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SETTING

e Have a fixed dataset rather than gains information from its
interaction with the environment.

e Performs pure exploitation rather than concerns both exploration
and exploitation.

OPERATION MANAGEMENT



OUTLINE

@ Background

© Marginalized Behavior Support Algorithms (MBS)
e Key Ideas
o Analysis
o Experiment

© Expected-Max Q-Learning Operator (EMaQ)
o Key Ideas
o Analysis
e Algorithms

Jury 22, 2020

OPERATION MANAGEMENT

XuHUI Liv  (NANJING UNIVERSITY)



Table of Contents

@ Background




Related Work

Batch Constrained Q-Learning (BCQ)

mp(als) = argmax Qu(s,a; + &o(s,a;))
ai+8p(s,a:)

a; ~ p(als),i=1,--- N

® Qy is learned, u(als) is the behavior policy.
e & is an MLP and is bounded with a range [®, ®].
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Related Work

Bootstrapping Error Accumulation Reduction (BEAR)

m;iX ESNDEW(als) []:Ill}lIl’K Qj (‘97 a’)]

sit. Egup[MMD(u(-|s),n(---1s))] <e

e Constrain the support of learned policies to match the support of
als).
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Related Work

e SPIBB
Follows the behavior policy in less explored state-action pairs
while attempting improvement everywhere else.
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Challenges for Existing Algorithms

e Concentrability coefficient (Algorithm 1)
Let pp be the state action distribution for dataset D, p, be the
distribution for policy m, then the concentrability coefficient is

o~

P
PD

o0

e Strong assumption
e Hard to verify

e Hyperparameter (Algorithm 2)
Hyperparameter is hard to choose in these algorithms.
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Related Work

r~ Ber(0.5) u—ool 0.99 r=08 ~ = =
coe r~Ber(05) u=05 =05
(a) MDP with a rare transition (b) Combination lock

Success rate
Success rate

64 128 256 512 1024 2048 4096 " 64 128 256 512 1024 2048 4096
Sample size Sample size

(a) MDP with a rare transition (b) 2-arm combination lock




Related Work

e BCQL and BEAR based on just the action probability, even if the
state in question itself is less explored.

e In SPIBB, estimating behavior policy is dangerous from rare
transitions.

XuHUI Liv  (NANJING UNIVERSITY) OPERATION MANAGEMENT JuLy 22, 2020 10 /32



e Markov Decision Process M =< S, A, P, R,~,p >.

Policy m: S — A(A).

The state action distribution of the dataset D is u(s,a), and state
distribution pu(s) = >, c4 (s, a).

Value function V7 (s) = E[>_72,v"rs] and Q-function Q7 (s, a).

e v™ is the expectation of V™ (s) under initial state distribution.

The function we aim to fit a Q-function:

f:8xA— [0, Viax]
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@ Bellman optimality operators T

(T f)(s,a) :=r(s,a) +Eg [Hte}x f(s',a)].

e Bellman evaluation operators 7
(T™f)(s,a) :=r(s,a) + VEgEprf(s',a).

e Empirical Bellman optimality /evaluation operators T and T™.
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Algorithms

@ We assume we have a density function f which is an approximate
estimate of p.

e Given ji and a threshold b we define a filter function:

C(s,a: 1,b) = I(ji(s,a) > b).

Write ((s,a;fi,b) as ((s,a) and define ¢ o f(s,a) :=((s,a)f(s,a).

Define  — constrained Bellman evaluation operator T™ as

(T™)f(s,a) = r(s,a) + 1By Y _ [w(a'|s)C 0 f(5,a")].

a’'eA
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Algorithms

e Empirical loss of f given f’ and policy
. 2
Lo(fs f',7) i=Ep(f(s,a) =1 =7 > wlals)¢o (s a))
a’eA

e Similarly, for Bellman optimality operator

(TH)(s,a) :=r(s,a) + 1Ey[max (o f(s',a)].

Lo(f: ) = Ep(f(s0) =1 =y maxC o (')
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Algorithm 1 MBS Policy Tteration (MBS-PI) Algorithm 2 MBS @ Iteration (MBS-QI)

I: Input: D, F, 11, i, b : Input: D, F, i, b

|
2: Qutput: Tp 2: Output: 7p
3: fort=0to7T — 1do 3: fort=0toT — 1do
4: for k = 0to K do 4: Jt41¢argming . x Lp(f:fi)
5 Jgr1<argmingex Lp(f, fre; ) 5: Tip1(s)argmax,e 4 o frq1(s,a)
6: end for 6: end for
7: Tip1 —argmax, .y Ep[Ex [ o fi k1]
8: end for
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Assumption

Let nj (s) := Pr[sy, = s|x], 0}, (s,a) = 0} (s)7(als), and
0" (s,a) = (1= 7) Zplo V"7 (s, a).

Assumption 1 (Bounded densities). For any non-stationary policy m and h > 0, njj (s,a) < U.
Assumption 2 (Density estimation error). With probability at least 1 — 6,

72— pllzv < ep

2
5 <€_7:.

=

Assumption 3 (Completeness under 7™). Vr € TI, max feFminger ||g — T f |

Assumption 4 (IT Completeness). Vf € F, mingen ||Ex [C ¢ f(s,a)] — max, (o f(s,a)

|l,/¢ S €]1.
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Main Result

Definition 1 ((-constrained policy set ). Let II# be the set of policies S — A(A) such that
Pr(¢(s,a) = 0|m) < ec. Thatis, Es grp~ [1(((s,a) = 0)] < ec.

Theorem 1. Given an MDP M, a dataset D = {(s,a,r,s")} with n samples drawn i.i.d. from
X R x P, and a Q-function class F and a policy class 11 satisfying Assumption 3 and 4, 7, from
Algorithm 1 satisfies that w. p. at least 1 — 30,

& (C V2, (|70 /a‘)) 8CV/eF + 6CVimax€n  2Cer + 375 Winax  Vinaxec
vy — v <O +

(1 =) (=) (1= =

for any policy T € 1I# under Assumptions 1 and 2 and any t > K. C = U/b. K is the number of
policy evaluation iterations (inner loop) and t is the number of policy improvement steps.
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Proof Sketch

e Define an auxiliary MDP M’ =< &', A", R', P, ~, p >, where
S'=SU {sas}, A= AU {aquws}-

R'(Sabss @abs) = 0, P'(Sabs, @) = Sabs and P'(8, Gaps) = Sabs-
Define (Z7)(als) = ((s,a)n(a|s) if a € A,

(Em(als) = X pea m(d]s)(1 = E(s,a")) if a = aqps.

Then Q=™ is the fixed point of 77.

. VH]ELX
e For any policy 7 € H‘é”, vy < UA,,(/N) + =

1 11—y -
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Lemma Proof

Lemma 6. For any policy 7 : 8" — A(A'), the fixed point solution of T™ is equal to Q=™ on
Sx A

Proof. By definition Q=(7) is the fixed point of the standard Bellman evaluation operator on M":
Ta™. So forany (s,a) € S x A:

Q=" (s,a) (25)

= (TEE”)QE(“))(S,G) (26)

=r(s,a) + 1By | Y E(x)(d|s)QZ"(s, a’)] 27
Laea’

=r(s,a) +yEy E(7r)(a,um|s')QE(")(.s",(Luhs) + Z E(w)(u,']s')QE(")(.‘:',(1,') (28)

a’€A

=r(s,a) +vEy Z E(7)(d'|s) Q" (s', ") (29)
La’cA

=r(s,a) + 7Ey Z w(d'|')¢(s, a)QEM (s, a’)] (30)
La’e A

= (T"Q%™)(s,q) 31

So we proved that Q=() is also the fixed-point solution of T constrained on S x A. a
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Lemma Proof

Lemma 3. For any policy m € TIZH, v7, < o3 +

€¢Vinax

Proaf. Since 7 only takes action in .A, by Lemma 1, we have that v§; = vJ,,. Since € II#!, we
have that Pr (¢(s, a) = 0|7) < €¢, which means that:

(1-9) Z’Y Bz [1(¢(s,0) = 0)] < e

Thus:

XunUI L1u

00
:(“) - Z’YhEsfwwﬂ[

h=0

00
— Z ’YILJESNH/’:

h=0

VE® () = 3 7(als)Q3) (s, a)}

ac A

[VE(W)(S) =" wlals)(s,0)Q% (s, a)

ac A’

=V By [1((5,0) = 0) Q57 (s,a)]

(e <]
'
2 Z Y By

h=0

[VE(")(S) = > w(als)¢(s,a) Q%) (s, )

ac A’

- V;uux Z 'Y’L]Es,(uwn,’[ [Il (4('5‘7 (L) = 0)]

h=0

00
h
> Z Y L]Esw’[]:

(NANJING UNIVERSITY)

VEO(5) = 3 wlals)(s, Q%) (s, 0)
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Analysis

Corollary 1. If there exists an 7™ on M such that Pr(ju(s,a) < 2b|7*) < €. then under the
assumptions of Theorem I, T, from Algorithm 1 satisfies that with probability at least 1 — 36,

. ) 4C 419v2, In L 6C Vinaxén
A N

3n

2Cen + 375 'Winax + Vinax (€ + Cep)
(1=)? 1—~

Proof. Given the condition of 7*,

Pr (ﬁ(s, a)<b Tr*) < Pr(u(s,a) < 2b|7*) + Pr(|p(s,a) — @(s,a)| > bj7*) (93)

<e+ Pr(|u(s,a) — (s, a)| > bjn*) 94)
E, o [|p(s,a) — fi(s,
e B I0) o] o5
i
<et Ud'rv(lt(&}ﬂ)yﬂt(-ﬁ:ﬂ)) 96)
)
<e+ Ce, 7
Then 7* € H¥ with e = ¢ + Ce,,, and applying Theorem 1 finished the proof. O

UNIVERSITY)



Ananlysis

In many scenarios we aim to have a policy improvement that is
guaranteed to be no worse than the data collection policy, which is
called safe policy improvement.

When the state-action space is finite, there must exist an minimum
value for all non-zero u(s,a)’s. Let pimin = ming 4 5.1 (s,0)>0 (5, @).

Corollary 2 (Safe policy improvement — discrete state space). For finite state action spaces and
b < fimin, under the same assumptions as Theorem 1, there exist function sets F and 11 (specified in
the proof) such that 7, from Algorithm 1 satisfies that with probability at least 1 — 39,

; A Ve ISIIA| ISIIA] | ¥ Vine
Vit S o O max s m(u‘(
‘m = VM (b(l —7)3 n + n * (1—~)2
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beriment

Performance across epsilon Epsilon=0.3 120 Epsilon=0.6
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Figure 3: CartPole-v0. Left: convergent policy value across different (e-greedy) behavior policies.
Middle and Right: learning curves when € = 0.3, 0.6. We allow non-zero threshold for BCQL to
subsume the tabular algorithm of BEAR [17].




Optimization Algorithms

Hopper-v3
2000
1500 AN J,a, s ‘*,v‘ Y - )
b
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y BCQ
F o~ - MBS-QL
500 e DDPG
A b 777 BC (VAE)
0 T T Behavior policy

0 200000 400000 600000 800000 1000000

Update steps

Figure 4: MuJoCo Hopper-v3 domain. Av-
eraged over 5 random seeds and the shadow
region in plot shows the standard deviation.
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Expected Max-Q Operator

e Q-Evaluation for policy u

T.Q(s,a) :=r(s,a) + YEyEau[Q(s', )]
e Q-Learning

T*Q(s,a) = r(5,0) + 7Ey [max Q(s', ')
o Expected Max-Q Operator

ENQ(Sv (L) = T(Sv CL) + ’YES/]E{(Z,}NN/L[ rn{aX}N Q(sla a”)]
a//e a/
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Theorem 3.1. In the tabular setting, for any N € N, ’7;N is a contraction operator in the L, norm
Hence, with repeated applications of the 7;N , any initial Q) function converges to a unique fixed point.

Theorem 3.2. Let Qﬁj denote the unique fixed point achieved in Theorem 3.1, and let WLV (als) denote

the policy that samples N actions from p(al|s), {a;}", and chooses the action with the maximum
fj. Then Qflv is the Q-value function corresponding to wf)’(a|s).




Theorem 3.3. Let m), denote the optimal policy from the class of policies whose actions are re-
stricted to lie wzthzn rhe support of the policy p(als). Let Q* denote the Q-value function cor-

resp(mdmg to m,. Furthermore, let (), denote the Q-value functi(m of the policy p(als). Let

ne

w(s) == [Support(n*(am) w(a|s) denote the probability of optimal actions under ji(a|s). Under the
assumption that inf p*(s) > 0 and r(s, a) is bounded, we have that,
1 _ li N *
Q. =Qu and Jm Q=@

Theorem 3.4. For all N,M € ]N where N > M, we have that Vs € S Va € Support(u(-]s)),

ﬁ’(s, a) > Q{y( a). Hence, , N (a|s) is at least as good of a policy as 7T 1(als).
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Theorem 3.5. For s € S let,

A(s) = max Q;( a) — Efayn (s )[ mm}{ Q (s,0)]

aesupport(s(-|s)) ef

The suboptimality of Qﬁf can be upperbounded as follows,

||Qf:] - QI*LHOO < 137 n;‘z}lesr [A(s')] < 1 i max A(s)

—y s
The same also holds when @Q}, is replaced with Qﬁ/ in the definition of A.

(@)
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Algorithm 1: Full EMaQ Training Algorithm
Offline dataset D, Pretrain p(a|s) on D

Initialize K Q functions with parameters 0;, and K target Q functions with parameters O;Mg“
Ensemble parameter A, Exponential moving average parameter

Function Ensemble (values):

| return A - min(values) + (1 — A) - max(values)
Function ye (5, 0,5, 7,t):

{al}Y ~ u(als)

Qualues + [ ]

for k < 1to N do

\; /* Estimate the value of action ui,

Qualues.append (E‘.usemble ([QL°! (s, a},) for all z]))
| return 7 + (1 —t) - y max(Qualues)

*/

while not converged do

Sample a batch { (S, @y, 54, s )} ~ D
fori=1,...,K do

2
['(ei) = Zm (Qz(sm»ﬂm) - ylargc((smv s S;n‘ Tms Lm))
0; < 0; — AdamUpdate( £(0;), 9,»)

O o B L (1—a) - 6;




Thanks!
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