolfe method performs the
following two steps:

Linear optimization:

π+ = argminπ̄∈Π〈∇π l(π), π̄〉 = argminπ̄∈Π

∑
s

ηπ(s)
k∑

i=1

Qπ(s, i)π̄(s, i)

= argminπ̄∈ΠB(π̄|ηπ, Jπ)

Line search and update:

π′ = (1− α)π + απ+ α ∈ (0, 1].

When α = 1, the update of Frank-Wolfe method is exactly the update of policy
iteration.

14/25

Projected Gradient Descent

Starting with policy π ∈ Π, the update of projected gradient descent:

π′ = argminπ̄∈Π‖π̄ − (π − α∇π l(π))‖2
2

= argminπ̄∈Π〈∇π l(π), π̄〉+
1

2α
‖π̄ − π‖2

2

= argminπ̄∈ΠB(π̄|ηπ, Jπ) +
1

2α
‖π̄ − π‖2

2

π′ converges to policy iteration when α→∞.

15/25

Mirror-descent
Instead of using the squared Euclidean penalty 1

2α‖π̄ − π‖
2
2, Mirror-descent method

uses the KL divergence DKL(π̄(s)||π(s)):

π′ = argminπ̄∈Π〈∇l(π), π̄〉+
1

α

n∑
s=1

DKL(π̄(s)||π(s))

= argminπ̄∈ΠB(π̄|ηπ, Jπ) +
1

α

n∑
s=1

DKL(π̄(s)||π(s))

The closed-form solution:

π′(s, i) =
π(s, i) exp{−αηπ(s)Qπ(s, i)}∑k
j=1 π(s, j) exp{−αηπ(s)Qπ(s, j)}

=
π(s, i)∑k

j=1 π(s, j) exp{αηπ(s)(Qπ(s, i)− Qπ(s, j))}

When α→∞, π′(s, i) = argminiQπ(s, i) ∀s ∈ S.

16/25

Natural Policy Gradient

Starting with policy π ∈ Π, natural policy gradient method penalizes changes to the
action distribution at states in proportion to ηπ:

π′ = argminπ̄∈Π〈∇l(π), π̄〉+
1

α

n∑
s=1

ηπ(s)DKL(π̄(s)||π(s))

= argminπ̄∈ΠB(π̄|ηπ, Jπ) +
1

α

n∑
s=1

ηπ(s)DKL(π̄(s)||π(s))

=

(
π(s, i) exp{−αQπ(s, i)}∑k
j=1 π(s, j) exp{−αQπ(s, j)}

)
s∈S,i∈[k]

.

When α→∞, π′(s, i) = argminiQπ(s, i) ∀s ∈ S.

17/25

The Choice of step-size

We consider an idealized step-size rule using exact line search. In the step t, we
calculate

πt+1 = argminπ∈Πt+1 l(π)

where Πt+1 = Closure({πt+1
α }) denotes the curve of policies traced out by varying

α.

For Frank-Wolfe method, Πt+1 = {(1− α)πt + απt+ : α ∈ (0, 1]} is the line
segment connecting the current policy πt and its policy iteration update πt+.

For projected gradient descent, mirror-descent and natural policy gradient,
Πt+1 = {πt+1

α } is a curve where πt+1
0 = πt and πt+1

α → πt+ as α→∞.

18/25

The Linear Convergence

Theorem
Suppose one of the policy gradient methods above is applied to minimize l(π) over
π ∈ Π. Let π0 denote the initial policy and (πt : t ∈ {0, 1, 2, · · · }) denote the sequence
of iterates. The following bounds holds:

Exact line search. If the step-sizes are chosen by exact line search, then we have

‖Jπt − J∗‖∞ ≤
(

1−min
s∈S

ρ(s)(1− γ)

)t ‖Jπ0 − J∗‖∞
mins∈S ρ(s)

Constant step-size Frank-Wolfe. Under Frank-Wolfe with constant step-size
α ∈ (0, 1],

‖Jπt − J∗‖∞ ≤ (1− α(1− γ))t ‖Jπ0 − J∗‖∞

19/25

Proof of exact line search case
Under each algorithm and at each iteration t, the policy iteration update πt+ is
contained in the policy class Πt+1. we have that

l(πt+1) = min
π∈Πt+1

l(π) ≤ l(πt+)

Recall the property that J∗ ≤ Jπt
+
≤ TJπt ≤ Jπt , we have

l(πt)− l(πt+1) ≥ l(πt)− l(πt+) =
∑
s

ρ(s)
(
Jπt (s)− Jπt

+
(s)
)

≥ ρmin‖Jπt − Jπt
+
‖∞

≥ ρmin‖Jπt − TJπt‖∞
≥ ρmin‖Jπt − J∗ − (TJπt − J∗)‖∞
≥ ρmin(‖Jπt − J∗‖∞ − ‖TJπt − TJ∗‖∞)

≥ ρmin(1− γ)‖Jπt − J∗‖∞
≥ ρmin(1− γ)(l(πt)− l(π∗))

20/25

Proof of exact line search case

Rearranging terms gives

l(πt+1)− l(π∗) ≤ (1− ρmin(1− γ))
(
l(πt)− l(π∗)

)
≤ · · ·

≤ (1− ρmin(1− γ))t
(
l(π0)− l(π∗)

)
≤ (1− ρmin(1− γ))t‖Jπ0 − J∗‖∞

The final result follows from that ‖Jπt − J∗‖∞ ≤
(l(πt+1)−l(π∗))

ρmin

21/25

Proof of constant stepsize case

The Frank-Wolfe update exactly equals a soft-policy iteration update:

πt+1(s) = (1− α)πt(s) + απt+(s)

where πt+ is the policy iteration update to πt .

By the linearity of Bellman operator, for any state s,

(Tπt+1Jπt)(s) = (1− α)(TπtJπt)(s) + α(TJπt)(s)

= (1− α)Jπt (s) + α(TJπt)(s) ≤ Jπt (s)

By the monotonicty of Tπt+1 , we have

Jπt ≥ Tπt+1Jπt ≥ T 2
πt+1Jπt ≥ · · · ≥ Jπt+1

22/25

Proof of constant stepsize case

From Jπt+1 ≤ Jπt , it holds that

Jπt+1 = Tπt+1Jπt+1 ≤ Tπt+1Jπt = (1− α)Jπt + αTJπt

Subtracting J∗ from both sides shows

Jπt+1 − J∗ ≤ (1− α)(Jπt − J∗) + α(TJπt − J∗)

By the contraction property of T , we have that

‖Jπt+1 − J∗‖∞ ≤ (1− α + γα)‖Jπt − J∗‖∞

Applying the inequality obtains the final result:

‖Jπt+1 − J∗‖∞ ≤ (1− α(1− γ))t‖Jπ0 − J∗‖∞

23/25

Questions and Discussions

Any questions or discussions about this talk?

24/25

Thanks!

	Background
	Linear convergence of policy iteration

