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Setting

Have a fixed dataset rather than gains information from its
interaction with the environment.

Performs pure exploitation rather than concerns both exploration
and exploitation.
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Related Work

Batch Constrained Q-Learning (BCQ)

πθ(a|s) = arg max
ai+ξθ(s,ai)

Qφ(s, ai + ξθ(s, ai))

ai ∼ µ(a|s), i = 1, · · · , N

Qφ is learned, µ(a|s) is the behavior policy.

ξθ is an MLP and is bounded with a range [Φ,Φ].
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Related Work

Bootstrapping Error Accumulation Reduction (BEAR)

max
π

Es∼DEπ(a|s)[ min
j=1,··· ,K

Qj(s, a)]

s.t. Es∼D[MMD(µ(·|s), π(· · · |s))] ≤ ε

Constrain the support of learned policies to match the support of
µ(a|s).
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Related Work

SPIBB
Follows the behavior policy in less explored state-action pairs
while attempting improvement everywhere else.
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Challenges for Existing Algorithms

Concentrability coefficient (Algorithm 1)
Let ρD be the state action distribution for dataset D, ρπ be the
distribution for policy π, then the concentrability coefficient is

C =
∣∣∣∣∣∣ ρπ
ρD

∣∣∣∣∣∣
∞

Strong assumption
Hard to verify

Hyperparameter (Algorithm 2)
Hyperparameter is hard to choose in these algorithms.
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Related Work
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Related Work

BCQL and BEAR based on just the action probability, even if the
state in question itself is less explored.

In SPIBB, estimating behavior policy is dangerous from rare
transitions.
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Notation

Markov Decision Process M =< S,A, P,R, γ, ρ >.

Policy π : S → ∆(A).

The state action distribution of the dataset D is µ(s, a), and state
distribution µ(s) =

∑
a∈A µ(s, a).

Value function V π(s) = E[
∑∞

h=0 γ
hrh] and Q-function Qπ(s, a).

vπ is the expectation of V π(s) under initial state distribution.

The function we aim to fit a Q-function:

f : S ×A → [0, Vmax]

.
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Notation

Bellman optimality operators T

(T f)(s, a) := r(s, a) + γEs′ [max
a′

f(s′, a′)].

Bellman evaluation operators T̃ :

(T πf)(s, a) := r(s, a) + γEs′Ea′∼πf(s′, a′).

Empirical Bellman optimality/evaluation operators T̂ and T̂ π.
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Algorithms

We assume we have a density function µ̂ which is an approximate
estimate of µ.

Given µ̂ and a threshold b we define a filter function:

ζ(s, a; µ̂, b) = I(µ̂(s, a) ≥ b).

Write ζ(s, a; µ̂, b) as ζ(s, a) and define ζ ◦ f(s, a) := ζ(s, a)f(s, a).

Define ζ − constrained Bellman evaluation operator T̃ π as

(T̃ π)f(s, a) = r(s, a) + γEs′
∑
a′∈A

[π(a′|s′)ζ ◦ f(s′, a′)].
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Algorithms

Empirical loss of f given f ′ and policy π:

LD(f ; f ′, π) := ED
(
f(s, a)− r − γ

∑
a′∈A

π(a′|s′)ζ ◦ f ′(s′, a′)
)2
.

Similarly, for Bellman optimality operator

(T̃ f)(s, a) := r(s, a) + γEs′ [max
a′

ζ ◦ f(s′, a′)].

LD(f ; f ′) := ED
(
f(s, a)− r − γmax

a′∈A
ζ ◦ f ′(s′, a′)

)2
.
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Algorithms
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Assumption

Let ηπh(s) := Pr[sh = s|π], ηπh(s, a) = ηπh(s)π(a|s), and
ηπ(s, a) = (1− γ)

∑∞
h=0 γ

hηπh(s, a).
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Main Result
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Proof Sketch

Define an auxiliary MDP M ′ =< S ′,A′, R′, P ′, γ, ρ >, where
S ′ = S ∪ {sabs}, A′ = A ∪ {aabs}.
R′(sabs, aabs) = 0, P ′(sabs, a) = sabs and P ′(s, aabs) = sabs.

Define (Ξπ)(a|s) = ζ(s, a)π(a|s) if a ∈ A,
(Ξπ(a|s) =

∑
a′∈A′ π(a′|s)(1− ξ(s, a′)) if a = aabs.

Then QΞ(π) is the fixed point of T̃ π.

For any policy π ∈ Πall
C , vπM ≤ v

Ξ(π)
M ′ +

εζVmax

1−γ .
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Lemma Proof
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Lemma Proof
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Analysis
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Ananlysis

In many scenarios we aim to have a policy improvement that is
guaranteed to be no worse than the data collection policy, which is
called safe policy improvement.
When the state-action space is finite, there must exist an minimum
value for all non-zero µ(s, a)’s. Let µmin = mins,a,s.t.µ(s,a)>0 µ(s, a).
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Experiment
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Optimization Algorithms
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Expected Max-Q Operator

Q-Evaluation for policy µ

TµQ(s, a) := r(s, a) + γEs′Ea′∼µ[Q(s′, a′)]

Q-Learning

T ∗Q(s, a) := r(s, a) + γEs′ [max
a′

Q(s′, a′)]

Expected Max-Q Operator

T Nµ Q(s, a) := r(s, a) + γEs′E{a′}N∼µ[ max
a′′∈{a′}N

Q(s′, a′′)]
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Analysis
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Analysis
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Analysis
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Analysis
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Thanks!
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