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Background

» Risk-sensitive RL concerns learning policies that take into account risks.

» Effective management of risks in RL is critical to many real-world applications
— Autonomous driving
— Real-time strategy games
— Financial investment

— Neuroscience: model human behaviors in decision making
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Objective

» Maximize a Exponential utility function
1 BR
V= 3 log {]Ee } , (1)

where R is the return, and 8 # 0 controls risk preference of the agent.
» (1) admits the Taylor expansion V = E[R] + gVar(R) + 0 (8?)
— B > 0: risk-seeking (favoring high uncertainty in R)

— B < 0: risk-averse (favoring low uncertainty in R)
- B — 0: V = E[R], risk-neutral

» (1) covers the entire spectrum of risk sensitivity by varying
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Challenges

» Non-linearity of the objective function
— Induces a non-linear Bellman equation
» Designing a risk-aware exploration mechanism

— How to efficiently explores while adapting to (1) with different 8
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Contributions

» Propose two provably efficient model-free algorithms that implement risk-sensitive OFU
— Risk-Sensitive Value Iteration (RSVI): O (A (18|H?) - \/m) regret
— Risk-Sensitive Q-learning (RSQ): O ()\ (|8|H?) - m) regret
- Aw) = (e - 1) /u
» Establish a regret lower bound showing that the exponential dependence on 8 and H is
unavoidable for any algorithm with an O (\/T) regret
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Problem setup

» Episodic MDPs MDP(S, A, H,P,R)
— & and A are finite discrete spaces, and let S = |S| and A = |A|
— P ={Pn}yc(u) and R = {rn}, () are state transition kernels and reward functions

— Agent does not have access to P and 7, : S x A — [0, 1] is a deterministic function
» An initial state sy is chosen arbitrarily by the environment
» A policy m = {ﬂ'h}hE[H] of an agent is a sequence of functions 71, : S — A

» For each h € [H], we define the value function V;" : & — R of a policy 7

H
exp <BZ rh (Sh, Th (sh))> | sp, = s] } .
h=1

Vi) = 5 log {E
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Bellman equations and regret

» Define the action-value function Q7 : S x A =+ R

H
eXp (5 Z Th! (Sh',ah’)> | sn = s,ap = a] }

h'=h+1

Qp(s,a) := %log {exp (B-7rn(s,a)) E

» The Bellman equation associated with policy 7 is given by

Qr(s,a) =rp(s,a) + %log {]Eslwph(.‘s’a) [exp (ﬁ Vit (s’))} } (3)

Vir(s) = @Qf (s,7a(s)) s Vira(s) =0 (4)

» Under some mild regularity conditions, there always exists an optimal policy 7* which
gives the optimal value V;*(s) = sup, V7 (s) for all (h,s) € [H] xS
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Bellman equations and regret

» The Bellman optimality equation is given by

Q;‘L(& a) - Th(S, a) + %IOg {Es’wPh(-|s,a) [exp (6 : Vi;k+1 (S/))]} (5)
Vils) = maxQh(s.0). Vitai(s) =0 ©

» Both Bellman equations are non-linear due to non-linearity of the exponential utility
» s¥ the initial state, 7" the policy chosen at the beginning of episode k.

» The total regret after K episodes is

Regret (K Z [Vl s1 (slf)}

ke[K]
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Upper bounds on the value functions and regret

Lemma 1.
For any (h,s,a) € S X A x [H], policy m and risk parameter 3 # 0, we have

0<V7(s)<H and 0<Qf(s,a)<H.
Consequently, for each K > 1, all policy sequences 7', ..., 7% and any B # 0, we have

0 < Regret(K) < KH.

Proof.

Recall the assumption that the reward functions {rp} are bounded in [0, 1]. The lower bounds
are immediate by definition. For the upper bound, we have V7 (s) < %log{E[exp(ﬁH)]} =H.
Upper bounds for Q7 and the regret follow similarly. |
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Algorithms

Algorithm 1: RSVI

Algorithm 1 RSVI

Input: number of episodes K € Z ., confidence level § € (0,1], and risk parameter § # 0
1: Qu(s,a) < H—h+1and Ny(s,a) « 0forall (h,s,a) € [H] xS x A
2 Qpya(s,a) < Oforall (s,a) e S x A
3: Initialize datasets {Dj,} as empty
4 forepisodek =1,...,Kdo
5 Vis1(s) « Oforeachs € S

6: forsteph=H,...,1do > value estimation
7: Update wy, via Equation (8)

8 for (s,a) € S x Asuch that Nj,(s,a) > 1do

9 by(s,a) < cy |ePH —1| &W for some universal constant ¢, > 0

| Hog[min(et (o) +Gsa)] it >
-

10: Qu(s,a

%log [max{eﬁ(H”’“), wy(s,a) — bry(s,n)}] , ifp<0
11 Vi(s) + maxaea Qu(s, a’)
12 end for

13 end for

14 for steph=1,...,Hdo > policy execution
15: Take action aj, < argmax, . 4, Qx(sy, a) and observe r(sy, ay) and s ;1

16: Ni(sn, an) < Ny(sp,ap) +1

17: Insert (sy, an, sp+1) into Dy

18: end for

19: end for
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Mechanism of RSVI

» Algorithm 1 is inspired by LSVI-UCB. It follows OFU by applying the UCB by
incorporating a bonus term to value estimates of state-action pairs.

» Including the value estimation step (Line 6-13) and the policy execution step (Line 14-18)
In Line 7, the algorithm computes the intermediate value wy, by a least-squares update

T T T 2
wy - argmin Y[R Vin (i)l - 0T (57, a7)] (7
weRSA T€lk—1]

where ¢(-,-) denotes the canonical basis in R4 and {(s;, a;,sﬁﬂ)}
from the dataset Dy,.

relk—1) € accessed

» Can be efficiently implemented by computing sample means of Bl (s Vi ()] oyer
visited state-action pairs.
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Mechanism of RSVI

» In Line 10, the algorithm uses wj;, to compute the estimate @, by adding/subtracting
bonus by, and thresholding the sum /difference at e#(#="+1) depending on the sign of 8

» The logarithmic-exponential transformation in Line 10 conforms and adapts to the

non-linearity in Bellman equations (3) and (4).
» The thresholding operator ensures that @, and V}, stays in the range [0, H — h+1].
» Subtracting bonus when 3 < 0 implements OFU in a risk-sensitive fashion.

» Belong to batch algorithms.
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Algorithm 2: RSQ

Algorithm 2 RSQ
Input: number of episodes K € Z.o, confidence level § € (0,1], learning rates {ut} and risk

parameter § # 0
1: Qu(s,a), Vi(s,a) +— H—h +1and Njy(s,a) + 0forall (h,s,a) € [H xS x A
2 Quia(s,a), Vipia(s,a) < Oforall (s,a) e Sx A
3: forepisode k =1,...,K do
% Receive the initial state s1

5 forsteph=1,...,Hdo

6: Take action ay + argmax,_ 4 Qn(sn, '), and observe sy, a,) and sy 41

7 t = Ny(sn an) + Ny(sp,a) +1

8 by + ¢ }EﬁH — 1| 1/ ﬂw for some sufficiently large universal constant ¢ > 0
0 wi (sp, an) < (1— M)J‘Q}H}‘M}.l + atePlnCs )+ Viga (Si0)]

Flog [mjn{eﬁ(H”’“}, wh (s, an) + ﬂrbt}} , Hp>0;
10: Qu(sn an) + |
Flog [mﬂx{fﬁm*"*l", wy (s, ay) — ﬂtl”t}] . Hp<O

1 Viy(sn) < maxge 4 Qn(sp,a')
12: end for

13: end for
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Mechanism of RSQ

» Algorithm 1 requires storage of historical data {Dj,} and computation over them (Line 7).
» Q-learning update Q values in an online fashion as each state-action pair is encountered.
> Based on Q-learning with UCB in the work of [38] and use the same learning rates therein

H+1
Qp = .
CTH 4t

» Line 9 updates wy, in an online fashion, in contrast with the batch update of Algorithm 1.
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Comparisons

» The bonuses in both algorithms depend on § through a common factor |e’3H — 1|.

» A careful analysis on the bonuses and the value estimation steps reveals that the effective
. . l61H _
bonuses is proportional to ¢ Al 1

» The more risk-sensitive an agent is, the larger bonus it needs to compensate for the
uncertainty

» Both algorithms have polynomial time and space complexities in S, A, K and H.

» Algorithm 2 is more efficient than Algorithms 1 in both time and space complexities, since

it does not require storing historical data nor computing statistics.
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Regret upper bounds for RSVI

Theorem 2.

For any 6 € (0, 1], with probability at least 1 — ¢, the regret of Algorithm 1 is bounded by

Regret(K) S A (|81H2) - \/ H3S2AT log? (28 AT /)

Corollary 3.

Under the setting of Theorem 1 and when [ — 0, with probability at least 1 — 0, the regret of
Algorithm 1 is bounded by

Regret(K) < \/ H3S82AT log?(2SAT/6)
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Regret upper bounds for RSVI

» Theorem 2 adapts to both risk-seeking and risk-averse settings through a common factor
of A (|8|H?).

» Corollary 3 recovers the regret bound of [4, Theorem 2] under the standard RL setting and
is nearly optimal.

» Corollary 3 also reveals that Theorem 2 interpolates between the risk-sensitive and
risk-neutral settings.
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Proof of Theorem 2: preliminaries

> Let s af, wk, QF and Vi¥ and V}¥ denote the values of sy, ap, wp, @, and Vj, in episode k

» Let NJ and D denote the value of N}, and Dj, at the end of episode k — 1.

Fact 4.

Consider x,y,b € R such that © > y.

(a) ify > g for some g > 0, then log(z) — log(y) < %(w —v)

(b) Assume further that y > 0. If b > 0 and © < u for some u > 0, then
e — eb < beP(z —y); if b < 0, then €% — e¥* < (—b)(z —y)

Fact 5.
Define \g :=

SBIH_q

181

2
3lB1HZ _q

El

and Ay 1= elﬁl(H2+H). Then we have \g\oH < &
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Proof warmup

» Define d := SA,l :=log(2dT/) for a given ¢ € (0, 1].

» Define ¢(s,a) as canonical basis of RS4 and let AZ be a diagonal matrix in R**¢ with
each (s,a)-th diagonal entry equal to max {N}’ffl(s, a), 1}.

> Fix a tuple (s,a,k,h) €S x A x [K] x [H] such that N}"!(s,a) > 1 and fix a policy 7

> Set wl = e @),

Q(s.) = 5 1og (¢7H) - = Zog ((9(s.a), 9 ) ) = Slog (65,0, wf)

wh (s,a) = 7R = <¢(s,a)7 (/\2)71 Z (o [eﬁ'Qﬁ(SZ’aﬂ)}>

TE[k—1]
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Proof warmup

» Define d := SA,l :=log(2dT/) for a given ¢ € (0, 1].

» Define ¢(s,a) as canonical basis of RS4 and let AZ be a diagonal matrix in R**¢ with
each (s,a)-th diagonal entry equal to max {N}’ffl(s, a), 1}.

> Fix a tuple (s,a,k,h) €S x A x [K] x [H] such that N}"!(s,a) > 1 and fix a policy 7

> Set wl = e @),

Q(s.) = 5 1og (¢7H) - = Zog ((9(s.a), 9 ) ) = Slog (65,0, wf)
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TE[k—1]
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Proof warmup

gt = <¢(s,a),w§> +bf(s,a), fB>0
> Defi . (@(s,a),wy) —bj(s,a), if 5<0,
erine
o= min {BH-PHD gL if g >0
1 maX{e/B(H—th1)7ql+}7 if <0

> By the definition of A} and ¢f, observe that

wi(s,a) = <¢(s,a),w§> = <¢(s,a), (Alﬁ)_l Z o7 {@5[’";1T,+Vf+1(32+1)]]> )

TE[k—1]

» Define Gg := (Q’fl — QZ) (s,a) = %log {a} - %log{@(s,a),w;{)}

> Need to derive upper and lower bounds for Gj.
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Proof warmup

>
Go glog{ql}  log <¢(s a Y g [ B-Q7 (s a7 }>
TElk—1]
= %log {ar} - %log <¢(5 Z bh { s/ ~Py, |s;,az)eﬁ[r’:+v”1l(s,)]}>
TElk—1]

— %log {nn} - %log{qs}

» In order to control GGy, we define an intermediate quantity

q2 ‘= <¢( Z ¢h [ s ~Ph sg,aﬁ)eﬁ[T;+V)ﬁ+l(S/)]}>

TE[k—1]

with g, replaces the quantity V,7, | in g3 by V)",
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Proof warmup

» Decompose the error

(QF — QF) (s,a) = Go = (% log{g:} %log{qm + % log{g2} %log{%}) (8)
=G+ Gs (9)

» Gg, Gy and Go are all well-defined, according to the following result.

Lemma 6.
We have g; € [min {1,e#H=+D1 max {1,efH-r+D1] for i € [3]
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Proof warmup

» Control G; and G

(QF — QF) (s,a) = Go = % log{q:} - %mg{qﬂ) + (% log{gs} %log{qu (10)
=G+ Gy (11)

» Gg, Gy and Gg are all well-defined, according to the following result.

Lemma 7.
We have g; € [min {1,e#H=+D1 max {1,e#H-r+D1] for i € [3].
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Proof warmup

» Control G1 and Gy

Lemma 8.
For all (k,h,s,a) € [K] x [H] x S x A that satisifies NJ"!(s,a) > 1, there exist universal
constants ci,cy > 0 (where ¢y is used in Line 9 of Algorithm 1) such that

CIBIH _

5 N R

with probability at least 1 — §/2. Furthermore, if V¥, | (s') > Vi, | (s') for all &' € S, then we
have

0<G1<er-

0<Gy < e‘BIH ’ IEs’r\zl:’h(»|s,a) [V}f—i-l (5,) - V}f—i—l (5/)} :
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Proof of Lemma 8

» Start with case 8 > 0. The case 8 < 0 follows the same idea.
|q;r —q2 — bﬁ(sva”

=| <¢<s P> g et lia)] - ES,NPh(,.s;,a;)eﬁ[rzwfﬂ<s'>]}> |

TEk—1]
1 ,
= m Z eBlrn(s.a)+Vita (s7)] ]ES/NPh(.\s,a)eﬂ[rh(s’aHVfH(3 )]|
h ’ (s,a,s*)GDE’l

l

<ele 1]\ [ v

N, (s,a)

—c|efH — 1] /5 - \Jo(s,a)T (ML) " (s, )
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Proof of Lemma 8

> The first inequality holds by Lemma 16. Choose ¢, = c in the definition of b} (s, a),

0<qf —q <20 [ — 1| /51 /o(s,0)7 (A%) " 6(s.a).

» Therefore, we have ¢; > ¢, and thus G; > 0.

» By Lemma 7 and Fact 4(a) (with g =1, x = g1, and y = ¢2)
G1<E(Q1—Q2)< l((ﬁ—(b)-
- B - gt

> Control Gy. Vi, (s') > V7, (8) for all &' € S implies that g2 > g3 and therefore
G2 > 0.
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Proof of Lemma 8

» By Fact 4(a) (withg = 1,2 = g2, and y = ¢3) and the fact that ¢ > ¢35 > 1
1
Gy < B (g2 — g3)
<o <¢<s L O By, () Vi () — Vil <s’>]}>
Te[k—1]

= 6lﬁlHH'Es/NP,L(~|s,a) [th+1 (3/) - Vhﬂ+1 (3/)]
> The second step holds by Fact 4(b) (with b= 3,2 =] + V¥, (s), and
y=r}+ V;ZT_H(S)) and H > r] + th+1(s) >r] + Vi (s) > 0.

» Case 8 < 0 is similar to the previous one. The proof is hence completed.
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Proof of Lemma 8

» The following lemmas establishes the dominance of Q¥ over Q; and V;* over V*.

Lemma 9.
On the event of Lemma 8, we have Q% (s,a) > Q7 (s, a) for all (k,h,s,a) € [K] x [H] x S x A.

Lemma 10.
For any § € (0, 1], with probability at least 1 — §/2, we have V}¥(s) > V™ (s) for all
(k,h,s) € [K] x [H] xS.
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Proof of Theorem 2

> Define 52 = foc (Slfi) -V (32) C}]f+1 = ]ESINP,L(.\SQ,CL’;;) [th+1( )= Vi (s )] - 51}?4—1
» For any (k,h) € [K]| x [H]|, we have

O = (Qh — @R*) (sh: ah)
G\B\H -1

<o, f\/¢ (shak) " (Af) ™" o (shaf)
+e\m -Eswph(.w ) [Vh+1( s') = Vit ()]
eﬂllgll VS (st ab) T (AF) M6 (55, al)
L N

:Cl .
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Proof of Theorem 2

> Noting that V&, (s) = V% ,(s) =0and 65, 4+, , >0, expand the recursion

k (1BIH)h ok el —1
oy < Z e Ch+1+cl'T'
hE[H]

» Apply Lemma 10 with 7 set to 7*

Regret(K) = Z (V= Vi) (st)]
keE[K]

<elfH Z Ch+1
ke(K]|he[H]
elBIH _

+cre
|8l

Main results

<D

ke[K]

3 DV () ()6 (shah)

he[H]

Lo /g, 3 \/¢ (sk,ab)T

ke[K]he[H]|

AF) o (sh,af)
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Proof of Theorem 2

» Proceed to control the two terms.

» Since V/ is independent of the new observation, {C,’fH} is a martingale difference
sequence satisfying (| < 2H for all (k,h) € [K] x [H].

» By the Azuma-Hoeffding inequality, we have for any t > 0,
t2
P Y S dhzt) e (-5m)
ke[K] he[H]

> With probability 1 — §/2, there holds

Z Z (i1 < V2TH? -log(2/6) < 2HVT.

ke[K] he[H
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Proof of Theorem 2

» For the second term, apply Lemma 18 and the Cauchy-Schwartz inequality to obtain
Suctuuei V0 (ko) (4) "0 (oo
< Zhe[H] f\/zke [H] ¢ Sh’ah) (Ak) ¢ (Sh’ah) < Hy2dK,

» Recall Fact 5 and the fact el 1 >H

\Bl
|81H
Regret(K)geW'H “2HVT1+ ¢y - ¢ \5| elBIH . H\/2dSK 2
|81 H
<(1+2)- < Iﬁl P \/DdH ST .2

<M (|B|H?) - \/H352AT log(25 AT /§)
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Regret upper bounds for RSQ

Theorem 11.

For any 6 € (0,1], with probability at least 1 — &, and when T is sufficiently large, the regret of
Algorithm 2 is bounded by

Regret(K) < A (|81H?) - /H*SAT log(SAT/3)

Corollary 12.

Under the setting of Theorem 11 and when 5 — 0, with probability at least 1 — 0, the regret of
Algorithm 2 is bounded by

Regret(K) < +/H4SAT log(SAT/9)
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Regret lower bound

Theorem 13.
For sufficiently large K and H, the regret of any algorithm obeys

\/TlogT.

elBIH/2 _ 1
E[Regret(K)] > ————
18]
> Exponential dependence on the || and H and a sub-linear dependence on T through the
O(V/T) factor is essentially indispensable.
» Both Theorems are nearly optimal in their dependence on 5, H and T.
» Contrast with Lemma 1, an algorithm must incur a regret that is exponential in H in order

to achieve a sublinear regret in T

Main results 35 /44



Proof of Theorem 13

» Construct a bandit instance as a special case of episodic fixed-horizon MDP problem.
» Establish lower bound on the instance in terms of the logarithmic-exponential objective.
» Start with two important lemmas.

» For each p € [0, 1], let Ber(p) denote the Bernoulli distribution with parameter p

Lemma 14.

N2
Let p,p’ € (0,1) be such that p > p’. We have Dk, (Ber (p') || Ber(p)) < (pp(;fp)) .
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Proof of Theorem 13

Lemma 15.
Let Ky := Ko(K, ) be the number of times that the sub-optimal arm is pulled in the K -round
two-arm bandit problem with policy m. When K is sufficiently large, we have

log K

EKy 2 .
ON D
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Proof of Theorem 13

> Case 3 > 0.

» Two-arm bandit problem with K rounds, the reward for pulling arm i

X, = H w.p. p;
0 w.p. 1 —p;

> p; > po are to be specified later. Let A :=p; — ps > 0.

» By Lemma 14, Dxky, (X2||X1) < m.

» Lemma implies 15 EK > W.

2
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Proof of Theorem 13

» Choose A = (C4/ % for an universal constant C' > 0.

> Set po = e . Since p1 (1 —p1) < 1, we have A < /18K
» By choosing K and H large enough, we can ensure A < e ## and p; = po + A < %_

> Define X} to be the outcome of arm X; (if pulled) in round k, and Y'* to be the outcome
of the arm actually pulled in round k.
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Proof of Theorem 13

» Conditional on Kj, we have

Regret(K) = %log []Eexp (5 Z X{C)

— %log [Eexp (ﬂ Z Yk)

ke[K] ke[K]
log ll:[ Eexp (X} ] %log LﬁEeXp (BY*)
1 s 1 S
> Blog EIIEeXp Bxk ] — Blog Ll:[lEeXp (ﬂXf)]
~ 5 log [Eexp (8X0)] - 7 log [Eexp (5Xa)]
> 52 log [Bexp (1)) ~ * log [Eexp (3X2)]
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Main results

Proof of Theorem 13

Taking expectation over K on both sides

E[Regret(K)]

[\

[\

14%

4%

14%

4%

EK
it (1ogEPX1 — 1ogESX2)

p1ePH + (1 - pp)
paeBH 4 (1 py)

EK( . - 1)
270 g
8 pzeﬁH+<1—p2>
log (

)

EKo |
B

EKq BH

o 1, —1

N NEED
i.w_(efm,l)
B A

1
;.Jm(e“fl)
i-mz<eﬁH/2—l>

]

i‘\/TlogT»(eBH/zfl)

8
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Proof of Theorem 13

h=1 h=2 h=3 h=H+1 h=H+2

Figure: From bandit model to MDP

Main results

42 / 44



Supporting Lemmas of Theorem 2

Lemma 16.
Define

Vit = {Vh+1 S R|Vse€S Viy(s) € [min {eB(H*h), 1} ,max{eﬁ(H*h), 1}]}
There exists a universal constant ¢ > 0 such that with probability 1 — §, we have

S+ ()] Pl (ehat) V]| < e 1] _S5

Ny (s, a)

S’NPh(-\sE,aﬁ)
for all (k,h,s,a) € [K] x [H] x S x A and all V € V41
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Supporting Lemmas of Theorem 2

Lemma 17.
Let {¢1},5, be a bounded sequence in R? satisfying sup,~ [|¢:]| < 1. Let Ag € R™¢ be a PD
matrix with Amin (Ao) > 1. For any t > 0, we define Ay := Ao + X c1y ¢i¢; . Then, we have

<[y | < 3o <o G5

1€[t]

Lemma 18.
Let . =log(2dT/$). For any h € [H|, we have

S (0h) T (AF) ok <20

ke[K]
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