On the Linear Convergence rate of Policy Gradient methods

Tian Xu

School of Artificial Intelligence Nanjing University

September 24, 2020

RL theory reading group Mainly based on paper: https://arxiv.org/abs/2007.11120

- Consider an infinite-horizon discounted Markov Decision Process $\mathcal{M} = (\mathcal{S}, \mathcal{A}, g, P, \gamma, \rho).$
 - ${\mathcal S}$ and ${\mathcal A}$ are the state and action space, respectively.
 - g denotes the cost function.
 - P specifies the transition probability of s_{t+1} conditioned on s_t and a_t .
 - $\gamma \in [0, 1)$ is a discount factor.
 - ρ determines the initial state distribution.

- We focus on finite state space $S = \{s_1, s_2, \dots, s_n\}$. For each state $s_i \in S$, there is a finite set of k actions to choose from.
- Let $\mathcal{A} = \Delta^{k-1}$ be the set of all probability distributions over k actions and $a \in \mathcal{A}$ is a probability vector where each component a_i denotes the probability of taking i^{th} action.
- A stationary policy $\pi : S \to A$ and we use $\pi(s, i)$ denote the *i*th component of $\pi(s)$. $\Pi = A^n$ denotes the set of all stationary policies.

• Given policy $\pi \in \Pi$, the cost to go function $J_{\pi} : \mathcal{S} \to \mathbb{R}$ is defined as

$$J_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t g(s, \pi(s)) \middle| s_0 = s
ight]$$

Given policy $\pi \in \Pi$, the Bellman operator $T_{\pi} : \mathbb{R}^n \to \mathbb{R}^n$ is defined as:

$$(T_{\pi}J)(s) := g(s,\pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,\pi(s))J(s')$$

• The cost to go function of policy π is the unique fixed point of T_{π} :

$$J_{\pi} = T_{\pi} J_{\pi}$$

• The Bellman optimality operator $\mathcal{T}:\mathbb{R}^n o \mathbb{R}^n$ is defined as

$$(TJ)(s) := \min_{\pi \in \Pi} g(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, \pi(s)) J(s') = \min_{\pi \in \Pi} (T_{\pi}J)(s)$$

• The optimal cost-to-go function $J^*(s) = \min_{\pi} J_{\pi}(s)$ is the unique function of T:

$$J^* = TJ^*$$

• The state-action cost-to-go function of a policy $\pi \in \Pi$:

$$Q_{\pi}(s,a) = g(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) J_{\pi}(s').$$

• The relationship between Q_{π} , J_{π} , T_{π} and T:

$$Q_{\pi}(s,\pi(s)) = J_{\pi}(s) \ Q_{\pi}(s,\pi'(s)) = (T_{\pi'}J_{\pi})(s) \ \min_{a\in\mathcal{A}} Q_{\pi}(s,a) = (TJ_{\pi})(s)$$

The loss function of policy gradient methods:

$$I(\pi) = (1 - \gamma) \sum_{s \in S} J_{\pi}(s) \rho(s),$$

where ρ is the initial state distribution.

• Under the assumption that $ho(s) > 0 \quad \forall s \in \mathcal{S}$,

$$\pi \in \operatorname{argmin}_{\pi} I(\bar{\pi}) \iff \pi \in \operatorname{argmin}_{\pi} J_{\bar{\pi}}(s) \quad \forall s \in \mathcal{S}.$$

 \blacksquare The discounted state-occupancy measure under π and ρ is defined as

$$\eta_{\pi}(\cdot) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^{t} \operatorname{Pr}(s_{t} = \cdot) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^{t} \rho P_{\pi}^{t} = (1-\gamma) \rho (I - \gamma P_{\pi})^{-1}$$

where $P_{\pi} = (P(s'|s, \pi(s)))_{s,s' \in S} \in \mathbb{R}^{n \times n}$.

Policy Iteration

- Starting with policy π , policy iteration (PI) performs the following steps iteratively:
- Policy Evaluation: calculate Q_{π} by performing Bellman operator T_{π} .
- Policy Improvement: find the greedy policy π^+ corresponding to Q_{π} :

 $\pi^+(s) \in \operatorname{argmin}_{a \in \mathcal{A}} Q_{\pi}(s, a).$

PI enjoys the linear convergence rate:

$$\|J_{\pi^+} - J_*\|_{\infty} \leq \gamma \|J_{\pi} - J_*\|_{\infty}$$

Proof of the linear convergence rate

- Given a policy π ∈ Π, the Bellman operator T_π and the Bellman optimality operator T have the following properties:
- Monotonicity: $\forall J_1, J_2 \in \mathbb{R}^n$ s.t. $J_1 \leq J_2$, then it holds that $T_{\pi}J_1 \leq T_{\pi}J_2, \ TJ_1 \leq TJ_2$.
- γ -contraction: $\forall J_1, J_2 \in \mathbb{R}^n$, it holds that $\|T_{\pi}J_1 - T_{\pi}J_2\|_{\infty} \leq \gamma \|J_1 - J_2\|_{\infty}, \quad \|TJ_1 - TJ_2\|_{\infty} \leq \gamma \|J_1 - J_2\|_{\infty}.$

Proof of the linear convergence rate

Starting with policy π , π^+ acts greedily with respect to $Q_{\pi}(s, a)$.

$$T_{\pi^{+}}J_{\pi} = TJ_{\pi} = \min_{\bar{\pi}\in\Pi} T_{\bar{\pi}}J_{\pi} \le T_{\pi}J_{\pi} = J_{\pi}.$$

$$J_{\pi} \ge T_{\pi^{+}}J_{\pi} \ge T_{\pi^{+}}^{2}J_{\pi} \ge \cdots \ge J_{\pi^{+}}.$$

$$||J_{\pi^{+}} - J^{*}||_{\infty} = ||T_{\pi^{+}}J_{\pi^{+}} - J^{*}||_{\infty} \le ||T_{\pi^{+}}J_{\pi} - J^{*}||_{\infty} \le ||TJ_{\pi} - TJ^{*}||_{\infty} \le \gamma ||J_{\pi} - J^{*}||_{\infty}$$

Policy space v.s. Paramterization space

- In policy gradient methods, we often parametrize policy π_{θ} with θ and consider the gradient of $I(\pi_{\theta})$ with respect to θ .
 - For example, we consider a softmax policy π_{θ} defined by $\pi_{\theta}(s, i) \propto \exp(\theta_{s,i})$, where $\theta \in \mathbb{R}^{n \times k}$.
- In this talk, we focus on policy gradients directly on the policy space $(\pi(s, i))_{n \times k}$.
 - When we use direct policy parameterization that π_θ(s, i) = θ_{s,i} s.t. Σ_{i∈[k]} θ_{s,i} = 1 ∀s ∈ S, the policy gradient w.p.t. π(s, i) is equivalent to the policy gradient w.p.t. θ_{s,i}.
 - Mathematical analysis is much cleaner over the policy space since it is closed.

Connection between policy gradient and policy iteration

Define the weighted policy iteration objective:

$$\mathcal{B}(\bar{\pi}|\eta, J_{\pi}) = \sum_{s=1}^{n} \eta(s) \sum_{i=1}^{k} Q_{\pi}(s, i) \bar{\pi}(s, i) = \sum_{s=1}^{n} \eta(s) (T_{\bar{\pi}} J_{\pi})(s) = \langle Q_{\pi}, \bar{\pi} \rangle_{\eta \times 1}$$

where $\langle v, u \rangle_W = \sum_{s=1}^n \sum_{i=1}^k v(s, i) u(s, i) W(s, i)$.

If the state distribution η supports on the entire state space, then we have

$$\pi^+ \in \operatorname{argmin}_{\bar{\pi} \in \Pi} \mathcal{B}(\bar{\pi} | \eta, J_{\pi}) \iff \pi^+(s) \in \operatorname{argmin}_{a \in \mathcal{A}} Q_{\pi}(s, a).$$

< □ > < @ > < 볼 > < 볼 > 글 ∽ 의 < ♡ 12/25

Connection between policy gradient and policy iteration

The gradients of the cost function *I*(π) = Σ_{s∈S} ρ(s)J_π(s) equal the gradients of the weighted policy iteration objective
 B(π
 ⁿ|η_π, J_π) = Σⁿ_{s=1} η_π(s) Σ^k_{i=1} Q_π(s, i)π
 ^k(s, i):

$$\begin{aligned} \nabla_{\pi} I(\pi) &= \mathbb{E}_{s \sim \eta_{\pi}(\cdot), i \sim \pi(\cdot|s)} [\nabla_{\pi} \log \pi(s, i) Q_{\pi}(s, i)] \\ &= \sum_{s, i} \eta_{\pi}(s) \pi(s, i) \begin{bmatrix} 0 \\ \vdots \\ \frac{1}{\pi(s, i)} \\ \vdots \\ 0 \end{bmatrix} Q_{\pi}(s, i) \\ &= (\eta_{\pi}(s) Q_{\pi}(s, i))_{s \in \mathcal{S}, i \in [k]} \\ &= \nabla_{\pi} \mathcal{B}(\bar{\pi}|\eta_{\pi}, J_{\pi}) \end{aligned}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 のので

Frank-Wolfe Algorithm

- Starting with policy π ∈ Π, an iteration of the Frank-Wolfe method performs the following two steps:
- Linear optimization:

$$egin{aligned} \pi^+ = rgmin_{ar{\pi}\in \Pi} \langle
abla_{\pi} l(\pi), ar{\pi}
angle = rgmin_{ar{\pi}\in \Pi} \sum_{s} \eta_{\pi}(s) \sum_{i=1}^k \mathcal{Q}_{\pi}(s,i) ar{\pi}(s,i) \ = rgmin_{ar{\pi}\in \Pi} \mathcal{B}(ar{\pi}|\eta_{\pi},J_{\pi}) \end{aligned}$$

Line search and update:

$$\pi' = (1 - \alpha)\pi + \alpha\pi^+ \quad \alpha \in (0, 1].$$

When α = 1, the update of Frank-Wolfe method is exactly the update of policy iteration.

Projected Gradient Descent

Starting with policy $\pi \in \Pi$, the update of projected gradient descent:

$$\pi' = \operatorname{argmin}_{\bar{\pi}\in\Pi} \|\bar{\pi} - (\pi - \alpha \nabla_{\pi} I(\pi))\|_{2}^{2}$$

= $\operatorname{argmin}_{\bar{\pi}\in\Pi} \langle \nabla_{\pi} I(\pi), \bar{\pi} \rangle + \frac{1}{2\alpha} \|\bar{\pi} - \pi\|_{2}^{2}$
= $\operatorname{argmin}_{\bar{\pi}\in\Pi} \mathcal{B}(\bar{\pi}|\eta_{\pi}, J_{\pi}) + \frac{1}{2\alpha} \|\bar{\pi} - \pi\|_{2}^{2}$

• π' converges to policy iteration when $\alpha \to \infty$.

Mirror-descent

Instead of using the squared Euclidean penalty $\frac{1}{2\alpha} \|\bar{\pi} - \pi\|_2^2$, Mirror-descent method uses the KL divergence $D_{\text{KL}}(\bar{\pi}(s)||\pi(s))$:

$$egin{aligned} \pi' &= \mathrm{argmin}_{ar{\pi}\in \mathsf{\Pi}} \langle
abla I(\pi), ar{\pi}
angle + rac{1}{lpha} \sum_{s=1}^n D_{\mathrm{KL}}(ar{\pi}(s)||\pi(s)) \ &= \mathrm{argmin}_{ar{\pi}\in \mathsf{\Pi}} \mathcal{B}(ar{\pi}|\eta_{\pi}, J_{\pi}) + rac{1}{lpha} \sum_{s=1}^n D_{\mathrm{KL}}(ar{\pi}(s)||\pi(s)) \end{aligned}$$

• The closed-form solution:

$$\pi'(s,i) = \frac{\pi(s,i)\exp\{-\alpha\eta_{\pi}(s)Q_{\pi}(s,i)\}}{\sum_{j=1}^{k}\pi(s,j)\exp\{-\alpha\eta_{\pi}(s)Q_{\pi}(s,j)\}}$$
$$= \frac{\pi(s,i)}{\sum_{j=1}^{k}\pi(s,j)\exp\{\alpha\eta_{\pi}(s)(Q_{\pi}(s,i)-Q_{\pi}(s,j))\}}$$
$$\bullet \text{ When } \alpha \to \infty, \ \pi'(s,i) = \operatorname{argmin}_{i}Q_{\pi}(s,i) \quad \forall s \in \mathcal{S}.$$

Natural Policy Gradient

Starting with policy π ∈ Π, natural policy gradient method penalizes changes to the action distribution at states in proportion to η_π:

$$\pi' = \operatorname{argmin}_{\bar{\pi} \in \Pi} \langle \nabla I(\pi), \bar{\pi} \rangle + \frac{1}{\alpha} \sum_{s=1}^{n} \eta_{\pi}(s) D_{\mathrm{KL}}(\bar{\pi}(s) || \pi(s))$$
$$= \operatorname{argmin}_{\bar{\pi} \in \Pi} \mathcal{B}(\bar{\pi} | \eta_{\pi}, J_{\pi}) + \frac{1}{\alpha} \sum_{s=1}^{n} \eta_{\pi}(s) D_{\mathrm{KL}}(\bar{\pi}(s) || \pi(s))$$
$$= \left(\frac{\pi(s, i) \exp\{-\alpha Q_{\pi}(s, i)\}}{\sum_{j=1}^{k} \pi(s, j) \exp\{-\alpha Q_{\pi}(s, j)\}} \right)_{s \in \mathcal{S}, i \in [k]}.$$

• When $\alpha \to \infty$, $\pi'(s, i) = \operatorname{argmin}_i Q_{\pi}(s, i) \quad \forall s \in S$.

The Choice of step-size

We consider an idealized step-size rule using exact line search. In the step t, we calculate

$$\pi^{t+1} = \operatorname{argmin}_{\pi \in \Pi^{t+1}} I(\pi)$$

where $\Pi^{t+1} = \text{Closure}(\{\pi_{\alpha}^{t+1}\})$ denotes the curve of policies traced out by varying α .

- For Frank-Wolfe method, Π^{t+1} = {(1 − α)π^t + απ^t₊ : α ∈ (0, 1]} is the line segment connecting the current policy π^t and its policy iteration update π^t₊.
- For projected gradient descent, mirror-descent and natural policy gradient, $\Pi^{t+1} = \{\pi_{\alpha}^{t+1}\}$ is a curve where $\pi_{0}^{t+1} = \pi^{t}$ and $\pi_{\alpha}^{t+1} \to \pi_{+}^{t}$ as $\alpha \to \infty$.

The Linear Convergence

Theorem

Suppose one of the policy gradient methods above is applied to minimize $l(\pi)$ over $\pi \in \Pi$. Let π^0 denote the initial policy and $(\pi^t : t \in \{0, 1, 2, \dots\})$ denote the sequence of iterates. The following bounds holds:

Exact line search. If the step-sizes are chosen by exact line search, then we have

$$\|J_{\pi^t} - J^*\|_\infty \leq \left(1 - \min_{s \in \mathcal{S}} \rho(s)(1 - \gamma)\right)^t \frac{\|J_{\pi^0} - J^*\|_\infty}{\min_{s \in \mathcal{S}} \rho(s)}$$

• Constant step-size Frank-Wolfe. Under Frank-Wolfe with constant step-size $\alpha \in (0, 1],$ $\|J_{\pi^t} - J^*\|_{\infty} \leq (1 - \alpha(1 - \gamma))^t \|J_{\pi^0} - J^*\|_{\infty}$

Proof of exact line search case

Under each algorithm and at each iteration t, the policy iteration update π^t₊ is contained in the policy class Π^{t+1}. we have that

$$I(\pi^{t+1}) = \min_{\pi \in \Pi^{t+1}} I(\pi) \le I(\pi^t_+)$$

Recall the property that $J^* \leq J_{\pi^t_+} \leq T J_{\pi^t} \leq J_{\pi^t}$, we have

$$\begin{split} l(\pi^{t}) - l(\pi^{t+1}) &\geq l(\pi^{t}) - l(\pi^{t}_{+}) = \sum_{s} \rho(s) \left(J_{\pi^{t}}(s) - J_{\pi^{t}_{+}}(s) \right) \\ &\geq \rho_{\min} \| J_{\pi^{t}} - J_{\pi^{t}_{+}} \|_{\infty} \\ &\geq \rho_{\min} \| J_{\pi^{t}} - TJ_{\pi^{t}} \|_{\infty} \\ &\geq \rho_{\min} \| J_{\pi^{t}} - J^{*} - (TJ_{\pi^{t}} - J^{*}) \|_{\infty} \\ &\geq \rho_{\min} (\| J_{\pi^{t}} - J^{*} \|_{\infty} - \| TJ_{\pi^{t}} - TJ^{*} \|_{\infty}) \\ &\geq \rho_{\min} (1 - \gamma) \| J_{\pi^{t}} - J^{*} \|_{\infty} \\ &\geq \rho_{\min} (1 - \gamma) (l(\pi^{t}) - l(\pi^{*})) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • ⊙へ⊙

Proof of exact line search case

Rearranging terms gives

$$egin{aligned} & I(\pi^{t+1}) - I(\pi^*) \leq (1 -
ho_{\min}(1 - \gamma)) \left(I(\pi^t) - I(\pi^*)
ight) \leq \cdots \ & \leq (1 -
ho_{\min}(1 - \gamma))^t \left(I(\pi^0) - I(\pi^*)
ight) \leq (1 -
ho_{\min}(1 - \gamma))^t \| J_{\pi^0} - J^* \|_{\infty} \end{aligned}$$

• The final result follows from that $\|J_{\pi^t} - J^*\|_{\infty} \leq \frac{(I(\pi^{t+1}) - I(\pi^*))}{\rho_{\min}}$

Proof of constant stepsize case

The Frank-Wolfe update exactly equals a soft-policy iteration update:

$$\pi^{t+1}(s) = (1-\alpha)\pi^t(s) + \alpha\pi^t_+(s)$$

where π_{+}^{t} is the policy iteration update to π^{t} .

By the linearity of Bellman operator, for any state *s*,

$$egin{aligned} (T_{\pi^{t+1}}J_{\pi^t})(s) &= (1-lpha)(T_{\pi^t}J_{\pi^t})(s) + lpha(TJ_{\pi^t})(s) \ &= (1-lpha)J_{\pi^t}(s) + lpha(TJ_{\pi^t})(s) \leq J_{\pi^t}(s) \end{aligned}$$

 \blacksquare By the monotonicty of $\mathcal{T}_{\pi^{t+1}},$ we have

$$J_{\pi^t} \ge T_{\pi^{t+1}} J_{\pi^t} \ge T_{\pi^{t+1}}^2 J_{\pi^t} \ge \dots \ge J_{\pi^{t+1}}$$

Proof of constant stepsize case

From $J_{\pi^{t+1}} \leq J_{\pi^t}$, it holds that

$$J_{\pi^{t+1}} = T_{\pi^{t+1}} J_{\pi^{t+1}} \le T_{\pi^{t+1}} J_{\pi^t} = (1 - \alpha) J_{\pi^t} + \alpha T J_{\pi^t}$$

Subtracting J* from both sides shows

$$J_{\pi^{t+1}} - J^* \leq (1-lpha)(J_{\pi^t} - J^*) + lpha(\mathcal{T}J_{\pi^t} - J^*)$$

• By the contraction property of T, we have that

$$\|J_{\pi^{t+1}} - J^*\|_{\infty} \leq (1 - lpha + \gamma lpha) \|J_{\pi^t} - J^*\|_{\infty}$$

Applying the inequality obtains the final result:

$$\|J_{\pi^{t+1}} - J^*\|_{\infty} \le (1 - \alpha(1 - \gamma))^t \|J_{\pi^0} - J^*\|_{\infty}$$

Questions and Discussions

Any questions or discussions about this talk?

