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Emerging Applications with Reinforcement Learning

I Recently, there are successful applications with (deep) reinforcement learning (RL).

Figures from Internet.

I Existing methods might not be optimal due to lack of theory and full of bag of tricks.

I To design more effective methods, we need the mathematical framework of Markov Decision

Process [Puterman, 1994, Sutton and Barto, 2018].
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Markov Decision Process

I Consider an infinite-horizon Markov Decision Process M∗ = (S,A, P,R, γ, d0) [Puterman,

1994, Sutton and Barto, 2018].

– S and A are the (finite) state and action space, respectively.

– P determines the transition probability of st+1 conditioned on st and at.

– R is the (bounded) reward function, which assigns a reward r(s, a) for state-action pair (s, a).

– γ ∈ [0, 1) is a discount factor, balancing the importance of future rewards.

– d0 specifies the initial state distribution.
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Markov Decision Process

I The decision process is characterized as follows:

– At the beginning of the epoch, the environment resets to some initial state s0 according to d0;

– The agent observes the state s0 and selects an action a0 to perform;

– The environment transits to s1 according to P and sends a reward signal r0 to the agent.

– This process repeats until some terminal signal is released, after which the environment resets

to some initial state again.
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Markov Decision Process

I The above action selection procedure can be described as a policy π : S 7→ ∆(A), which

maps the state space to a probability simplex over the action space.

I The goal of an intelligent agent is to maximize its payoff by searching the optimal policy π∗

with maximal cumulative rewards.

π∗ = arg max
π

Eπ

[ ∞∑
t=0

γtr(st, at)

]
.

I Though the above decision-making procedure seems endless, the effective planning horizon

is 1/(1− γ).

Eπ

[ ∞∑
t=0

γtr(st, at)

]
≤ Rmax

1− γ
,

where Rmax is the maximal reward, which is assumed to be 1 without loss of generality.
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Value Function

I The (state) value function (or V -function) for an infinite-horizon MDP is defined as:

V π(s) = E

[ ∞∑
k=0

γkr(sk, ak)|s0 = s, ak ∼ π(·|s), k ≥ 0

]
.

I Similarly, the (state-action) value function (or Q-function) is defined as:

Qπ(s, a) = E

[ ∞∑
k=0

γkr(sk, ak)|s0 = s, a0 = a, ak+1 ∼ π(·|s), k ≥ 0

]

I The policy value is defined as the expected long-term return:

V (π) = Es0∼ρ(s) [V π(s0)] .
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Bellman Optimality Equation

I The Bellman Optimality Equation for V -function and Q-function is defined as:{
V (s) = maxa∈A

[
r(s, a) + γEs′∼p(·|s,a) [V (s′)]

]
(V -function)

Q(s, a) = r(s, a) + γEs′∼p(·|s,a) [maxa′∈AQ(s′, a′)] (Q-function)
(1)

I Define the optimal (state/state-action) value function as:

V ∗(s) = max
π

V π(s), Q∗(s, a) = max
π

Qπ(s, a) ∀(s, a) ∈ S ×A.
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Bellman Operator for V -function

I The (population-based) Bellman operator T for V -function is a mapping from R|S| to

itself:

T (V )(s) ≡ max
a∈A

[
r(s, a) + γEs′∼p(·|s,a) [V (s′)]

]
.

I It can be proved V ∗ is the unique solution to Equation (1) [Puterman, 1994].

V ∗ = T (V ∗).

I Thus, repeatedly applying Bellman operator from any point converges to the optimal state

value function.
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Bellman Operator for Q-function

I Similarly, the (population-based) Bellman operator T for Q-function is a mapping from

R|S|×A to itself:

T (Q)(s, a) ≡ r(s, a) + γEs′∼p(·|s,a)
[
max
a′∈A

Q(s′, a′)

]
.

I Similarly, Q∗ is the unique solution to Equation (1) [Puterman, 1994].

Q∗ = T (Q∗).

I Again, repeatedly applying Bellman operator from any point converges to the optimal

state-action value function.
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Properties of Bellman Operator

I (γ-contractive) For any two value function V1 and V2, we have

‖T (V1)− T (V2)‖∞ ≤ γ ‖V1 − V2‖∞ .

- Corollary: ||T (V )− V ∗||∞ ≤ γ||V − V ∗||∞.

I (Order-reserving) For any two V1 and V2 satisfying that V1 ≤ V2 (≤ holds elementwise), we

have

T (V1) ≤ T (V2).

I The above properties also hold for Q-function.
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Methods to Markov Decision Process

I Contraction-based Method

– Value-based: (Q or V ) value iteration.

– Policy-based: policy iteration; policy gradient.

I Not-Contraction-based method

– Linear programming [Puterman, 1994] (notes on this will be released later).
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Main Algorithm of Value Iteration

Algorithm 1 Value Iteration

Input: initial value V0 and iteration number L.
1: Initialize an auxiliary variable Z ∈ R|S|.
2: for ` = 1, 2, · · · , L do
3: for each state s ∈ S do
4: % Performing population-based Bellman update.
5: Z(s) = maxa∈A

[
r(s, a) + γEs′∼p(·|s,a) [V`−1(s′)]

]
.

6: end for
7: Set V` = Z.
8: end for

Output: VL.
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Theoretical Guarantee for Value Iteration

Theorem 1 (Linear Convergence of Value Iteration).

With the parameter

L =

⌈
1

1− γ
log

1

ε

⌉
,

Value Iteration (see Algorithm 1) can find a sub-optimal value function VL such that

||VL − V ∗||∞ ≤ ε from any initial solution V0, where ε ∈ (0, 1
1−γ ] is the error tolerance.

Background & Literature Review 14 / 76



Task of Reinforcement Learning

I Setting of Reinforcement Learning [Sutton and Barto, 2018]:

– Transition probability P is unknown.

– Reward function R is unknown (option).

– Interaction with the environment is allowed.

I Goal: quickly find an ε-optimal policy π.

– This can also be achieved by learning an ε/(1− γ)-optimal Q-function, upon which we derive

a greedy policy π(s) = argmaxaQ(s, a) [Bertsekas and Tsitsiklis, 1996].

0 ≤ V (π∗)− V (π) ≤ ε.

Background & Literature Review 15 / 76



Setting of RL: Online Learning

I In addition to previous conditions, the environment/simulator can only start from some

initial states.

I Interactions come from in the way of stream-data, a.k.a., online learning.

I The leaner needs to balance the trade-off of exploration and exploitation.

I Not the focus of this presentation.
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Setting of RL: Generative Oracle

I Generative Oracle M: we can directly reset it to any state st, after which we can take an

action at and observe the next state st+1 ∼ p(·|st, at) and the reward r(st, at).

– Compared to the pure MDP problem, we still do not known P in advance.

– Compared to the online RL problem, we can go to any st without the planning from an initial

state s0.

– In particular, we have access to the whole state space and action space (i.e., no exploration

issue).

I Example: a perfect simulator (e.g., some video game simulators), where we can load (reset)

the state st from RAM.

I The main focus of this presentation.
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Setting of RL: Offline Learning

I The learner cannot interact with the environment, but is provided with some fixed dataset.

I The learner needs to make safe improvement from this insufficient dataset.

I Not the focus of this presentation.
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Setting Comparison

I Difficulty comparison with different settings:

Multi-arm  
Bandit

Generative  
Model

Batch 
RL

Online 
RL

Easy Hard
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Lower Bound with a Generative Oracle

Definition 2 ((ε, δ)-correct algorithm).

Let V be the output of some RL algorithm A. We say that A is (ε, δ)-correct on the class of

MDPs M = {M1, · · · ,Mm} if ||V ∗M − V ||∞ ≤ ε with probability at least 1− δ for each

M∈M.

Theorem 3 (Lower bound with generative oracle [Azar et al., 2013]).

There exist some constants ε0, δ0, c1, c2 and a class MDPs M, such that for all ε ∈ (0, ε0),

δ ∈ (0, δ0), and every (ε, δ)-correct RL algorithm on the class of MDPs M, the total number of

state-transition samples needs to be at least

T =

⌈
|S| × |A|

c1ε2(1− γ)3
log

(
|S| × |A|
c2δ

)⌉
.
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Comment on Lower Bound

I Define TM(A) as the number of samples of algorithm A to get an ε-accurate solution on

MDP M with probability at least 1− δ.

I Understanding the lower bound and upper bound:

TM(A)︸ ︷︷ ︸
(actual performance)

≤ sup
M

TM(A)︸ ︷︷ ︸
(upper bound)

,

inf
A

sup
M

TM(A)︸ ︷︷ ︸
(lower bound)

≤ sup
M

TM(A)︸ ︷︷ ︸
(upper bound)

.

I An algorithm A is sailed to be minimax-optimal if its upper bound matches the lower bound

(constant and logarithmic terms can be ignored).
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Phased Value Iteration

I A simple method with a generative oracle is to replace the population-based Bellman

operator T with sample-average-approximation, see Algorithm 2 [Kearns and Singh, 1999].

Algorithm 2 Phased Value Iteration

Input: initial value V0, iteration number L, and sample size n.
1: Initialize V̂0 = V0 and a policy π̂0 ∈ R|S|.
2: Initialize an auxillary variable Z ∈ R|S|×|A|.
3: for ` = 1, 2, · · · , L do
4: for each state s ∈ S do
5: for each any a ∈ A do
6: % Sample-average-approximation to T .
7: Sample n next states {s′i}ni=1 by calling M.

8: Set Z(s, a) = r(s, a) + γ
∑n
i=1

1
n V̂`−1(s′i).

9: end for
10: Set V̂`(s) = maxa∈A Z(s, a) and π̂`(s) = arg maxa∈A Z(s, a).
11: end for
12: end for
Output: (V̂L, π̂L).
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Theoretical Guarantee for Phased Value Iteration

Theorem 4 (Sample Complexity of Phased Value Iteration).

Given a generative oracle M, with the parameters:

L =

⌈
1

1− γ
log

2

(1− γ)ε

⌉
, n =

4

ε2(1− γ)4
log

(
2× |S| × |A| × T

δ

)
, V0 = 0,

Phased Value Iteration (see Algorithm 2) ensures that ||V ∗ − V̂L||∞ ≤ ε with probability at least

1− δ, and the number of total samples used is

O
(
|S| × |A|
ε2(1− γ)5

log

(
1

δ

))
.

Model-free Methods 25 / 76



Proof Idea of Theorem 4

I Suppose we can choose a large sample number n to ensure that sampling-based T̂ is

accurate such that for any state s, we have∣∣∣∣∣
n∑
i=1

1

n
V̂t(s

′
i)− Es′∼p(·|s,a)

[
V̂t(s

′)
]∣∣∣∣∣ ≤ εn.

I Based on the assumption, we can prove that the “flaw” of T̂ is:∥∥∥V` − V̂`∥∥∥
∞
≤ γ

∥∥∥V`−1 − V̂`−1∥∥∥
∞

+ γεn
V`−1=V̂`−1

== γεn.

- V`: the `-th iterator of Value Iteration.

- V̂`: the `-th iterator of Phased Value Iteration.
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For any state s ∈ S,∣∣∣V`(s)− V̂`(s)∣∣∣
=

∣∣∣∣max
a∈A

{
r(s, a) + γEs′∼p(·|s,a) [V`−1 (s′)]

}
−max

a∈A

{
r(s, a) + γEs′∼p̂(·|s,a)

[
V̂`−1 (s′)

]}∣∣∣∣
(i)

≤ max
a∈A

∣∣∣{r(s, a) + γEs′∼p(·|s,a) [V`−1 (s′)]
}
−
{
r(s, a) + γEs′∼p̂(·|s,a)

[
V̂`−1 (s′)

]}∣∣∣
= γmax

a∈A

∣∣∣Es′∼p(·|s,a) [V`−1 (s′)]− Es′∼p̂(·|s,a)
[
V̂`−1 (s′)

]∣∣∣
(ii)

≤ γmax
a∈A

∣∣∣Es′∼p(·|s,a) [V`−1 (s′)]− Es′∼p(·|s,a)
[
V̂`−1 (s′)

]∣∣∣+ γεn

≤ γmax
s′∈S

∣∣∣V`−1 (s′)− V̂`−1 (s′)
∣∣∣+ γεn,

(2)
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I Recall that the optimality gap shrinks with a linear speed:∥∥∥V` − V̂`∥∥∥
∞
≤ γ

∥∥∥V`−1 − V̂`−1∥∥∥
∞

+ γεn. (3)

I Repeatedly applying the above inequality, we get the optimality gap:

∥∥∥V` − V̂`∥∥∥
∞
≤ γt||V0 − V̂0||∞ +

∑̀
i=1

γiεn

≤ 1

1− γ
εn,

where we assume that V0 = V̂0 and εn is an iteration-independent term.
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I By triangle inequality, suppose the sampling-based Bellman update is accurate such that

1

1− γ
εn ≤

1

2
ε =⇒ εn ≤

1− γ
2

ε,

then we have: ∥∥∥V̂` − V ∗∥∥∥
∞
≤
∥∥∥V` − V̂`∥∥∥

∞︸ ︷︷ ︸
1
2 ε

+ ‖V` − V ∗‖∞︸ ︷︷ ︸
1
2 ε

≤ ε.

I By Hoeffding’s inequality, we require that the sample size n ∼ O( 1
(1−γ)4ε2 ).

I It remains to note that the total iteration number L ∼ O( 1
1−γ ).

Model-free Methods 29 / 76



Comment on Phased Value Iteration

I (Uniform Convergence) Phased Value Iteration requires fresh data to update each value

function iterator.

– The accuracy is uniform over iterations, which has the same order with the final accuracy.

I (Error Bound of Induced Policy) The induced greedy policy π̂L suffers much from the

inaccuracy of V̂L, that is, ∥∥∥V π̂L − V π∗∥∥∥
∞
≤ O(

1

ε2(1− γ)7
).

– (Lemma [Bertsekas and Tsitsiklis, 1996]) For any value function V̂ such that

||V̂ − V ∗||∞ ≤ ε, suppose that π̂ is the induced greedy policy by V̂ , then

||V π̂ − V π
∗
||∞ ≤

2γ

1− γ ε.
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Phased Value Iteration: Stochastic Approximation

I Phased Value Iteration (actually all methods with a generative oracle) is a stochastic

approximation (SA) method to solve the Bellman equation.

V = T (V ) =⇒ Vt+1 = 0 · Vt + T̂ (Vt).

I By stochastic approximation, there is always sampling-noise in the update, which precludes

convergence to the fixed point.

I The same issue also holds for the stochastic gradient descent (SGD) [Johnson and Zhang,

2013].

∇F (x) = 0 =⇒ xt+1 = xt − ηt∇fi(xt).
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Improve Phased Value Iteration with SA

I Technically, reducing the variance of noise is to control the estimate of value range when

applying Hoeffding’s inequality.

E[X2] = Var[X] + E2[X].

I Though naively annealing the stepsize could reduce the variance, which is not the optimal

method (this also is true for SGD [Johnson and Zhang, 2013]).
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Variance-reduced Value Iteration

I We consider the control variate method:

V := T̃ (Ṽ ) + T̂ (V )− T̂ (Ṽ ) (4)

=⇒ T̃ (Ṽ ) +�������
T̂ (V )− T̂ (Ṽ ) (V ≈ Ṽ ) (5)

=⇒ T (V ) (T̃ ≈ T ) (6)

I We introduce an auxillary iterator Ṽ and (sampling-based) Bellman operator T̃ to eliminate

the sampling noise.

– Ṽ could be the previous iterator.

– Each iteration, using the samples to update both V and Ṽ .

– T̃ (Ṽ ) does not change over iterations within the loop.
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Illustration of Variance-reduced Value Iteration
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Why Variance-reduced?

I Rearrange the estimator formula:

V := T̃ (Ṽ ) + T̂ (V )− T̂ (Ṽ )

:= T̃ (Ṽ )︸ ︷︷ ︸
one-pass

+ T̂ (V − Ṽ )︸ ︷︷ ︸
many-pass

.

I The first term only requires samples before the iteration, whose value range estimate cannot

be improved.

I The second term requires samples within the iteration, whose value range estimate is

reduced (since V ≈ Ṽ ).
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Main-Algorithm of Variance-reduced Value Iteration

Algorithm 3 Sublinear Randomized Value Iteration: SublinearRandomizedVI(ε, δ)

Input: desired precision ε and failure probability δ ∈ (0, 1).

1: Set K =
⌈
log2

(
1

ε(1−γ)

)⌉
, and L =

⌈
1

1−γ log
(

4
1−γ

)⌉
2: Set V0 = ~0 and ε0 = 1

1−γ .
3: for each iteration k = 1, 2, · · · ,K do
4: Set εk = 1

2εk−1 = 1
2k(1−γ) . % Iteratively shrink the estimate range

5: (Vk, πk) = SampledRandomizedVI(Vk−1, L, (1− γ)εk/(4γ), δ/K). % Variance-reduced
update

6: end for
Output: (VK , πK).
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Sub-Algorithm of Variance-reduced Value Iteration

Algorithm 4 Sampled Randomized Value Iteration: SampledRandomizedVI(V0, L, ε, δ)

Input: initial value V0 and number of iterations L > 0
Input: target accuracy ε > 0 and failure probability δ ∈ (0, 1)
1: % Estimate the control variate
2: Sample n samples to obtain approximate offsets: X ∈ R|S|×|A| with |X (s, a) −

Es′∼p(·|s,a)[V0(s′)]| ≤ ε for all (s, a).

n =

⌈
2||V0||2∞

ε2
log

(
2L

δ

)⌉
.

3: % Single Epoch of Variance-reduced update
4: for each round ` = 1, 2, · · ·L do
5: (V`, π`) = ApxVal(V`−1, V0,X , ε, δ/(2L)).
6: end for

Output: (VL, πL).
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Sub-Algorithm of Variance-reduced Value Iteration

Algorithm 5 Approximate Value Operator: ApxVal(V, Ṽ ,X , ε, δ)

Input: current value V ∈ R|S|, and reference-point Ṽ ∈ R|S|.
Input: precomputed offset X ∈ R|S|×|A| such that |X (s, a) − Es′∼p(·|s,a)[Ṽ (s′)]| ≤ ε for all

(s, a).
Input: desired accuracy ε ∈ (0, 1) and failure probability δ ∈ (0, 1).

1: Set n =
⌈
2||V−Ṽ ||2∞

ε2 log
(
2
δ

)⌉
.

2: Initialize variables Zt ∈ R|S|×|A|, V̄ ∈ R|S| and π ∈ R|S|.
3: for each state s ∈ S do
4: for each action a ∈ A do
5: Sample n next states {s′i}ni=1 by calling M.
6: % Variance-reduced update, see Equation (4)

7: Set Z(s, a) = r(s, a) + γ
(
X (s, a) +

∑n
i=1

1
n [V (s′i)− Ṽ (s′i)]

)
.

8: end for
9: Set V̄ (s) = maxa∈A Z(s, a), and π(s) = arg maxa∈A Z(s, a).

10: end for
Output: (V̄ , π).
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Theoretical Guarantee of Variance-reduced Value Iteration

Theorem 5 (Sample Complexity of Sublinear Randomized Value Iteration [Sidford

et al., 2018]).

In invocation of Sublinear Randomized Value Iteration (see Algorithm 3) requires

Õ
(
|S| × |A|

(
1

ε2(1− γ)4
+

1

(1− γ)3

)
log

(
1

δ

))
samples to obtain an ε-optimal value function with probability at least 1− δ, where ε ∈ (0, 1

1−γ ].
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Comment on Variance-reduced Value Iteration

I There are two terms governing the sample complexity and the dominate term is

task-dependent.

Õ
(

1

ε2(1− γ)4︸ ︷︷ ︸
→T̂

+
1

(1− γ)3︸ ︷︷ ︸
→T̃

)
.

I To obtain an ε-optimal policy, the sample complexity becomes [Bertsekas and Tsitsiklis,

1996]

Õ
(

1

ε2(1− γ)6
+

1

(1− γ)3

)
=⇒ Õ

(
1

ε2(1− γ)6

)
.

– Only improve 1/(1− γ) over Phased Value Iteration (see Algorithm 2).
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Proof Idea of Theorem 5

I ApxVal is almost same with the direct sample-average-approximation expect that the offset

term is ε-optimal.

I With the same reasoning, the quality of ApxVal is reserved.

Lemma 6 (Quality of Approximate Value Operator).

With probability at least 1− δ, the output of Approximate Value Operator (see Algorithm 5)

satisfies that

||V̄ − T (V )||∞ ≤ 2γε.
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Proof Idea of Theorem 5

I Based on Lemma 6, we can show that the quality of SampledRandomizedVI (i.e., the

variance-reduced Bellman operator) is also maintained:

‖V` − V ∗‖∞ ≤
∥∥∥V` − V ]` ∥∥∥∞ +

∥∥∥V ]` − V ∗∥∥∥∞
= ||V` − T (V`−1) + T (V`−1)− V ]` ||+

∥∥∥V ]` − V ∗∥∥∥∞
≤ 2γε+ γ

∥∥∥V`−1 − V ]`−1∥∥∥∞ + γ` ‖V0 − V ∗‖∞

≤ 2γε

1− γ
+ γ` ‖V0 − V ∗‖∞ ,

(7)

where V ]` is the `-th iterator of exact Value Iteration and we assume that V0 = V ]0 .
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Proof Idea of Theorem 5

I By choosing a large enough iteration number L, e.g.,

L ≥
⌈

1

1− γ
log

(
||V0 − V ∗||∞

2γε

)⌉
=⇒ γ` ‖V0 − V ∗‖∞ ≤

2γε

1− γ
.

I Therefore, we have

‖V` − V ∗‖∞ ≤
2γε

1− γ
+ γ` ‖V0 − V ∗‖∞ ≤

4γε

1− γ
. (8)

I The sample complexity is computed in the next page.
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Proof Idea of Theorem 5

I Sample complexity is consist of two terms: control-variate and the variance-reduced update.

I To obtain an ε-optimal control variate, we directly use Hoeffding’s inequality:

n =

⌈
2||V0||2∞

ε2
log

(
2L

δ

)⌉
=⇒ n ∼ Õ

(
1

(1− γ)2ε2

)
.

I To analyze the variance-reduced update, we need to upper bound the estimation range

‖V` − V0‖∞.

I Importantly, the estimation range is reduced compared with the ordinary one ‖V`‖∞ in

Phased Value Iteration.
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Proof Idea of Theorem 5

I The estimation range ‖V` − V0‖∞ is reduced over epochs.

‖V` − V0‖2∞ ≤ ‖V` − V
∗ + V ∗ − V0‖2∞

≤ (||V` − V ∗||∞ + ||V ∗ − V0||∞)
2

(i)

≤ 2||V` − V ∗||2∞ + 2||V ∗ − V0||2∞
(ii)

≤ 2

(
2γε

1− γ
+ ||V0 − V ∗||∞

)2

+ 2||V ∗ − V0||2∞

≤ 8ε2

(1− γ)2
+ 8||V0 − V ∗||2∞,

(9)

I To conclude, the sample complexity of SublinearRandomizedVI is bounded by

O
(
|S| × |A|

[
1

(1− γ)2ε2
+ L

(
||V0 − V ∗||2∞

ε2
+

1

(1− γ)2

)]
log

(
|S| × |A| × L

δ

))
(10)
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Proof Idea of Theorem 5

I By choosing εk = 0.5εk−1 in SublinearRandomizedVI, we infer that ||Vk − V ∗||∞ ≤ εk
holds over epochs.

O
(
|S| × |A|

[
1

(1− γ)2ε2
+ L

(
������||V0 − V ∗||2∞

ε2
+

1

(1− γ)2

)]
log

(
|S| × |A| × L

δ

))
I By substituting ε := (1− γ)ε in Equation (10) (due to the accuracy in Equation (8)), we

note that the number of epochs K is a 1/(1− γ) independent term.

I Thus, the total sample complexity becomes:

=⇒ Õ
(

1

(1− γ)4ε2
+

L

(1− γ)2

)
=⇒ Õ

(
1

(1− γ)4ε2
+

1

(1− γ)3

)
.
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Variance-reduced Value Iteration (Refined)

Model-free Methods 48 / 76



Outline

Background & Literature Review

Model-free Methods

Phased Value Iteration

Variance-reduced Value Iteration

Q-Learning

Speedy-Q-Learning

Variance-reduced Q-Learning

Model-based Methods

Model-based Value Iteration

Summary

Model-free Methods 49 / 76



Q-Learning
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Speedy-Q-Learning
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Variance-reduced Q-Learning
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Model-based Value Iteration

I On the other hand, the learner can first construct a virtual MDP M̂ with collected samples,

and then performs (population) Bellman operator on this recovered MDP M̂.

I In this way, the learner does not need the iterative learning in Phased Value Iteration (see

Algorithm 2), which requires new samples each iteration.
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Model-based Value Iteration

Algorithm 6 Model-based Value Iteration

Input: n.
1: Collect n next states for each state-action pair by calling the generative model M.
2: Construct a virtual MDP with P̂ :

P̂ (s′|s, a) =
# times (s, a) 7→ s′

n
.

3: V̂ ∗ ← Run Value Iteration (see Algorithm 1) on the virtual MDP.
Output: V̂ ∗.

Model-based Methods 58 / 76



Theoretical Guarantee for Model-based Value Iteration

Theorem 7 (Sample Complexity of Model-based Value Iteration (Corase Analysis)).

Given a generative model M, with the parameter:

n =

⌈
1

ε2(1− γ)4
log

(
2× |S| × |A|

δ

)⌉
,

Model-based Value Iteration (see Algorithm 6) can find a sub-optimal value function VT such

that ||VT − V ∗||∞ ≤ ε from any initial solution V0, where ε ∈ (0, 1
1−γ ] is the error tolerance with

probability at least 1− δ, and the number of total samples used is

O
(
|S| × |A|
ε2(1− γ)4

log

(
|S| × |A|

δ

))
.
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Proof Idea of Theorem 7

I Error decomposition:∥∥∥V ∗ − V̂ ∗∥∥∥
∞

=
∥∥∥T (V ∗)− T̂ (V̂ ∗)

∥∥∥
∞

=
∥∥∥T (V ∗)− T (V̂ ∗) + T (V̂ ∗)− T̂ (V̂ ∗)

∥∥∥
∞

≤ γ
∥∥∥V ∗ − V̂ ∗∥∥∥

∞
+ εn,

where we assume that the estimation error
∥∥∥T (V̂ ∗)− T̂ (V̂ ∗)

∥∥∥
∞
≤ εn.

I Rearranging yields the bound: ∥∥∥V ∗ − V̂ ∗∥∥∥
∞
≤ γ

1− γ
εn. (11)

Model-based Methods 60 / 76



Proof Idea of Theorem 7

I Model-based Value Iteration only requires the sample-average-approximation is

accurate for V̂ ∗.

I By substituting εn := ε/(1− γ) in Equation (11), applying Hoeffding’s inequality, we have

n ∼ O
(

1

(1− γ)4ε2

)
=⇒

∥∥∥V ∗ − V̂ ∗∥∥∥
∞
≤ ε.
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Comment on Model-based Value Iteration

I Model-based Value Iteration only requires T̂ to be accurate for V̂ ∗.

– On the contrast, Phased Value Iteration requires T̂ to be accurate for each iterator V̂t.

I In this way, Model-based Value Iteration improves O( 1
1−γ ) complexity compared to

Phased Value Iteration.

I The above analysis for Model-based Value Iteration is coarse.

– We independently bound the estimation error for each (s, a) pair then use a union bound.

– For a single value function, the sequential structure of Bellman equation could provide a

tighter bound to estimate the variance.
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Refined Sample Complexity of Model-based Value Iteration

Theorem 8 (Refined Sample Complexity of Model-based Value Iteration [Azar et al.,

2013]).

Given a generative oracle M, with the parameter:

n = O
(

1

ε2(1− γ)3
log

(
2× |S| × |A|

δ

))
,

Model-based Value Iteration (see Algorithm 6) can find a sub-optimal value function VT such

that ||VT − V ∗||∞ ≤ ε from any initial solution V0, where ε ∈ (0, 1
1−γ ] is the error tolerance with

probability at least 1− δ, and the number of total samples used is

O
(
|S| × |A|
ε2(1− γ)3

log

(
|S| × |A|

δ

))
.
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Proof Idea of Theorem 8

I We start with the general form of the error decomposition.

I Note that V̂ ∗ ≥ V̂ π∗ , we have

V ∗ − V̂ ∗ ≤ V ∗ − V̂ π
∗

=
(
I− γPπ

∗
)−1

rπ
∗
−
(
I− γP̂π

∗
)−1

rπ
∗

(
rπ
∗
(s) = r (s, π∗(s))

)
=
(
I− γP̂π

∗
)−1 [(

I− γP̂π
∗
)
−
(
I− γPπ

∗
)](

I− γPπ
∗
)−1

rπ
∗

= γ
(
I− γP̂π

∗
)−1 [

Pπ
∗
− P̂π

∗
] (

I− γPπ
∗
)−1

rπ
∗

= γ
(
I− γP̂π

∗
)−1

︸ ︷︷ ︸
precondition

[
Pπ
∗
− P̂π

∗
]
V ∗︸ ︷︷ ︸

estimation

,

where ≤ holds elementwise.
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Proof Idea of Theorem 8

I Similarly, we have the elementwise-error bound: V ∗ − V̂ ∗ ≤ γ
(
I− γP̂π∗

)−1 [
Pπ
∗ − P̂π∗

]
V ∗

V ∗ − V̂ ∗ ≥ γ
(
I− γP̂ π̂∗

)−1 [
Pπ
∗ − P̂π∗

]
V ∗.

I To apply Bernstein’s inequality, we need to consider the variance of estimation.

σ2
V π (s, a) = γ2Vs′∼p(·|s,a) [V π (s′)] , and σ̂2

V ∗(s, a) = γ2Vs′∼p̂(·|s,a) [V π (s′)] .

I Furthermore, we need to unify the RHS to get a single variance bound (see the next page).
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Proof Idea of Theorem 8

Lemma 9 (Elementwise bounds on σV ∗).

With probability at least 1− δ, the following relations hold separately:

σV ∗ ≤ σ̂V̂ π∗ + bv~1,

σV ∗ ≤ σ̂V̂ π̂∗ + bv~1,

where bv is defined as

bv =

18γ4 log
(

3|S|×|A|
δ

)
n(1− γ)4

1/4

+

√√√√4γ2 log
(

6|S|×|A|
δ

)
n(1− γ)4
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Proof Idea of Theorem 8

I With Lemma 9, we can bound the estimation error.

Lemma 10 (Elementwise bounds on (Pπ
∗ − P̂π∗)V ∗ ).

Define the following constants:

cpv = 2 log
(

2|S|×|A|
δ

)
bpv =

(
5 log( 6|S|×|A|

δ )
n

(
γ

1−γ

)4/3)3/4

+
4 log( 12|S|×|A|

δ )
n(1−γ)2 .

With probability at least 1− δ, we have

−

√
cpvσ̂2

V̂ π∗

n
− bpv~1 ≤ γ

(
Pπ
∗
− P̂π

∗
)
V ∗ ≤

√
cpvσ̂2

V̂ π∗

n
+ bpv~1
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Proof Idea of Theorem 8

I Finally, we need to consider the multiplication by the precondition matrix and the variance.(
I− γP̂π

∗
)−1 [

Pπ
∗
− P̂π

∗
]
V ∗ ≈

(
I− γP̂π

∗
)−1

σ̂V̂ π∗ .

I A naive bound with Cauchy-Schwarz inequality inequality is O
(

1
(1−γ)2

)
.

– Together with
√

1
n

in Lemma 10, this yields the sample complexity of O
(

1
(1−γ)4

)
.

I However, we will show that the sequential structure of MDP yields a tighter bound of

O
(

1
(1−γ)1.5

)
.
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Proof Idea of Theorem 8

I Consider the “total variance”:

Σπ(s, a) = E


∑
t≥0

γtr (st, at)−Qπ(s, a)


2

| s0 = s, a0 = a

 .
I We show that “total variance” satisfies the following Bellman equation.

Lemma 11 (Bellman-like variance).

Σπ satisfies the following Bellman equation:

Σπ = σ2
V π + γ2PπΣπ.
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Proof Idea of Theorem 8

I With Lemma 11, we get a tighter bound:∥∥∥(I− γ2Pπ)−1 σ2
V π

∥∥∥
∞

= ‖Σπ‖∞ ≤
1

(1− γ)2∥∥∥(I− γPπ)
−1
σV π

∥∥∥
∞
≤ 2‖

√
1

1− γ
Σπ‖∞ ≤

2

(1− γ)1.5
.

I In this way, we prove that the total sample complexity is O
(

1
(1−γ)3ε2

)
.
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Summary

I Model-free methods have the following properties:

– they iteratively collect samples and update the value function.

– variance-reduction plays an important role.

I Model-based methods have the following properties:

– they collect enough samples once and solve the optimal value function.

– it’s easy to achieve the minimax-optimal bound for both policy/(value function).

I It’s non-trivial to obtain an ε-optimal policy from an imperfect value function.
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Prior Art

Sample Complexity to obtain an ε-optimal policy

An even shorter list of prior art

algorithm sample size range sample complexity ε-range

empirical QVI [ |S|2|A|
(1−γ)2 ,∞) |S||A|

(1−γ)3ε2 (0, 1√
(1−γ)|S|

]
Azar et al. ’13

sublinear randomized VI [ |S||A|
(1−γ)2 ,∞) |S||A|

(1−γ)4ε2

(
0, 1

1−γ
]

Sidford et al. ’18a
variance-reduced QVI [ |S||A|

(1−γ)3 ,∞) |S||A|
(1−γ)3ε2 (0, 1]Sidford et al. ’18b

randomized primal-dual [ |S||A|
(1−γ)2 ,∞) |S||A|

(1−γ)4ε2 (0, 1
1−γ ]Wang ’17

empirical MDP + planning [ |S||A|
(1−γ)2 ,∞) |S||A|

(1−γ)3ε2 (0, 1√
1−γ ]

Agarwal et al. ’19

19/ 74

Table from http://www.stat.cmu.edu/~ytwei/documents/slides/model-based-rl-slides.pdf.
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Open Problem

I Q1: breaking the sample barrier for model-free methods with a generative oracle.

I Q2: online model-free learning with variance-reduction.
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