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Current RL success paradigm

▶ RL algorithms can learn complex behaviors in simulation, where active (on-policy) data
collection is straightforward.

Figure: Go and Game: ‘good simulator ≈ infinite accessible data with almost no expense as long as
the computation resources is provided’
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Motivation: the real-world applications

▶ In real-world applications, the performance is limited by the expense of active data
collection.

– Deploying a policy to collect new data is costly. (E.g. Recommendation systems,
DiDi/Uber.)

– Safety concern with updating/executing the policy online. (E.g. Robotic control, Healthcare
applications, autonomous driving, communication networks.)

▶ Deploying a new policy may only be done at a low frequency after extensive testing and
evaluation.

▶ Good news:
– In some of these cases, the offline dataset are often very large, potentially encompassing

years of logged experience. (Our focus today)
– We can build good simulators based on some specific applications and try to transfer what

we learn in simulators to real environments. (Sim2Real)
Introduction 5 / 63
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Offline Datasets

Figure: We want to make use of these fixed and static offline datasets when doing RL as environment
interaction is (often) costly and even dangerous.
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Offline Reinforcement Learning

Fundamental Question:
How to effectively utilize offline datasets for future decisions while the agents are not able to

interact with the environment to gather new data?

(a) online reinforcement learning

rollout(s)

update

rollout data

(b) off-policy reinforcement learning

rollout(s)

update

rollout data

buffer

(c) offline reinforcement learning

rollout(s)

learn

buffer

data collected once 
with any policy

deployment

training phase

Figure: Pictorial illustration of classic online reinforcement learning (a), classic off-policy reinforcement
learning (b), and offline reinforcement learning (c). In online reinforcement learning. (Figure from
[Levine, Kumar, Tucker, and Fu, 2020])
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Offline Reinforcement Learning

Fundamental Question:
How to effectively utilize offline datasets for future decisions while the agents are not able to

interact with the environment to gather new data?

▶ Learning and generalizing by incorporating diverse historical experience without further
trial and errors,

– Not just imitating historical experience. (Introspective Intelligence)
▶ Better sample efficiency.

Introduction 9 / 63
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Offline RL Problematics (I)

Insufficient coverage and Distributional shift

▶ Fixed under-explored offline dataset: dataset without enough exploration often cannot
cover enough states and actions.

▶ Even for tabular setting, there is no guarantee that the optimal policy can be found using
the under-explored dataset.

– Not possible to find optimal policy with little data coverage on the state-action region that
optimal policy frequently visits.

▶ Problems with large or continuous state and action spaces require function
approximation to generalize across states and actions.

– Under-explored data will lead to erroneous generalization of the function for state-action
pairs in under-explored region.

Introduction 10 / 63
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Offline RL Problematics (II)

Extrapolation error from distributional shift

▶ Problems with large or continuous state and action spaces require function approximation.
▶ Erroneous generalization/extrapolation error of the state-action value function (Q-value

function) learned with function approximators leads to high bootstrapping error. [Kumar
et al., 2019, Wu et al., 2019]

Figure: Incorrectly high Q-values for OOD actions may be used for backups, leading to accumulation
of error.
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Offline RL Problematics (III)

Boostrapping Error

▶ Suppose the offline dataset is collected by the behavior policy πβ(a|s) (possibly multiple).
▶ For one transition tuple collected by behaviour policy πβ(a|s) with policy induced

state-action distribution β(s, a):

(s, a, s′) ∼ β(s, a)P (s′|s, a)

▶ Illustration via Q value iteration:

Qk+1(s, a)︸ ︷︷ ︸
Errors accumulated into Q(s,a)

← r(s, a) + γ max
a′

Qk(s′, a′)︸ ︷︷ ︸
usually query at unseen a′

– Q(s′, a′) for s′ ≁ β: Out-of-distribution (OoD) state
– Q(s′, a′) for s′ ∼ β, a′ far from πβ(a

′|s′): OoD action.Introduction 12 / 63
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Offline RL Problematics (IV)

Error Propagation

Figure: Error Propagation: Figure from [Kumar, Fu, Soh, Tucker, and Levine, 2019]
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Offline RL Problematics Lead to Wrong Behavior Consequences

Figure: Learning goal-reaching policy
from offline dataset D. Wrongly linear
extrapolation! (Figure from [Luo et al.,
2019])

▶ Reward = -1 if not reaching the goal
▶ V ∗ = - minkovski distance to goal
▶ Learned (linear) value function

– Correct within the support of offline dataset D
– Wrong outside the support

▶ Resulting wrong behavior induced from learned value
▶ Conclusions: Learning from D only guarantees

accurate predictions on the offline data distribution
– e.g. Q-learning with D results over-estimation

outside the support of D.
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Overview of representative algorithms for Offline RL

▶ Policy based constraints/penalities: MARWIL[Wang, Xiong, Han, Liu, Zhang, et al.,
2018], BCQ[Fujimoto et al., 2019] BRAC[Wu et al., 2019], BEAR[Kumar et al., 2019],
AWAC[Nair et al., 2020], EMaQ [Ghasemipour et al., 2020].

▶ Model based uncertainty-aware penalization: MoRel[Kidambi, Rajeswaran, Netrapalli,
and Joachims, 2020], MOPO[Yu et al., 2020]

▶ MBS-PI/MBS-QI [Liu et al., 2020]: Filter out infrequent state-action pairs in the
offline dataset when performing policy based or value based model free methods:

▶ Conservative Q-learning [Kumar et al., 2020] consider regularization on fitted Q learning
which provides the value lower bound under fixed policy. (Less conservative than the
pointwise lower bound Q.)

Methods 16 / 63
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Typical algorithmic framework: Actor-critic

▶ Given a dataset D = {(s, a, r, s′)} of tuples from trajectories collected under πβ :

Q̂k+1 ← argmin
Q

Es,a,s′∼D

[((
r(s, a) + γEa′∼π̂k(a′ | s′)

[
Q̂k (s′, a′)

])
−Q(s, a)

)2
]

(policy evaluation)

(1)

π̂k+1 ← argmax
π

Es∼D,a∼π(a | s)

[
Q̂k+1(s, a)

]
(policy improvement) (2)

▶ Action distribution shift during training:
– π is trained to maximize Q-values ⇒ maybe biased towards OoD actions with erroneously high

Q-values.
– because the target values for Bellman backups in policy evaluation use a ∼ πk, but the Q-function

is trained only on a ∼ πβ(·|s), s ∼ D.
▶ No state distribution shift issue during training. However, the policy may suffer from state

distribution shift at test time.
Methods 17 / 63
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Policy constraints and penalities methods

▶ Algorithmic framework for policy constraints:

Q̂π
k+1 ← argmin

Q
E(s,a,s′)∼D

[(
Q(s, a)−

(
r(s, a) + γEa′∼πk(a′ | s′)

[
Q̂π

k (s
′, a′)

]))2
]

(3)

πk+1 ← argmax
π

Es∼D

[
Ea∼π(a | s)

[
Q̂π

k+1(s, a)
]]

s.t. D (π, πβ) ≤ ϵ (4)

▶ Algorithmic framework for policy penalities:
– modified reward function r̄(s, a) = r(s, a)− αD (π(· | s), πβ(· | s))

Q̂π
k+1 ← argmin

Q

E(s,a,s′)∼D

[(
Q(s, a)−

(
r(s, a) + γEa′∼πk(a

′ | s′)

[
Q̂π

k

(
s′, a′)]− αγD

(
πk

(
· | s′

)
, πβ

(
· | s′

))))2
]

(5)

πk+1 ← argmax
π

Es∼D

[
Ea∼π(a | s)

[
Q̂π

k+1(s, a)
]
− αD (π(· | s), πβ(· | s))

]
(6)
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Different choice of divergence

▶ Implicit f-divergence: MARWIL [Wang, Xiong, Han, Liu, Zhang, et al., 2018], AWAC
[Nair, Dalal, Gupta, and Levine, 2020].

Algorithm 1 Monotonic Advantage Re-Weighted Imitation Learning (MARWIL)

Require: Historical data D generated by πβ , hyper-parameter λ.
1: Performing the following maximization problem to obtain improved policy πθimproved

θimproved = argmax
θ

E
s,a∼D

[
log πθ(a | s)

1

Z(s)
exp

(
1

λ
Aπβ (s, a)

)]
(7)

▶ Problem: How to practically estimate Aπβ (s, a)?
▶ Question: How is MARWIL related to policy constraints methods?

Methods 20 / 63
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Practical implementation of MARWIL: Single path estimation

▶ Suppose (st, at) belongs a trajectory τ ∼ D and

τ = (s0, a0, r0, s1, a1, r1, · · · , st, at, rt, · · · )

▶ Rt is the single path cumulative reward starting from (st, at) on τ .
▶ Approximate value function of behavior policy using neural networks V

πβ
ω (s) using only

offline data.
▶ In practice, good results can be achieved by simply using a single path estimation as

Â(st, at) = Rt − V
πβ
ω (st)

Methods 21 / 63
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What is MARWIL actually performing?

▶ First, solve the following policy optimization problem

π = argmax
π

Ea∼π(·|s) [A
πβ (s, a)]− λDKL (π(· | s)∥πβ(· | s)) , (8)

▶ which has a closed-form optimal solution obtained by enforcing the KKT conditions,

π(a | s) = 1

Z(s)
πβ(a | s) exp

(
1

λ
Aπβ (s, a)

)
(9)

▶ Then we project the closed-form ‘phantom policy’ into the neural network policy class
using forward KL to avoid explicit behavior policy modeling.

θimproved ← argmin
θ

Es∼β [DKL (π, πθ)] (10)

▶ Solving MARWIL optimization problem 7 is equivalent to solving 8 and 10.
Methods 22 / 63
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Extensions of MARWIL
▶ AWAC [Nair, Dalal, Gupta, and Levine, 2020] extends MARWIL to multiple policy

improvement step k = 1, 2, · · · ,

θk+1 = argmax
θ

E
s,a∼β

[
log πθ(a | s)

1

Z(s)
exp

(
1

λ
Aπk(s, a)

)]
where πk = πθk , β = D,

which is equivalent to

π̄k+1(a | s)←
1

Z(s)
πβ(a | s) exp

(
1

λ
Aπk(s, a)

)
(11)

θk+1 ← argmin
θ

Es∼β [DKL (π̄k+1, πθ)] (12)

Remark: MARWIL estimates Aπβ instead of Aπk ; AWAC uses a Q-critic network to
evaluate Qπk via optimization problem 1 via transition triplet sampled from offline dataset
and obtain estimate of Aπk .
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Different choice of divergence

▶ Explicit f-divergence: E.g. KL-divergence, DAPO [Wang, Li, Xiong, and Zhang, 2019]
(details see Page 60), BRAC [Wu et al., 2019]

▶ Integral probability metrics (IPMs):
– BEAR[Kumar et al., 2019] used (finite sample) MMD and justified as resembling a

support constraining metric (a good tradeoff between sub-optimality and policy
constraints),

– Wasserstein distance in BRAC [Wu et al., 2019]
▶ Above methods require that the behavior policy is known or estimated well.

Methods 24 / 63
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Drawbacks of policy constraint algorithms

▶ Intuitively, this algorithm can be understood as performing imitation learning, but
permitting minor deviations.

▶ Constraining the policy to be near-in distribution to the empirical policy can fail to take
advantage of highly-visited states which are reached via many trajectories.

▶ The policies which differ substantially in the conditional distribution can still produce very
similar state visitation distributions.

▶ In fact, in the limit of infinite data, even spanning full support of state-action visitation
distribution, policy constraint algorithms are not guaranteed to converge to the optimal
policy.

– For policy support matching algorithms, no guarantee that action support conditioned every
state has full support on action space.

– For other policy constraint, too restricted.

Methods 25 / 63
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Naive model based approach can be arbitrarily bad

▶ The work of Ross and Bagnell [2012] theoretically studied the performance of model-based
reinforcement learning in the offline batch setting.

▶ In particular, the algorithm they analyzed involves
(1) learning a transition dynamics model using the offline dataset,
(2) and subsequently planning in the learned model without any additional safeguards.

▶ Their theoretical results are largely negative for this algorithm, suggesting that in the
worst case, this algorithm could have arbitrarily large sub-optimality gap.

▶ In addition, their sub-optimality bounds become pathologically loose when the data
logging distribution does not share support with the distribution of the optimal policy.

Methods 27 / 63
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Naive model based approach ‘Batch’ can be arbitrarily bad

▶ Let T denote the class of transition models considered, and ν a state-action exploration
distribution we can sample the system from.

▶ ‘Batch’ first finds the best model T̂ ∈ T of observed transitions, and solves (potentially
approximately) the optimal control (OC) problem with T̂ and known cost function C to
return a policy π̂ for test execution.

▶ Here the author consider OC as a minimization problem.
▶ Question: if ‘Batch’ learns a model T̂ with small error on training data, and solves the

OC problem well, what guarantees does it provide on control performance of π̂ ?
– Ross and Bagnell [2012] illustrate the drawbacks of a purely ‘batch’ method due to the

mismatch in train-test distribution.

Methods 28 / 63
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Analysis of ‘Batch’ methods in tabular setting

▶ The quality of the OC problem’s solution:
– V̂ π̂ and V̂ π′ are the value functions of π̂ and π′ under learned model T̂ respectively)
– For any policy π′, let

ϵπ
′

oc = Es∼µ

[
V̂ π̂(s)− V̂ π′

(s)
]

denote how much better π′ is compared to π̂ on model T̂
– If π̂ is an ϵ-optimal policy on T̂ within some class of policies Π, then ϵπ

′
oc ≤ ϵ for all π′ ∈ Π

▶ A natural measure of model error that arises from the analysis is in terms of L1 distance
between the predicted and true next state’s distributions.

– the predictive error of T̂ , measured in L1 distance, under the training distribution ν.

ϵL1
prd = E(s,a)∼ν

[∥∥∥Tsa − T̂sa

∥∥∥
1

]
▶ In general, we can use any loss minimizable from samples that upper bounds ϵLlprd for

models in the class.
Methods 29 / 63
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Analysis of ‘Batch’ methods in tabular setting

▶ The mismatch between the state-action exploration distribution ν and distribution induced
by executing another policy π starting in µ, denoted

cπν = sup
s,a

Dµ,π(s, a)

ν(s, a)

▶ Assume the costs C(s, a) ∈ [Cmin, Cmax] . Let Crng = Cmax − Cmin and H =
γCrng

(1−γ)2 . H

is a scaling factor that relates model error to error in total cost predictions.
▶ Theorem. The policy π̂ is s.t. for any policy π′ (infinite data regime):

Jµ(π̂) ≤ Jµ (π
′) + ϵπ

′

oc +
cπ̂ν + cπ

′

ν

2
HϵL1prd

Methods 30 / 63
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Drawbacks of ‘Batch’ methods in tabular setting

▶ cπ
′

ν measures how well ν explores state actions visited by the policy π′ we compare to.
– This factor is inevitable: we cannot hope to compete against policies that spend most of

their time where we rarely explore.
▶ cπ̂ν measures the mismatch in train-test distribution. Its presence is the major drawback of

‘Batch’.
– As π̂ cannot be known in advance, we can only bound cπ̂ν by considering all policies we could

learn: supπ∈Π cπν .
– This worst case is likely to be realized in practice: if ν rarely explores some state-action

regions, the model could be bad for these and significantly underestimate their cost. The
learned policy is thus encouraged to visit these low-cost regions where few data were
collected.

Methods 31 / 63
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Drawbacks of ‘Batch’ methods in tabular setting

▶ To minimize supπ∈Π cπν , the best ν for Batch is often a uniform distribution, when
possible. This introduces a dependency on the number of states and actions (or
state-action space volume) ( i.e..cπ̂ν + cπ

′

ν is O(|S||A|)) multiplying the modeling error.
▶ Sampling from a uniform distribution often requires access to a generative model.
▶ If we only have access to a RL forward model and a base policy π0 inducing ν when

executed in the system, then cπ̂ν could be arbitrarily large (e.g.if π̂ leads to 0 probability
states under π0), and π̂ arbitrarily worse than π0.

Methods 32 / 63
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Model based Offline Reinforcement Learning (MOReL)

▶ In contrast, MoRel [Kidambi, Rajeswaran, Netrapalli, and Joachims, 2020] present a novel
algorithmic framework that constructs a pessimistic MDP, and show that this is crucial for
better empirical results and sharper theoretical analysis.

Methods 33 / 63
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MOReL Framework

Figure: Illustration of MOReL framework which learns a pessimistic MDP (P-MDP) from the dataset
and uses it for policy search.
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MOReL Unknown state-action detector
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MOReL Pessimistic MDP construction

Methods 36 / 63
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MOReL algorithm
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Practical implementation of MoReL

▶ Dynamics model learning: Gaussian dynamics models P̂ (· | s, a) ≡ N (fϕ(s, a),Σ) ,

with mean fϕ(s, a) = s+ σ∆ MLPϕ ((s− µs) /σs, (a− µa) /σa) , where µs, σs, µa, σa are
the mean and standard deviations of states/actions in D;σ∆ is the standard deviation of
state differences, i.e. ∆ = s′ − s, (s, s′) ∈ D;

▶ Unknown state-action detector (USAD): Track uncertainty using the predictions of
ensembles of models. Learn multiple models {fϕ1 , fϕ2 , . . .} where each model uses a
different weight initialization and are optimized with different mini-batch sequences.
Ensemble discrepancy: disc(s, a) = maxi,j

∥∥fϕi
(s, a)− fϕj

(s, a)
∥∥
2
, With this, we

implement USAD as below:

Upractical (s, a) =

{
FALSE (i.e. Known) if disc(s, a) ≤ threshold
TRUE (i.e. Unknown) if disc(s, a) > threshold

Methods 38 / 63
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Questions to be answered

1 Comparison to prior work: How does MOReL compare to prior SOTA offline RL
algorithms in commonly studied benchmark tasks?

2 Quality of logging policy: How does the quality (value) of the data logging (behavior)
policy, and by extension the dataset, impact the quality of the policy learned by MOReL?

3 Importance of pessimistic MDP: How does MOReL compare against a naïve
model-based RL approach that directly plans in a learned model without any safeguards?

4 Transfer from pessimistic MDP to environment: Does learning progress in the
P-MDP, which we use for policy learning, effectively translate or transfer to learning
progress in the environment?

Methods 39 / 63
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Logging offline data (I)

Figure: Four continuous control tasks in Gym environment.

▶ First, partially train a policy (πb) to obtain values around 1000, 4000, 1000, and 1000
respectively for the four environments using baseline policy optimization algorithm for
continuous action space.

▶ Prepare an untrained random gaussian policy πr.
Methods 40 / 63
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Logging offline dataset (II)

(E1) Pure: The entire dataset is collected with the data logging (behavioral) policy πb.
(E2) Eps-1: 40% of the dataset is collected with πb, another 40% collected with πu

b (0.1), and
the final 20% is collected with a random policy πr.

(E3) Eps-3: 40% of the dataset is collected with πb, another 40% collected with πu
b (0.3), and

the final 20% is collected with a random policy πr.
(E4) Gauss-1: 40% of the dataset is collected with πb, another 40% collected with πg

b (0.1), and
the final 20% is collected with a random policy πr.

(E5) Gauss-3: 40% of the dataset is collected with πb, another 40% collected with πg
b (0.3), and

the final 20% is collected with a random policy πr.

Methods 41 / 63



Yi
ng

ru
Li

Yi
ng

ru
Li

MOReL Performance (I) - Compared to baselines
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MOReL Performance (II) - Impact from the quality of logging policy

▶ Pure-random dataset from untrained random Gaussian policy πr.
▶ Pure-partial dataset is the E1 dataset.

Methods 43 / 63
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MOReL Performance (III) - Importance of Pessimistic MDP

Methods 44 / 63
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MOReL Performance (IV) - Transfer from P-MDP to environment
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MOReL Main theorem

Instance dependent quantity.
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MOReL Upper bound

Methods 47 / 63
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MOReL Upper bound
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MOReL policy compared to behavior policy

▶ Finally, we note that as the size of dataset D increases to ∞, Theorem 1 and the
optimality of PLANNER together imply that Jρ0

(πout ,M) ≥ Jρ0
(πb,M) since E

[
γTπ

U
]

goes to 0.

Methods 49 / 63
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MOReL Lower bound
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MOReL Lower bound proof

▶ We set k = 10 log 1
1−γ .

▶ The MDP has k + 1 states, with three actions a1, a2 and a3 at each state.
▶ The rewards (shown on the transition arrows) are all 0 except for the action a1 taken in

state k + 1, in which case it is 1.
▶ Note that the rewards can be scaled by Rmax but for simplicity, we consider the setting

with Rmax = 1.

▶ It is clear that the optimal policy π∗ is to take the action a1 in all the states.
▶ The starting state distribution ρ0 is state 1 with probability p0

def
= ϵ

(1−γ) log 1
1−γ

and state
k + 1 with probability 1− p0.

▶ The actions taken by the data collection policy are shown in blue. since the dataset
consists only of (state, action, reward, next state) pairs (1, a1, 0, 2) , (2, a2, 0, 1) and
(k + 1, a1, 1, k + 1) we see that UD = (S ×A)\ {(1, a1) , (2, a2) , (k + 1, a1)} and
dπ

∗,M (UD) = (1− γ) ·
∑k−1

t=1 γt · p0 ≤ (1− γ) · (k − 1) · p0 ≤ ϵ proving the first claim.
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MOReL Lower bound proof

▶ Since none of the states and actions in UD are seen in the dataset, after permuting the
actions if necessary, the expected time taken by any policy learned from the dataset, to
reach state k + 1 starting from state 1 is at least exp(k/5) ≥ (1− γ)−2.

▶ So, the value of any policy π̂ learned from the dataset is at most
1−p0

1−γ + p0·γ(1−γ)−2

1−γ = 1
1−γ − p0 · 1−γ(1−γ)−2

1−γ ≤ 1
1−γ −

3p0

4(1−γ) , where we used γ ∈ [0.95, 1)

in the last step.
▶ On the other hand, the value of π∗ is at least 1−p0

1−γ + p0 ·
(

1
1−γ − k

)
. So the

suboptimality of any learned policy is at least
p0 ·

(
3

4(1−γ) − k
)
= p0 ·

(
3

4(1−γ) − 10 log 1
1−γ

)
≥ p0

4(1−γ) , where we again used
γ ∈ [0.95, 1) in the last step. Substituting the value of p0 proves the proposition.
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MOPO: Model based Offline Policy Optimization

▶ Another simultaneous work called MOPO [Yu, Thomas, Yu, Ermon, Zou, Levine, Finn,
and Ma, 2020] is derived in a similar way.

Lemma 1 (Simulation/Telescoping lemma (Refer to Page 9 in Lecture 8)).
Let M and M̂ be two MDPs with the same reward function r, but different dynamics T and T̂

respectively. Let Gπ
M̂
(s, a) := Es′∼T̂ (s,a) [V

π
M (s′)]− Es′∼T (s,a) [V

π
M (s′)]. Then,

η
M̂
(π)− ηM (π) = γE(s,a)∼ρπ

T̂

[
Gπ

M̂
(s, a)

]
(13)

▶ If F is a set of functions mapping S to R that contains V π
M , then

|Gπ
M̂
(s, a)| ≤ sup

f∈F

∣∣∣Es′∼T̂ (s,a) [f(s
′)]− Es′∼T (s,a) [f(s

′)]
∣∣∣ =: dF (T̂ (s, a), T (s, a)), (14)
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Assumptions

Assumption 1.
Assume a scalar c and a function class F such that V π

M ∈ cF for all π.
As a direct corollary of Assumption 1 and equation equation 14, we have

|Gπ
M̂
(s, a)| ≤ cdF (T̂ (s, a), T (s, a)). (15)

Assumption 2.
Let F be the function class in Assumption 1. We say u : S ×A → R is an admissible error
estimator for T̂ if dF (T̂ (s, a), T (s, a)) ≤ u(s, a) for all s ∈ S, a ∈ A.
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Penalized virtual MDP construction

▶ Given an admissible error estimator, we define the uncertainty-penalized reward
r̃(s, a) := r(s, a)− λu(s, a) where λ := γc, and the uncertainty-penalized MDP
M̃ = (S,A, T̂ , r̃, µ0, γ).

▶ We observe that M̃ is conservative in that the return under it bounds from below the true
return:

ηM (π) ≥ E(s,a)∼ρπ
T̂

[
r(s, a)− γ|Gπ

M̂
(s, a)|

]
≥ E(s,a)∼ρπ

T̂
[r(s, a)− λu(s, a)]

≥ E(s,a)∼ρπ
T̂
[r̃(s, a)] = η

M̃
(π) (16)
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Model based Offline policy optimization

Algorithm 2 Framework for Model-based Offline Policy Optimization (MOPO) with Reward
Penalty

Require: Dynamics model T̂ with admissible error estimator u(s, a); constant λ.
1: Define r̃(s, a) = r(s, a)− λu(s, a). Let M̃ be the MDP with dynamics T̂ and reward r̃.
2: Run any RL algorithm on M̃ until convergence to obtain

π̂ = argmaxπηM̃ (π) (17)
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MOPO Practical Implementation

Algorithm 3 MOPO instantiation with regularized probabilistic dynamics and ensemble uncer-
tainty

Require: reward penalty coefficient λ rollout horizon h, rollout batch size b.
1: Train on batch data Denv an ensemble of N probabilistic dynamics {T̂ i(s′, r | s, a) =
N (µi(s, a),Σi(s, a))}Ni=1.

2: Initialize policy π and empty replay buffer Dmodel ← ∅.
3: for epoch 1, 2, . . . do ▷ This for-loop is essentially one outer iteration of MBPO
4: for 1, 2, . . . , b (in parallel) do
5: Sample state s1 from Denv for the initialization of the rollout.
6: for j = 1, 2, . . . , h do
7: Sample an action aj ∼ π(sj).
8: Randomly pick dynamics T̂ from {T̂ i}Ni=1 and sample sj+1, rj ∼ T̂ (sj , aj).
9: Compute r̃j = rj−λmaxN

i=1 ∥Σi(sj , aj)∥F.
10: Add sample (sj , aj , r̃j , sj+1) to Dmodel.
11: Drawing samples from Denv ∪ Dmodel, use SAC to update π.
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MOPO Theoretical justification (I)

▶ Let π⋆ be the optimal policy on M and πB be the policy that generates the batch data.
Define ϵu(π) as

ϵu(π) := E
(s,a)∼ρπ

T̂

[u(s, a)]

▶ For δ ≥ δmin := minπ ϵu(π), let πδ be the best policy among those incurring model error
at most δ :

πδ := argmax
π:ϵu(π)≤δ

ηM (π)
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MOPO Theoretical justification (II)

Theorem 2.
Under Assumption 1 and 2, the learned policy π̂ in MOPO (Algorithm 2) satisfies

ηM (π̂) ≥ sup
π
{ηM (π)− 2λϵu(π)} (18)

In particular, for all δ ≥ δmin, ηM (π̂) ≥ ηM (πδ)− 2λδ

▶ Consequence 1: for behavior policy πB , ϵu
(
πB

)
is expected to be small.

ηM (π̂) ≥ ηM
(
πB

)
− 2λϵu

(
πB

)
≈ ηM (πB).

▶ Consequence 2: (18) tells us that the learned policy π̂ can be as good as any policy π with
ϵu(π) ≤ δ, or in other words, any policy that visits states with sufficiently small
uncertainty as measured by u(s, a).

▶ Consequence 3: by varying the choice of δ to maximize the RHS of (18), we trade off the
risk and the return.
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Appendix: Interpretation of DAPO via the pseudo rewards

▶ Policy optimization over the pseudo reward

r(s, a)− 1

η
log

π(a|s)
πt(a|s)

(DAPO) or r(s, a)− 1

η
log

µπ(s, a)

µt(s, a)
(Hard to implement)

can be interpreted as trading off between high return and taking the risk of
escaping off-policy data coverage

– encouraging visitation by dynamically adding positive bonus rewards in the state-action
region s.t. µπ(s, a) < µt(s, a) or π(a|s) < πt(a|s)

– and discourage visitation by adding negative bonus rewards in the state-action region s.t.
µπ(s, a) > µt(s, a) or π(a|s) > πt(a|s)

▶ Similar to DAPO[Wang, Li, Xiong, and Zhang, 2019], BRAC [Wu et al., 2019] apply
multi-step divergence penalization in the offline setting.
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