
Risk-Sensitive Reinforcement Learning:
Near-Optimal Risk-Sample Tradeoff in Regret

Presenter: Hao Liang

The Chinese University of Hong Kong, Shenzhen, China

July 2, 2020

Mainly based on:
Fei, Yingjie, et al. ”Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret.” arXiv preprint

arXiv:2006.13827 (2020).

Background

▶ Risk-sensitive RL concerns learning policies that take into account risks.
▶ Effective management of risks in RL is critical to many real-world applications

– Autonomous driving
– Real-time strategy games
– Financial investment
– Neuroscience: model human behaviors in decision making

Introduction 2 / 44

Objective

▶ Maximize a Exponential utility function

V =
1

β
log
{
EeβR

}
, (1)

where R is the return, and β ̸= 0 controls risk preference of the agent.
▶ (1) admits the Taylor expansion V = E[R] + β

2 Var(R) +O
(
β2
)

– β > 0: risk-seeking (favoring high uncertainty in R)
– β < 0: risk-averse (favoring low uncertainty in R)
– β → 0: V = E[R], risk-neutral

▶ (1) covers the entire spectrum of risk sensitivity by varying β

Introduction 3 / 44

Challenges

▶ Non-linearity of the objective function
– Induces a non-linear Bellman equation

▶ Designing a risk-aware exploration mechanism
– How to efficiently explores while adapting to (1) with different β

Introduction 4 / 44

Contributions

▶ Propose two provably efficient model-free algorithms that implement risk-sensitive OFU
– Risk-Sensitive Value Iteration (RSVI): Õ

(
λ
(
|β|H2

)
·
√
H3S2AT

)
regret

– Risk-Sensitive Q-learning (RSQ): Õ
(
λ
(
|β|H2

)
·
√
H3S2AT

)
regret

– λ(u) :=
(
e3u − 1

)
/u

▶ Establish a regret lower bound showing that the exponential dependence on β and H is
unavoidable for any algorithm with an Õ

(√
T
)

regret

Introduction 5 / 44

Problem setup

▶ Episodic MDPs MDP(S,A,H,P,R)
– S and A are finite discrete spaces, and let S = |S| and A = |A|
– P = {Ph}h∈[H] and R = {rh}h∈[H] are state transition kernels and reward functions
– Agent does not have access to P and rh : S ×A → [0, 1] is a deterministic function

▶ An initial state s1 is chosen arbitrarily by the environment
▶ A policy π = {πh}h∈[H] of an agent is a sequence of functions πh : S → A
▶ For each h ∈ [H], we define the value function V π

h : S → R of a policy π

V π
h (s) :=

1

β
log

{
E

[
exp

(
β

H∑
h=1

rh (sh, πh (sh))

)
| sh = s

]}
. (2)

Introduction 6 / 44

Bellman equations and regret

▶ Define the action-value function Qπ
h : S ×A → R

Qπ
h(s, a) :=

1

β
log

{
exp (β · rh(s, a))E

[
exp

(
β

H∑
h′=h+1

rh′ (sh′ , ah′)

)
| sh = s, ah = a

]}

▶ The Bellman equation associated with policy π is given by

Qπ
h(s, a) = rh(s, a) +

1

β
log
{
Es′∼Ph(·|s,a)

[
exp

(
β · V π

h+1 (s
′)
)]}

(3)

V π
h (s) = Qπ

h (s, πh(s)) , V π
H+1(s) = 0 (4)

▶ Under some mild regularity conditions, there always exists an optimal policy π∗ which
gives the optimal value V ∗

h (s) = supπ V
π
h (s) for all (h, s) ∈ [H]× S

Introduction 7 / 44

Bellman equations and regret

▶ The Bellman optimality equation is given by

Q∗
h(s, a) = rh(s, a) +

1

β
log
{
Es′∼Ph(·|s,a)

[
exp

(
β · V ∗

h+1 (s
′)
)]}

(5)

V ∗
h (s) = max

a∈A
Q∗

h(s, a), V ∗
H+1(s) = 0 (6)

▶ Both Bellman equations are non-linear due to non-linearity of the exponential utility
▶ sk1 the initial state, πk the policy chosen at the beginning of episode k.
▶ The total regret after K episodes is

Regret(K) :=
∑

k∈[K]

[
V ∗
1

(
sk1
)
− V πk

1

(
sk1
)]

Introduction 8 / 44

Upper bounds on the value functions and regret

Lemma 1.
For any (h, s, a) ∈ S ×A× [H], policy π and risk parameter β ̸= 0, we have

0 ≤ V π
h (s) ≤ H and 0 ≤ Qπ

h(s, a) ≤ H.

Consequently, for each K ≥ 1, all policy sequences π1, . . . , πK and any β ̸= 0, we have

0 ≤ Regret(K) ≤ KH.

Proof.
Recall the assumption that the reward functions {rh} are bounded in [0, 1]. The lower bounds
are immediate by definition. For the upper bound, we have V π

h (s) ≤ 1
β log{E[exp(βH)]} = H.

Upper bounds for Qπ
h and the regret follow similarly.

Introduction 9 / 44

Algorithm 1: RSVI

Algorithms 10 / 44

Mechanism of RSVI

▶ Algorithm 1 is inspired by LSVI-UCB. It follows OFU by applying the UCB by
incorporating a bonus term to value estimates of state-action pairs.

▶ Including the value estimation step (Line 6–13) and the policy execution step (Line 14–18)
▶ In Line 7, the algorithm computes the intermediate value wh by a least-squares update

wh ← argmin
w∈RSA

∑
τ∈[k−1]

[
eβ[rh(s

τ
h,a

τ
h)+Vh+1(sτh+1)] − w⊤ϕ (sτh, a

τ
h)
]2

, (7)

where ϕ(·, ·) denotes the canonical basis in RSA and
{(

sτh, a
τ
h′sτh+1

)}
τ∈[k−1]

are accessed
from the dataset Dh.

▶ Can be efficiently implemented by computing sample means of eβ[rh(s,a)+Vh+1(s′)] over
visited state-action pairs.

Algorithms 11 / 44

Mechanism of RSVI

▶ In Line 10, the algorithm uses wh to compute the estimate Qh, by adding/subtracting
bonus bh and thresholding the sum/difference at eβ(H−h+1), depending on the sign of β

▶ The logarithmic-exponential transformation in Line 10 conforms and adapts to the
non-linearity in Bellman equations (3) and (4).

▶ The thresholding operator ensures that Qh and Vh stays in the range [0, H − h+1].
▶ Subtracting bonus when β < 0 implements OFU in a risk-sensitive fashion.
▶ Belong to batch algorithms.

Algorithms 12 / 44

Algorithm 2: RSQ

Algorithms 13 / 44

Mechanism of RSQ

▶ Algorithm 1 requires storage of historical data {Dh} and computation over them (Line 7).
▶ Q-learning update Q values in an online fashion as each state-action pair is encountered.
▶ Based on Q-learning with UCB in the work of [38] and use the same learning rates therein

αt :=
H + 1

H + t
.

▶ Line 9 updates wh in an online fashion, in contrast with the batch update of Algorithm 1.

Algorithms 14 / 44

Comparisons

▶ The bonuses in both algorithms depend on β through a common factor
∣∣eβH − 1

∣∣.
▶ A careful analysis on the bonuses and the value estimation steps reveals that the effective

bonuses is proportional to e|β|H−1
|β|

▶ The more risk-sensitive an agent is, the larger bonus it needs to compensate for the
uncertainty

▶ Both algorithms have polynomial time and space complexities in S,A,K and H.
▶ Algorithm 2 is more efficient than Algorithms 1 in both time and space complexities, since

it does not require storing historical data nor computing statistics.

Algorithms 15 / 44

Regret upper bounds for RSVI

Theorem 2.
For any δ ∈ (0, 1], with probability at least 1− δ, the regret of Algorithm 1 is bounded by

Regret(K) ≲ λ
(
|β|H2

)
·
√
H3S2AT log2(2SAT/δ)

Corollary 3.
Under the setting of Theorem 1 and when β → 0, with probability at least 1− δ, the regret of
Algorithm 1 is bounded by

Regret(K) ≲
√

H3S2AT log2(2SAT/δ)

Main results 16 / 44

Regret upper bounds for RSVI

▶ Theorem 2 adapts to both risk-seeking and risk-averse settings through a common factor
of λ

(
|β|H2

)
.

▶ Corollary 3 recovers the regret bound of [4, Theorem 2] under the standard RL setting and
is nearly optimal.

▶ Corollary 3 also reveals that Theorem 2 interpolates between the risk-sensitive and
risk-neutral settings.

Main results 17 / 44

Proof of Theorem 2: preliminaries

▶ Let skh, akh, wk
h, Q

k
h and V k

h and V k
h denote the values of sh, ah, wh, Qh and Vh in episode k

▶ Let Nk
h and Dk

h denote the value of Nh and Dh at the end of episode k − 1.

Fact 4.
Consider x, y, b ∈ R such that x ≥ y.
(a) if y ≥ g for some g > 0, then log(x)− log(y) ≤ 1

g (x− y)

(b) Assume further that y ≥ 0. If b ≥ 0 and x ≤ u for some u > 0, then
ebx − eby ≤ bebu(x− y); if b < 0, then eby − ebx ≤ (−b)(x− y)

Fact 5.
Define λ0 := e|β|H−1

|β| and λ2 := e|β|(H
2+H). Then we have λ0λ2H ≤ e3|β|H2

−1
|β| .

Main results 18 / 44

Proof warmup

▶ Define d := SA, l := log(2dT/δ) for a given δ ∈ (0, 1].
▶ Define ϕ(s, a) as canonical basis of RSA and let Λk

h be a diagonal matrix in Rd×d with
each (s, a)-th diagonal entry equal to max

{
Nk−1

h (s, a), 1
}

.
▶ Fix a tuple (s, a, k, h) ∈ S ×A× [K]× [H] such that Nk−1

h (s, a) ≥ 1 and fix a policy π

▶ Set wπ
h = eβ·Q

π
h(·,·),

Qπ
h(s, a) =

1

β
log
(
eβ·Q

π
h(s,a)

)
=

1

β
log
(〈

ϕ(s, a), eβ·Q
π
h(·,·)

〉)
=

1

β
log (⟨ϕ(s, a), wπ

h⟩)

wπ
h(s, a) = eβ·Q

π
h(s,a) =

〈
ϕ(s, a),

(
Λk
h

)−1 ∑
τ∈[k−1]

ϕτ
h

[
eβ·Q

π
h(s

τ
h,a

τ
h)
]〉

Main results 19 / 44

Proof warmup

▶ Define d := SA, l := log(2dT/δ) for a given δ ∈ (0, 1].
▶ Define ϕ(s, a) as canonical basis of RSA and let Λk

h be a diagonal matrix in Rd×d with
each (s, a)-th diagonal entry equal to max

{
Nk−1

h (s, a), 1
}

.
▶ Fix a tuple (s, a, k, h) ∈ S ×A× [K]× [H] such that Nk−1

h (s, a) ≥ 1 and fix a policy π

▶ Set wπ
h = eβ·Q

π
h(·,·),

Qπ
h(s, a) =

1

β
log
(
eβ·Q

π
h(s,a)

)
=

1

β
log
(〈

ϕ(s, a), eβ·Q
π
h(·,·)

〉)
=

1

β
log (⟨ϕ(s, a), wπ

h⟩)

wπ
h(s, a) = eβ·Q

π
h(s,a) =

〈
ϕ(s, a),

(
Λk
h

)−1 ∑
τ∈[k−1]

ϕτ
h

[
eβ·Q

π
h(s

τ
h,a

τ
h)
]〉

Main results 20 / 44

Proof warmup

▶ Define
q+1 :=

{ 〈
ϕ(s, a), wk

h

〉
+ bkh(s, a), if β > 0〈

ϕ(s, a), wk
h

〉
− bkh(s, a), if β < 0,

q1 :=

{
min

{
eβ(H−h+1), q+1

}
, if β > 0

max
{
eβ(H−h+1), q+1

}
, if β < 0

▶ By the definition of Λk
h and ϕk

h′ observe that

wk
h(s, a) =

〈
ϕ(s, a), wk

h

〉
=

〈
ϕ(s, a),

(
Λk
h

)−1 ∑
τ∈[k−1]

ϕτ
h

[
eβ[r

T
h +V k

h+1(s
τ
h+1)]

]〉
.

▶ Define G0 :=
(
Qk

h −Qπ
h

)
(s, a) = 1

β log {q1} − 1
β log {⟨ϕ(s, a), wπ

h⟩}
▶ Need to derive upper and lower bounds for G0.

Main results 21 / 44

Proof warmup

▶

G0 =
1

β
log {q1} −

1

β
log

〈
ϕ(s, a),

(
Λk
h

)−1 ∑
τ∈[k−1]

ϕτ
h

[
eβ·Q

π
h(s

τ
h,a

τ
h)
]〉

=
1

β
log {q1} −

1

β
log

〈
ϕ(s, a),

(
Λk
h

)−1 ∑
τ∈[k−1]

ϕτ
h

[
Es′∼Ph(·|sτh,aτ

h)
eβ[r

τ
h+V π

h+1(s
′)]
]〉

=:
1

β
log {q1} −

1

β
log {q3}

▶ In order to control G0, we define an intermediate quantity

q2 :=

〈
ϕ(s, a),

(
Λk
h

)−1 ∑
τ∈[k−1]

ϕτ
h

[
Es′∼Ph(·|sτh,aτ

h)
eβ[r

τ
h+V k

h+1(s
′)]
]〉

with q2 replaces the quantity V π
h+1 in q3 by V k

h+1
Main results 22 / 44

Proof warmup

▶ Decompose the error

(
Qk

h −Qπ
h

)
(s, a) = G0 = (

1

β
log{q1} −

1

β
log{q2}) + (

1

β
log{q2} −

1

β
log{q3}) (8)

= G1 +G2 (9)

▶ G0,G1 and G2 are all well-defined, according to the following result.

Lemma 6.
We have qi ∈

[
min

{
1, eβ(H−h+1)

}
,max

{
1, eβ(H−h+1)

}]
for i ∈ [3]

Main results 23 / 44

Proof warmup

▶ Control G1 and G2(
Qk

h −Qπ
h

)
(s, a) = G0 = (

1

β
log{q1} −

1

β
log{q2}) + (

1

β
log{q2} −

1

β
log{q3}) (10)

= G1 +G2 (11)

▶ G0,G1 and G2 are all well-defined, according to the following result.

Lemma 7.
We have qi ∈

[
min

{
1, eβ(H−h+1)

}
,max

{
1, eβ(H−h+1)

}]
for i ∈ [3].

Main results 24 / 44

Proof warmup

▶ Control G1 and G2

Lemma 8.
For all (k, h, s, a) ∈ [K]× [H]× S ×A that satisifies Nk−1

h (s, a) ≥ 1, there exist universal
constants c1, cγ > 0 (where cγ is used in Line 9 of Algorithm 1) such that

0 ≤ G1 ≤ c1 ·
e|β|H − 1

|β|
· d
√
ι

√
ϕ(s, a)⊤

(
Λk
h

)−1
ϕ(s, a)

with probability at least 1− δ/2. Furthermore, if V k
h+1 (s

′) ≥ V π
h+1 (s

′) for all s′ ∈ S, then we
have

0 ≤ G2 ≤ e|β|H · Es′∼Ph(·|s,a)
[
V k
h+1 (s

′)− V π
h+1 (s

′)
]
.

Main results 25 / 44

Proof of Lemma 8

▶ Start with case β > 0. The case β < 0 follows the same idea.∣∣q+1 − q2 − bkh(s, a)
∣∣

= |

〈
ϕ(s, a),

(
Λk
h

)−1 ∑
τ∈[k−1]

ϕτ
h

[
eβ[r

τ
h+V k

h+1(s
τ
h+1)] − Es′∼Ph(·|sτh,aτ

h)
eβ[r

τ
h+V k

h+1(s
′)]
]〉
|

= | 1

Nk−1
h (s, a)

∑
(s,a,s+)∈Dk−1

h

eβ[rh(s,a)+V k
h+1(s

+)] − Es′∼Ph(·|s,a)e
β[rh(s,a)+V k

h+1(s
′)]|

≤c
∣∣eβH − 1

∣∣√ Sl

Nk−1
h (s, a)

=c
∣∣eβH − 1

∣∣√Sl ·
√

ϕ(s, a)⊤
(
Λk
h

)−1
ϕ(s, a)

Main results 26 / 44

Proof of Lemma 8

▶ The first inequality holds by Lemma 16. Choose cγ = c in the definition of bkh(s, a),

0 ≤ q+1 − q2 ≤ 2c ·
∣∣eβH − 1

∣∣√Sl ·
√

ϕ(s, a)⊤
(
Λk
h

)−1
ϕ(s, a).

▶ Therefore, we have q1 ≥ q2, and thus G1 ≥ 0.
▶ By Lemma 7 and Fact 4(a) (with g = 1, x = q1, and y = q2)

G1 ≤
1

β
(q1 − q2) ≤

1

β

(
q+1 − q2

)
.

▶ Control G2. V k
h+1 (s

′) ≥ V π
h+1 (s

′) for all s′ ∈ S implies that q2 ≥ q3 and therefore
G2 ≥ 0.

Main results 27 / 44

Proof of Lemma 8

▶ By Fact 4(a) (withg = 1, x = q2, and y = q3) and the fact that q2 ≥ q3 ≥ 1

G2 ≤
1

β
(q2 − q3)

≤ eβH

〈
ϕ(s, a),

(
Λk
h

)−1 ∑
τ∈[k−1]

ϕτ
h

[
Es′∼Ph(·|sτh,aτ

h)
[
V k
h+1 (s

′)− V π
h+1 (s

′)
]]〉

= e|β|HEs′∼Ph(·|s,a)
[
V k
h+1 (s

′)− V π
h+1 (s

′)
]

▶ The second step holds by Fact 4(b) (with b = β, x = rτh + V k
h+1(s), and

y = rτh + V π
h+1(s)

)
and H ≥ rτh + V k

h+1(s) ≥ rτh + V π
h+1(s) ≥ 0.

▶ Case β < 0 is similar to the previous one. The proof is hence completed.

Main results 28 / 44

Proof of Lemma 8

▶ The following lemmas establishes the dominance of Qk
h over Q∗

h and V k
h over V ∗

h .

Lemma 9.
On the event of Lemma 8, we have Qk

h(s, a) ≥ Qπ
h(s, a) for all (k, h, s, a) ∈ [K]× [H]×S ×A.

Lemma 10.
For any δ ∈ (0, 1], with probability at least 1− δ/2, we have V k

h (s) ≥ V π
h (s) for all

(k, h, s) ∈ [K]× [H]× S.

Main results 29 / 44

Proof of Theorem 2

▶ Define δkh := V k
h

(
skh
)
− V πk

h

(
skh
)
ζkh+1 := Es′∼Ph(·|skh,ak

h)
[
V k
h+1 (s

′)− V πk

h+1 (s
′)
]
− δkh+1

▶ For any (k, h) ∈ [K]× [H], we have

δkh =
(
Qk

h −Qπk

h

) (
skh, a

k
h

)
≤c1 ·

e|β|H − 1

|β|
·
√
Sl

√
ϕ
(
skh′akh

)⊤ (
Λk
h

)−1
ϕ
(
skh′akh

)
+ e|β|H · Es′∼Ph(·|skh,ak

h)
[
V k
h+1 (s

′)− V πk

h+1 (s
′)
]

=c1 ·
e|β|H − 1

|β|
·
√
Sl

√
ϕ
(
skh, a

k
h

)⊤ (
Λk
h

)−1
ϕ
(
skh, a

k
h

)
+ e|β|H

(
δkh+1 + ζkh+1

)
Main results 30 / 44

Proof of Theorem 2
▶ Noting that V k

H+1(s) = V πk

H+1(s) = 0 and δkh+1 + ζkh+1 ≥ 0, expand the recursion

δk1 ≤
∑

h∈[H]

e(|β|H)hζkh+1+c1·
e|β|H − 1

|β|
·
∑

h∈[H]

e(|β|H)(h−1)
√
Sι

√
ϕ
(
skh′akh

)⊤ (
Λk
h

)−1
ϕ
(
skh′akh

)
▶ Apply Lemma 10 with π set to π∗

Regret(K) =
∑

k∈[K]

[
(V ∗

1 − V πk
1)

(
sk1
)]
≤
∑

k∈[K]

δk1

≤e|β|H
2 ∑
k∈[K]h∈[H]

ζkh+1

+ c1 ·
e|β|H − 1

|β|
· e|β|H

2

·
√
Sl

∑
k∈[K]h∈[H]

√
ϕ
(
skh, a

k
h

)⊤ (
Λk
h

)−1
ϕ
(
skh, a

k
h

)
Main results 31 / 44

Proof of Theorem 2

▶ Proceed to control the two terms.
▶ Since V K

H is independent of the new observation,
{
ζkh+1

}
is a martingale difference

sequence satisfying
∣∣ζkh∣∣ ≤ 2H for all (k, h) ∈ [K]× [H].

▶ By the Azuma-Hoeffding inequality, we have for any t > 0,

P

 ∑
k∈[K]

∑
h∈[H]

ζkh+1 ≥ t

 ≤ exp

(
− t2

2T ·H2

)
.

▶ With probability 1− δ/2, there holds∑
k∈[K]

∑
h∈[H]

ζkh+1 ≤
√
2TH2 · log(2/δ) ≤ 2H

√
Tι.

Main results 32 / 44

Proof of Theorem 2

▶ For the second term, apply Lemma 18 and the Cauchy-Schwartz inequality to obtain∑
k∈[K]h∈[H]

√
ϕ
(
skh, a

k
h

)⊤ (
Λk
h

)−1
ϕ
(
skh, a

k
h

)
≤
∑

h∈[H]

√
K
√∑

k∈[H] ϕ
(
skh′akh

)⊤ (
Λk
h

)−1
ϕ
(
skh′akh

)
≤ H
√
2dKl

▶ Recall Fact 5 and the fact e|β|H−1
|β| ≥ H

Regret(K) ≤ e|β|H
2

· 2H
√
Tι+ c1 ·

e|β|H − 1

|β|
· e|β|H

2

·H
√
2dSKι2

≤ (c1 + 2) · e
|β|H − 1

|β|
· e|β|H

2

·
√
2dHSTι2

≲ λ
(
|β|H2

)
·
√
H3S2AT log2(2SAT/δ)

Main results 33 / 44

Regret upper bounds for RSQ

Theorem 11.
For any δ ∈ (0, 1], with probability at least 1− δ, and when T is sufficiently large, the regret of
Algorithm 2 is bounded by

Regret(K) ≲ λ
(
|β|H2

)
·
√
H4SAT log(SAT/δ)

Corollary 12.
Under the setting of Theorem 11 and when β → 0, with probability at least 1− δ, the regret of
Algorithm 2 is bounded by

Regret(K) ≲
√
H4SAT log(SAT/δ)

Main results 34 / 44

Regret lower bound

Theorem 13.
For sufficiently large K and H, the regret of any algorithm obeys

E[Regret(K)] ≥ e|β|H/2 − 1

|β|
√
T log T .

▶ Exponential dependence on the |β| and H and a sub-linear dependence on T through the
Õ(
√
T) factor is essentially indispensable.

▶ Both Theorems are nearly optimal in their dependence on β, H and T .
▶ Contrast with Lemma 1, an algorithm must incur a regret that is exponential in H in order

to achieve a sublinear regret in T .

Main results 35 / 44

Proof of Theorem 13

▶ Construct a bandit instance as a special case of episodic fixed-horizon MDP problem.
▶ Establish lower bound on the instance in terms of the logarithmic-exponential objective.
▶ Start with two important lemmas.
▶ For each ρ ∈ [0, 1], let Ber(ρ) denote the Bernoulli distribution with parameter ρ

Lemma 14.
Let p, p′ ∈ (0, 1) be such that p > p′. We have DKL (Ber (p

′) ∥Ber(p)) ≤ (p−p′)
2

p(1−p) .

Main results 36 / 44

Proof of Theorem 13

Lemma 15.
Let K0 := K0(K,π) be the number of times that the sub-optimal arm is pulled in the K-round
two-arm bandit problem with policy π. When K is sufficiently large, we have

EK0 ≳ logK

D
.

Main results 37 / 44

Proof of Theorem 13

▶ Case β > 0.
▶ Two-arm bandit problem with K rounds, the reward for pulling arm i

Xi =

{
H w.p. pi

0 w.p. 1− pi

▶ p1 > p2 are to be specified later. Let ∆ := p1 − p2 > 0.
▶ By Lemma 14, DKL (X2∥X1) ≤ ∆2

p1(1−p1)
.

▶ Lemma implies 15 EK0 ≳ logK·p1(1−p1)
∆2 .

Main results 38 / 44

Proof of Theorem 13

▶ Choose ∆ = C
√

logK·p1(1−p1)
K for an universal constant C > 0.

▶ Set p2 = e−βH . Since p1 (1− p1) ≤ 1
4 , we have ∆ ≲

√
logK
K

▶ By choosing K and H large enough, we can ensure ∆ ≤ e−βH and p1 = p2 +∆ ≤ 3
4 .

▶ Define Xk
i to be the outcome of arm Xi (if pulled) in round k, and Y k to be the outcome

of the arm actually pulled in round k.

Main results 39 / 44

Proof of Theorem 13
▶ Conditional on K0, we have

Regret(K) =
1

β
log

E exp

β
∑

k∈[K]

Xk
1

− 1

β
log

E exp

β
∑

k∈[K]

Y k

(i)
=

1

β
log

[
K∏

k=1

E exp
(
βXk

1

)]
− 1

β
log

[
K∏

k=1

E exp
(
βY k

)]

≥ 1

β
log

[
K∏

k=1

E exp
(
βXk

1

)]
− 1

β
log

[
K∏

k=1

E exp
(
βXk

2

)]

=
K

β
log [E exp (βX1)]−

K

β
log [E exp (βX2)]

≥ K0

β
log [E exp (βX1)]−

K0

β
log [E exp (βX2)]

Main results 40 / 44

Proof of Theorem 13
Taking expectation over K0 on both sides

E[Regret(K)] ≥
EK0

β

(
log EeβX1 − log EeβX2

)

=
EK0

β
log

 p1eβH + (1 − p1)

p2eβH + (1 − p2)

=
EK0

β
log

1 +
∆

(
eβH − 1

)
p2eβH + (1 − p2)

≥
EK0

β
log

1 +
∆

(
eβH − 1

)
1 + 1

≥

EK0

β
·

1

4
∆

(
e
βH − 1

)

≳
1

β
·

log K · p1 (1 − p1)

∆
·
(
e
βH − 1

)

≳
1

β
·
√

K log K · p1 (1 − p1) ·
(
e
βH − 1

)

≳
1

β
·
√

K log K ·
(
e
βH/2 − 1

)

≳
1

β
·
√

T log T ·
(
e
βH/2 − 1

)

Main results 41 / 44

Proof of Theorem 13

Figure: From bandit model to MDP
Main results 42 / 44

Supporting Lemmas of Theorem 2

Lemma 16.
Define

Vh+1 :=
{
V̄h+1 : S → R | ∀s ∈ S, V̄h+1(s) ∈

[
min

{
eβ(H−h), 1

}
,max

{
eβ(H−h), 1

}]}
There exists a universal constant c > 0 such that with probability 1− δ, we have

∣∣∣eβ[rh(skh,ak
h)+V (skh+1)] − Es′∼Ph(·|skh,ak

h)
eβ[rh(s

k
h,a

k
h)+V (s′)]

∣∣∣ ≤ c
∣∣eβH − 1

∣∣√ Sl

Nk
h (s, a)

for all (k, h, s, a) ∈ [K]× [H]× S ×A and all V ∈ Vh+1

Appendices 43 / 44

Supporting Lemmas of Theorem 2

Lemma 17.
Let {ϕt}t≥0 be a bounded sequence in Rd satisfying supt>0 ∥ϕt∥ ≤ 1. Let Λ0 ∈ Rd×d be a PD
matrix with λmin (Λ0) ≥ 1. For any t ≥ 0, we define Λt := Λ0 +

∑
i∈[t] ϕiϕ

⊤
i . Then, we have

log

[
det (Λt)

det (Λ0)

]
≤
∑
i∈[t]

ϕ⊤
i Λ

−1
i−1ϕi ≤ 2 log

[
det (Λt)

det (Λ0)

]

Lemma 18.
Let ι = log(2dT/δ). For any h ∈ [H], we have∑

k∈[K]

(
ϕk
h

)⊤ (
Λk
h

)−1
ϕk
h ≤ 2dι

Appendices 44 / 44

	Introduction
	Algorithms
	Main results
	Appendices

