Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret

Presenter: Hao Liang

The Chinese University of Hong Kong, Shenzhen, China

July 2, 2020

Mainly based on:

Fei, Yingjie, et al. "Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret." arXiv preprint arXiv:2006.13827 (2020).

Background

- Risk-sensitive RL concerns learning policies that take into account risks.
- ▶ Effective management of risks in RL is critical to many real-world applications
 - Autonomous driving
 - Real-time strategy games
 - Financial investment
 - Neuroscience: model human behaviors in decision making

Objective

Maximize a Exponential utility function

$$V = \frac{1}{\beta} \log \left\{ \mathbb{E}e^{\beta R} \right\},\tag{1}$$

where R is the return, and $\beta \neq 0$ controls risk preference of the agent.

- ▶ (1) admits the Taylor expansion $V = \mathbb{E}[R] + \frac{\beta}{2} \operatorname{Var}(R) + O\left(\beta^2\right)$
 - $-\beta > 0$: risk-seeking (favoring high uncertainty in R)
 - $-\beta < 0$: risk-averse (favoring low uncertainty in R)
 - $\ \beta \rightarrow 0$: $V = \mathbb{E}[R]$, risk-neutral
- \blacktriangleright (1) covers the entire spectrum of risk sensitivity by varying β

Challenges

- Non-linearity of the objective function
 - Induces a non-linear Bellman equation
- Designing a risk-aware exploration mechanism
 - How to efficiently explores while adapting to (1) with different eta

Contributions

Propose two provably efficient model-free algorithms that implement risk-sensitive OFU

- Risk-Sensitive Value Iteration (RSVI): $\tilde{O}\left(\lambda\left(|\beta|H^2\right)\cdot\sqrt{H^3S^2AT}\right)$ regret
- Risk-Sensitive Q-learning (RSQ): $\tilde{O}\left(\lambda\left(|\beta|H^2\right)\cdot\sqrt{H^3S^2AT}\right)$ regret

$$- \lambda(u) := \left(e^{3u} - 1\right)/u$$

Establish a regret lower bound showing that the exponential dependence on β and H is unavoidable for any algorithm with an $\tilde{O}\left(\sqrt{T}\right)$ regret

Problem setup

- Episodic MDPs MDP(S, A, H, P, R)
 - ${\mathcal S}$ and ${\mathcal A}$ are finite discrete spaces, and let $S=|{\mathcal S}|$ and $A=|{\mathcal A}|$
 - $\mathcal{P} = \{P_h\}_{h \in [H]}$ and $\mathcal{R} = \{r_h\}_{h \in [H]}$ are state transition kernels and reward functions
 - Agent does not have access to \mathcal{P} and $r_h: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$ is a deterministic function
- An initial state s_1 is chosen arbitrarily by the environment
- A policy $\pi = {\pi_h}_{h \in [H]}$ of an agent is a sequence of functions $\pi_h : S \to A$
- \blacktriangleright For each $h\in [H],$ we define the value function $V_h^\pi:\mathcal{S}\to\mathbb{R}$ of a policy π

$$V_h^{\pi}(s) := \frac{1}{\beta} \log \left\{ \mathbb{E} \left[\exp \left(\beta \sum_{h=1}^H r_h \left(s_h, \pi_h \left(s_h \right) \right) \right) \mid s_h = s \right] \right\}.$$
(2)

Bellman equations and regret

• Define the action-value function $Q_h^{\pi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$

$$Q_h^{\pi}(s,a) := \frac{1}{\beta} \log \left\{ \exp\left(\beta \cdot r_h(s,a)\right) \mathbb{E}\left[\exp\left(\beta \sum_{h'=h+1}^{H} r_{h'}\left(s_{h'},a_{h'}\right)\right) \mid s_h = s, a_h = a \right] \right\}$$

• The Bellman equation associated with policy π is given by

$$Q_{h}^{\pi}(s,a) = r_{h}(s,a) + \frac{1}{\beta} \log \left\{ \mathbb{E}_{s' \sim P_{h}(\cdot | s, a)} \left[\exp \left(\beta \cdot V_{h+1}^{\pi}(s') \right) \right] \right\}$$
(3)
$$V_{h}^{\pi}(s) = Q_{h}^{\pi}(s, \pi_{h}(s)), \quad V_{H+1}^{\pi}(s) = 0$$
(4)

• Under some mild regularity conditions, there always exists an optimal policy π^* which gives the optimal value $V_h^*(s) = \sup_{\pi} V_h^{\pi}(s)$ for all $(h, s) \in [H] \times S$

Bellman equations and regret

The Bellman optimality equation is given by

$$Q_{h}^{*}(s,a) = r_{h}(s,a) + \frac{1}{\beta} \log \left\{ \mathbb{E}_{s' \sim P_{h}(\cdot|s,a)} \left[\exp \left(\beta \cdot V_{h+1}^{*}(s') \right) \right] \right\}$$
(5)

$$V_h^*(s) = \max_{a \in \mathcal{A}} Q_h^*(s, a), \quad V_{H+1}^*(s) = 0$$
(6)

- ▶ Both Bellman equations are non-linear due to non-linearity of the exponential utility
- ▶ s_1^k the initial state, π^k the policy chosen at the beginning of episode k.
- \blacktriangleright The total regret after K episodes is

$$\operatorname{Regret}(K) := \sum_{k \in [K]} \left[V_1^* \left(s_1^k \right) - V_1^{\pi^k} \left(s_1^k \right) \right]$$

Upper bounds on the value functions and regret

Lemma 1.

For any $(h, s, a) \in S \times A \times [H]$, policy π and risk parameter $\beta \neq 0$, we have

 $0 \le V_h^{\pi}(s) \le H$ and $0 \le Q_h^{\pi}(s, a) \le H$.

Consequently, for each $K \ge 1$, all policy sequences π^1, \ldots, π^K and any $\beta \ne 0$, we have

 $0 \leq \operatorname{Regret}(K) \leq KH.$

Proof.

Recall the assumption that the reward functions $\{r_h\}$ are bounded in [0, 1]. The lower bounds are immediate by definition. For the upper bound, we have $V_h^{\pi}(s) \leq \frac{1}{\beta} \log\{\mathbb{E}[\exp(\beta H)]\} = H$. Upper bounds for Q_h^{π} and the regret follow similarly.

Algorithm 1: RSVI

Algorithm 1 RSVI	
Input: number of episodes $K \in \mathbb{Z}_{>0}$, confidence level $\delta \in (0, 1]$, ar	nd risk parameter $\beta \neq 0$
1: $Q_h(s, a) \leftarrow H - h + 1$ and $N_h(s, a) \leftarrow 0$ for all $(h, s, a) \in [H] \times S$	$S imes \mathcal{A}$
2: $Q_{H+1}(s,a) \leftarrow 0$ for all $(s,a) \in S \times A$	
3: Initialize datasets $\{D_h\}$ as empty	
4: for episode $k = 1, \ldots, K$ do	
5: $V_{H+1}(s) \leftarrow 0$ for each $s \in \mathcal{S}$	
6: for step $h = H, \dots, 1$ do	▷ value estimation
7: Update w_h via Equation (8)	
8: for $(s,a) \in \mathcal{S} imes \mathcal{A}$ such that $N_h(s,a) \geq 1$ do	
9: $b_h(s,a) \leftarrow c_\gamma \left e^{\beta H} - 1 \right \sqrt{\frac{S \log(2SAT/\delta)}{N_h(s,a)}}$ for some univer	rsal constant $c_{\gamma} > 0$
10: $Q_h(s, a) \leftarrow \begin{cases} \frac{1}{\beta} \log \left[\min\{e^{\beta(H-h+1)}, w_h(s, a) + b_h(s, a) \right] \\ \frac{1}{\beta} \log \left[\max\{e^{\beta(H-h+1)}, w_h(s, a) - b_h(s, a) \right] \end{cases}$	$) \}], \text{if } \beta > 0; \\) \}], \text{if } \beta < 0$
11: $V_h(s) \leftarrow \max_{a' \in \mathcal{A}} Q_h^{\flat}(s, a')$	1
12: end for	
13: end for	
14: for step $h = 1, \dots, H$ do	▷ policy execution
15: Take action $a_h \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} Q_h(s_h, a)$ and observe $r_h(s_h)$	(a_h) and s_{h+1}
$16: N_h(s_h, a_h) \leftarrow N_h(s_h, a_h) + 1$	
17: Insert (s_h, a_h, s_{h+1}) into \mathcal{D}_h	
18: end for	
19: end for	

Mechanism of RSVI

- Algorithm 1 is inspired by LSVI-UCB. It follows OFU by applying the UCB by incorporating a bonus term to value estimates of state-action pairs.
- ▶ Including the value estimation step (Line 6–13) and the policy execution step (Line 14–18)
- \blacktriangleright In Line 7, the algorithm computes the intermediate value w_h by a least-squares update

$$w_h \leftarrow \operatorname*{argmin}_{w \in \mathbb{R}^{SA}} \sum_{\tau \in [k-1]} \left[e^{\beta \left[r_h(s_h^{\tau}, a_h^{\tau}) + V_{h+1}\left(s_{h+1}^{\tau}\right) \right]} - w^{\top} \phi\left(s_h^{\tau}, a_h^{\tau}\right) \right]^2, \tag{7}$$

where $\phi(\cdot, \cdot)$ denotes the canonical basis in \mathbb{R}^{SA} and $\{(s_h^{\tau}, a_{h'}^{\tau} s_{h+1}^{\tau})\}_{\tau \in [k-1]}$ are accessed from the dataset \mathcal{D}_h .

► Can be efficiently implemented by computing sample means of e^β[r_h(s,a)+V_{h+1}(s')] over visited state-action pairs.

Mechanism of RSVI

- ▶ In Line 10, the algorithm uses w_h to compute the estimate Q_h , by adding/subtracting bonus b_h and thresholding the sum/difference at $e^{\beta(H-h+1)}$, depending on the sign of β
- The logarithmic-exponential transformation in Line 10 conforms and adapts to the non-linearity in Bellman equations (3) and (4).
- ▶ The thresholding operator ensures that Q_h and V_h stays in the range [0, H h + 1].
- ▶ Subtracting bonus when $\beta < 0$ implements OFU in a risk-sensitive fashion.
- Belong to batch algorithms.

Algorithm 2: RSQ

Algorithm 2 RSQ

Input: number of episodes $K \in \mathbb{Z}_{>0}$, confidence level $\delta \in (0, 1]$, learning rates $\{\alpha_t\}$ and risk parameter $\beta \neq 0$ 1: $Q_h(s, a), V_h(s, a) \leftarrow H - h + 1$ and $N_h(s, a) \leftarrow 0$ for all $(h, s, a) \in [H] \times S \times A$ 2: $O_{H+1}(s, a), V_{H+1}(s, a) \leftarrow 0$ for all $(s, a) \in S \times A$ 3: for episode $k = 1, \ldots, K$ do Receive the initial state s1 4: 5: for step $h = 1, \ldots, H$ do Take action $a_h \leftarrow \operatorname{argmax}_{a' \in \mathcal{A}} Q_h(s_h, a')$, and observe $r_h(s_h, a_h)$ and s_{h+1} 6: 7. $t = N_h(s_h, a_h) \leftarrow N_h(s_h, a_h) + 1$ $b_t \leftarrow c |e^{\beta H} - 1| \sqrt{\frac{H \log(SAT/\delta)}{t}}$ for some sufficiently large universal constant c > 08: $w_h(s_h, a_h) \leftarrow (1 - \alpha_t) e^{\beta \cdot Q_h(s_h, a_h)} + \alpha_t e^{\beta [r_h(s_h, a_h) + V_{h+1}(s_{h+1})]}$ 9. $Q_h(s_h, a_h) \leftarrow \begin{cases} \frac{1}{\beta} \log \left[\min\{e^{\beta(H-h+1)}, w_h(s_h, a_h) + \alpha_l b_l \} \right], & \text{if } \beta > 0; \\ \frac{1}{\beta} \log \left[\max\{e^{\beta(H-h+1)}, w_h(s_h, a_h) - \alpha_l b_l \} \right], & \text{if } \beta < 0 \end{cases}$ 10: 11: $V_{l_{h}}(s_{h}) \leftarrow \max_{a' \in \mathcal{A}} Q_{h}(s_{h}, a')$ 12: end for 13: end for

Mechanism of RSQ

- Algorithm 1 requires storage of historical data $\{D_h\}$ and computation over them (Line 7).
- ▶ Q-learning update Q values in an online fashion as each state-action pair is encountered.
- ▶ Based on Q-learning with UCB in the work of [38] and use the same learning rates therein

$$\alpha_t := \frac{H+1}{H+t}.$$

Line 9 updates w_h in an online fashion, in contrast with the batch update of Algorithm 1.

Comparisons

- The bonuses in both algorithms depend on β through a common factor $|e^{\beta H} 1|$.
- ► A careful analysis on the bonuses and the value estimation steps reveals that the effective bonuses is proportional to e^{|β|H}-1 |β|
- The more risk-sensitive an agent is, the larger bonus it needs to compensate for the uncertainty
- Both algorithms have polynomial time and space complexities in S, A, K and H.
- Algorithm 2 is more efficient than Algorithms 1 in both time and space complexities, since it does not require storing historical data nor computing statistics.

Regret upper bounds for RSVI

Theorem 2.

For any $\delta \in (0,1]$, with probability at least $1 - \delta$, the regret of Algorithm 1 is bounded by

$$\operatorname{Regret}(K) \lesssim \lambda \left(|\beta| H^2 \right) \cdot \sqrt{H^3 S^2 A T \log^2 (2SAT/\delta)}$$

Corollary 3.

Under the setting of Theorem 1 and when $\beta \to 0$, with probability at least $1 - \delta$, the regret of Algorithm 1 is bounded by

$$\operatorname{Regret}(K) \lesssim \sqrt{H^3 S^2 A T \log^2(2SAT/\delta)}$$

Regret upper bounds for RSVI

- Theorem 2 adapts to both risk-seeking and risk-averse settings through a common factor of λ (|β|H²).
- Corollary 3 recovers the regret bound of [4, Theorem 2] under the standard RL setting and is nearly optimal.
- Corollary 3 also reveals that Theorem 2 interpolates between the risk-sensitive and risk-neutral settings.

Proof of Theorem 2: preliminaries

▶ Let s^k_h, a^k_h, w^k_h, Q^k_h and V^k_h and V^k_h denote the values of s_h, a_h, w_h, Q_h and V_h in episode k
▶ Let N^k_h and D^k_h denote the value of N_h and D_h at the end of episode k − 1.

Fact 4.

Consider
$$x, y, b \in \mathbb{R}$$
 such that $x \ge y$.
(a) if $y \ge g$ for some $g > 0$, then $\log(x) - \log(y) \le \frac{1}{g}(x - y)$
(b) Assume further that $y \ge 0$. If $b \ge 0$ and $x \le u$ for some $u > 0$, then $e^{bx} - e^{by} \le be^{bu}(x - y)$; if $b < 0$, then $e^{by} - e^{bx} \le (-b)(x - y)$

Define
$$\lambda_0 := \frac{e^{|\beta|H} - 1}{|\beta|}$$
 and $\lambda_2 := e^{|\beta| \left(H^2 + H\right)}$. Then we have $\lambda_0 \lambda_2 H \leq \frac{e^{3|\beta|H^2} - 1}{|\beta|}$.

- Define $d := SA, l := \log(2dT/\delta)$ for a given $\delta \in (0, 1]$.
- ▶ Define $\phi(s, a)$ as canonical basis of \mathbb{R}^{SA} and let Λ_h^k be a diagonal matrix in $\mathbb{R}^{d \times d}$ with each (s, a)-th diagonal entry equal to max $\{N_h^{k-1}(s, a), 1\}$.
- Fix a tuple $(s, a, k, h) \in \mathcal{S} \times \mathcal{A} \times [K] \times [H]$ such that $N_h^{k-1}(s, a) \ge 1$ and fix a policy π
- \blacktriangleright Set $w_h^\pi = e^{eta \cdot Q_h^\pi(\cdot, \cdot)}$,

$$\begin{split} Q_h^{\pi}(s,a) &= \frac{1}{\beta} \log \left(e^{\beta \cdot Q_h^{\pi}(s,a)} \right) \quad = \frac{1}{\beta} \log \left(\left\langle \phi(s,a), e^{\beta \cdot Q_h^{\pi}(\cdot,\cdot)} \right\rangle \right) = \frac{1}{\beta} \log \left(\left\langle \phi(s,a), w_h^{\pi} \right\rangle \right) \\ w_h^{\pi}(s,a) &= e^{\beta \cdot Q_h^{\pi}(s,a)} = \left\langle \phi(s,a), \left(\Lambda_h^k \right)^{-1} \sum_{\tau \in [k-1]} \phi_h^{\tau} \left[e^{\beta \cdot Q_h^{\pi}(s_h^{\tau},a_h^{\tau})} \right] \right\rangle \end{split}$$

- Define $d := SA, l := \log(2dT/\delta)$ for a given $\delta \in (0, 1]$.
- ▶ Define $\phi(s, a)$ as canonical basis of \mathbb{R}^{SA} and let Λ_h^k be a diagonal matrix in $\mathbb{R}^{d \times d}$ with each (s, a)-th diagonal entry equal to max $\{N_h^{k-1}(s, a), 1\}$.
- Fix a tuple $(s, a, k, h) \in \mathcal{S} \times \mathcal{A} \times [K] \times [H]$ such that $N_h^{k-1}(s, a) \ge 1$ and fix a policy π
- \blacktriangleright Set $w_h^\pi = e^{eta \cdot Q_h^\pi(\cdot, \cdot)}$,

$$\begin{split} Q_h^{\pi}(s,a) &= \frac{1}{\beta} \log \left(e^{\beta \cdot Q_h^{\pi}(s,a)} \right) \quad = \frac{1}{\beta} \log \left(\left\langle \phi(s,a), e^{\beta \cdot Q_h^{\pi}(\cdot,\cdot)} \right\rangle \right) = \frac{1}{\beta} \log \left(\left\langle \phi(s,a), w_h^{\pi} \right\rangle \right) \\ w_h^{\pi}(s,a) &= e^{\beta \cdot Q_h^{\pi}(s,a)} = \left\langle \phi(s,a), \left(\Lambda_h^k \right)^{-1} \sum_{\tau \in [k-1]} \phi_h^{\tau} \left[e^{\beta \cdot Q_h^{\pi}(s_h^{\tau},a_h^{\tau})} \right] \right\rangle \end{split}$$

$$\textbf{ Define } \begin{array}{l} q_1^+ := \left\{ \begin{array}{ll} \left\langle \phi(s,a), w_h^k \right\rangle + b_h^k(s,a), & \text{ if } \beta > 0 \\ \left\langle \phi(s,a), w_h^k \right\rangle - b_h^k(s,a), & \text{ if } \beta < 0, \end{array} \right. \\ q_1 := \left\{ \begin{array}{ll} \min \left\{ e^{\beta(H-h+1)}, q_1^+ \right\}, & \text{ if } \beta > 0 \\ \max \left\{ e^{\beta(H-h+1)}, q_1^+ \right\}, & \text{ if } \beta < 0 \end{array} \right. \end{array} \right. \end{array}$$

▶ By the definition of Λ_h^k and $\phi_{h'}^k$ observe that

$$w_h^k(s,a) = \left\langle \phi(s,a), w_h^k \right\rangle = \left\langle \phi(s,a), \left(\Lambda_h^k\right)^{-1} \sum_{\tau \in [k-1]} \phi_h^\tau \left[e^{\beta \left[r_h^T + V_{h+1}^k \left(s_{h+1}^\tau \right) \right]} \right] \right\rangle.$$

 $\blacktriangleright \text{ Define } G_0 := \left(Q_h^k - Q_h^\pi\right)(s, a) = \frac{1}{\beta} \log\left\{q_1\right\} - \frac{1}{\beta} \log\left\{\langle \phi(s, a), w_h^\pi \rangle\right\}$

 \blacktriangleright Need to derive upper and lower bounds for G_0 .

$$G_{0} = \frac{1}{\beta} \log \{q_{1}\} - \frac{1}{\beta} \log \left\{ \left\langle \phi(s, a), \left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in [k-1]} \phi_{h}^{\tau} \left[e^{\beta \cdot Q_{h}^{\pi}(s_{h}^{\tau}, a_{h}^{\tau})} \right] \right\rangle \right\}$$

$$= \frac{1}{\beta} \log \{q_{1}\} - \frac{1}{\beta} \log \left\{ \left\langle \phi(s, a), \left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in [k-1]} \phi_{h}^{\tau} \left[\mathbb{E}_{s' \sim P_{h}\left(\cdot | s_{h}^{\tau}, a_{h}^{\tau} \right)} e^{\beta \left[r_{h}^{\tau} + V_{h+1}^{\pi}(s') \right]} \right] \right\rangle \right\}$$

$$=: \frac{1}{\beta} \log \{q_{1}\} - \frac{1}{\beta} \log \{q_{3}\}$$
In order to control G_{0} , we define an intermediate quantity

$$q_2 := \left\langle \phi(s,a), \left(\Lambda_h^k\right)^{-1} \sum_{\tau \in [k-1]} \phi_h^{\tau} \left[\mathbb{E}_{s' \sim P_h}\left(\cdot | s_h^{\tau}, a_h^{\tau} \right) e^{\beta \left[r_h^{\tau} + V_{h+1}^k(s') \right]} \right] \right\rangle$$

with q_2 replaces the quantity V_{h+1}^{π} in q_3 by V_{h+1}^k Main results

Decompose the error

$$(Q_h^k - Q_h^\pi)(s, a) = G_0 = (\frac{1}{\beta} \log\{q_1\} - \frac{1}{\beta} \log\{q_2\}) + (\frac{1}{\beta} \log\{q_2\} - \frac{1}{\beta} \log\{q_3\})$$

$$= G_1 + G_2$$
(9)

 \triangleright G₀, G₁ and G₂ are all well-defined, according to the following result.

Lemma 6. We have $q_i \in [\min\{1, e^{\beta(H-h+1)}\}, \max\{1, e^{\beta(H-h+1)}\}]$ for $i \in [3]$

 \blacktriangleright Control G_1 and G_2

$$(Q_h^k - Q_h^\pi)(s, a) = G_0 = (\frac{1}{\beta} \log\{q_1\} - \frac{1}{\beta} \log\{q_2\}) + (\frac{1}{\beta} \log\{q_2\} - \frac{1}{\beta} \log\{q_3\})$$
(10)
= $G_1 + G_2$ (11)

 \blacktriangleright G_0,G_1 and G_2 are all well-defined, according to the following result.

Lemma 7. We have $q_i \in [\min\{1, e^{\beta(H-h+1)}\}, \max\{1, e^{\beta(H-h+1)}\}]$ for $i \in [3]$.

 \blacktriangleright Control G_1 and G_2

Lemma 8.

For all $(k, h, s, a) \in [K] \times [H] \times S \times A$ that satisifies $N_h^{k-1}(s, a) \ge 1$, there exist universal constants $c_1, c_{\gamma} > 0$ (where c_{γ} is used in Line 9 of Algorithm 1) such that

$$0 \le G_1 \le c_1 \cdot \frac{e^{|\beta|H} - 1}{|\beta|} \cdot d\sqrt{\iota} \sqrt{\phi(s, a)^\top \left(\Lambda_h^k\right)^{-1} \phi(s, a)}$$

with probability at least $1 - \delta/2$. Furthermore, if $V_{h+1}^k(s') \ge V_{h+1}^{\pi}(s')$ for all $s' \in S$, then we have

$$0 \leq G_{2} \leq e^{|\beta|H} \cdot \mathbb{E}_{s' \sim P_{h}(\cdot|s,a)} \left[V_{h+1}^{k}\left(s'\right) - V_{h+1}^{\pi}\left(s'\right) \right].$$

► Start with case
$$\beta > 0$$
. The case $\beta < 0$ follows the same idea.
 $|q_1^+ - q_2 - b_h^k(s, a)|$

$$= | \left\langle \phi(s, a), \left(\Lambda_h^k\right)^{-1} \sum_{\tau \in [k-1]} \phi_h^\tau \left[e^{\beta \left[r_h^\tau + V_{h+1}^k(s_{h+1}^\tau) \right]} - \mathbb{E}_{s' \sim P_h}(\cdot | s_h^\tau, a_h^\tau) e^{\beta \left[r_h^\tau + V_{h+1}^k(s') \right]} \right] \right\rangle |$$

$$= | \frac{1}{N_h^{k-1}(s, a)} \sum_{(s, a, s^+) \in \mathcal{D}_h^{k-1}} e^{\beta \left[r_h(s, a) + V_{h+1}^k(s^+) \right]} - \mathbb{E}_{s' \sim P_h}(\cdot | s, a) e^{\beta \left[r_h(s, a) + V_{h+1}^k(s') \right]} |$$

$$\leq c | e^{\beta H} - 1 | \sqrt{\frac{Sl}{N_h^{k-1}(s, a)}} = c | e^{\beta H} - 1 | \sqrt{S_l} \cdot \sqrt{\phi(s, a)^\top \left(\Lambda_h^k\right)^{-1} \phi(s, a)}$$

The first inequality holds by Lemma 16. Choose $c_{\gamma} = c$ in the definition of $b_h^k(s, a)$,

$$0 \le q_1^+ - q_2 \le 2c \cdot \left| e^{\beta H} - 1 \right| \sqrt{S_l} \cdot \sqrt{\phi(s,a)^\top \left(\Lambda_h^k\right)^{-1} \phi(s,a)}.$$

• Therefore, we have
$$q_1 \ge q_2$$
, and thus $G_1 \ge 0$.

• By Lemma 7 and Fact 4(a) (with g = 1, $x = q_1$, and $y = q_2$)

$$G_1 \leq \frac{1}{\beta} (q_1 - q_2) \leq \frac{1}{\beta} (q_1^+ - q_2).$$

► Control G_2 . $V_{h+1}^k(s') \ge V_{h+1}^{\pi}(s')$ for all $s' \in S$ implies that $q_2 \ge q_3$ and therefore $G_2 \ge 0$.

- By Fact 4(a) (with g = 1, x = q₂, and y = q₃) and the fact that q₂ ≥ q₃ ≥ 1 G₂ ≤ ¹/_β (q₂ - q₃)
 ≤ e^{βH} \$\langle \phi(s, a), (\Lambda_h^k)^{-1} \sum_{\tau \in [k-1]} \phi_h^\tau [\mathbb{E}_{s' \sim P_h}(.|s_h^\tau, a_h^\tau) [V_{h+1}^k(s') - V_{h+1}^\tau(s')]]\$\rangle\$ = e^{|β|H} \$\mathbb{E}_{s' \sim P_h}(.|s,a) [V_{h+1}^k(s') - V_{h+1}^\tau(s')]\$
 The second step holds by Fact 4(b) (with b = \beta, x = r_h^\tau + V_{h+1}^k(s), and
 - $y = r_h^{\tau} + V_{h+1}^{\pi}(s)$ and $H \ge r_h^{\tau} + V_{h+1}^k(s) \ge r_h^{\tau} + V_{h+1}^{\pi}(s) \ge 0.$
- ▶ Case $\beta < 0$ is similar to the previous one. The proof is hence completed.

▶ The following lemmas establishes the dominance of Q_h^k over Q_h^* and V_h^k over V_h^* .

Lemma 9.

On the event of Lemma 8, we have $Q_h^k(s,a) \ge Q_h^{\pi}(s,a)$ for all $(k,h,s,a) \in [K] \times [H] \times S \times A$.

Lemma 10.

For any $\delta \in (0,1]$, with probability at least $1 - \delta/2$, we have $V_h^k(s) \ge V_h^{\pi}(s)$ for all $(k,h,s) \in [K] \times [H] \times S$.

Define δ^k_h := V^k_h (s^k_h) − V^{π_k}_h (s^k_h) ζ^k_{h+1} := E<sub>s'~P_h(·|s^k_h, a^k_h) [V^k_{h+1} (s') − V^{π_k}_{h+1} (s')] − δ^k_{h+1}
 For any (k, h) ∈ [K] × [H], we have
</sub>

$$\begin{split} \delta_{h}^{k} &= \left(Q_{h}^{k} - Q_{h}^{\pi_{k}}\right)\left(s_{h}^{k}, a_{h}^{k}\right) \\ &\leq c_{1} \cdot \frac{e^{|\beta|H} - 1}{|\beta|} \cdot \sqrt{S_{l}} \sqrt{\phi\left(s_{h}^{k}, a_{h}^{k}\right)^{\top}\left(\Lambda_{h}^{k}\right)^{-1}\phi\left(s_{h}^{k}, a_{h}^{k}\right)} \\ &+ e^{|\beta|H} \cdot \mathbb{E}_{s' \sim P_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)} \left[V_{h+1}^{k}\left(s'\right) - V_{h+1}^{\pi_{k}}\left(s'\right)\right] \\ &= c_{1} \cdot \frac{e^{|\beta|H} - 1}{|\beta|} \cdot \sqrt{S_{l}} \sqrt{\phi\left(s_{h}^{k}, a_{h}^{k}\right)^{\top}\left(\Lambda_{h}^{k}\right)^{-1}\phi\left(s_{h}^{k}, a_{h}^{k}\right)} \\ &+ e^{|\beta|H} \left(\delta_{h+1}^{k} + \zeta_{h+1}^{k}\right) \end{split}$$

▶ Noting that $V_{H+1}^k(s) = V_{H+1}^{\pi_k}(s) = 0$ and $\delta_{h+1}^k + \zeta_{h+1}^k \ge 0$, expand the recursion

$$\delta_{1}^{k} \leq \sum_{h \in [H]} e^{(|\beta|H)h} \zeta_{h+1}^{k} + c_{1} \cdot \frac{e^{|\beta|H} - 1}{|\beta|} \cdot \sum_{h \in [H]} e^{(|\beta|H)(h-1)} \sqrt{S\iota} \sqrt{\phi \left(s_{h'}^{k} a_{h}^{k}\right)^{\top} \left(\Lambda_{h}^{k}\right)^{-1} \phi \left(s_{h'}^{k} a_{h}^{k}\right)^{-1}} \phi \left(s_{h'}^{k} a_{h}^{k}\right)^{-1} \phi \left(s_{h'}^{k} a_{h}^{k} a_{h}^{k}\right)^{-1} \phi \left(s_{h'}^{k} a_{h}^{k}\right)^{-1} \phi \left(s_{h'}^{k} a_{h}^{k} a_{h}^{k}\right)^{-1} \phi \left(s_{h'}^{k} a_{h}^{k}\right)^{-1} \phi \left(s_{h}^{k} a_{h}^{k} a_{h}^{k}\right)^{-1} \phi \left(s_{h'}^{k} a_{h}^{k} a_{h}^{k}\right)^{-1} \phi \left(s_{h'}^{k} a_{h}^{k} a_{h}^{k}\right)^{-1} \phi \left(s_{h}^{k} a_{h}^{k} a_{h}^{k} a_{h}^{k}\right)^{-1} \phi \left(s_{h}^{k} a_$$

▶ Apply Lemma 10 with π set to π^*

$$\begin{aligned} \operatorname{Regret}(K) &= \sum_{k \in [K]} \left[\left(V_1^* - V_1^{\pi_k} \right) \left(s_1^k \right) \right] \leq \sum_{k \in [K]} \delta_1^k \\ &\leq e^{|\beta|H^2} \sum_{k \in [K]h \in [H]} \zeta_{h+1}^k \\ &+ c_1 \cdot \frac{e^{|\beta|H} - 1}{|\beta|} \cdot e^{|\beta|H^2} \cdot \sqrt{S_l} \sum_{k \in [K]h \in [H]} \sqrt{\phi \left(s_h^k, a_h^k \right)^\top \left(\Lambda_h^k \right)^{-1} \phi \left(s_h^k, a_h^k \right)} \end{aligned}$$

- Proceed to control the two terms.
- Since V_H^K is independent of the new observation, $\{\zeta_{h+1}^k\}$ is a martingale difference sequence satisfying $|\zeta_h^k| \leq 2H$ for all $(k,h) \in [K] \times [H]$.

• By the Azuma-Hoeffding inequality, we have for any t > 0,

$$\mathbb{P}\left(\sum_{k\in[K]}\sum_{h\in[H]}\zeta_{h+1}^k\geq t\right)\leq \exp\left(-\frac{t^2}{2T\cdot H^2}\right).$$

• With probability $1 - \delta/2$, there holds

$$\sum_{k \in [K]} \sum_{h \in [H]} \zeta_{h+1}^k \le \sqrt{2TH^2 \cdot \log(2/\delta)} \le 2H\sqrt{T\iota}.$$

For the second term, apply Lemma 18 and the Cauchy-Schwartz inequality to obtain ∑_{k∈[K]h∈[H]} √φ(s^k_h, a^k_h)[⊤](Λ^k_h)⁻¹φ(s^k_h, a^k_h) ≤ ∑_{h∈[H]} √K√∑_{k∈[H]} φ(s^k_h, a^k_h)[⊤](Λ^k_h)⁻¹φ(s^k_h, a^k_h) ≤ H√2dK_l
Recall Fact 5 and the fact e^{|β|H}-1/|β| ≥ H

$$\operatorname{Regret}(K) \leq e^{|\beta|H^2} \cdot 2H\sqrt{T\iota} + c_1 \cdot \frac{e^{|\beta|H} - 1}{|\beta|} \cdot e^{|\beta|H^2} \cdot H\sqrt{2dSK\iota^2}$$
$$\leq (c_1 + 2) \cdot \frac{e^{|\beta|H} - 1}{|\beta|} \cdot e^{|\beta|H^2} \cdot \sqrt{2dHST\iota^2}$$
$$\lesssim \lambda \left(|\beta|H^2\right) \cdot \sqrt{H^3S^2AT\log^2(2SAT/\delta)}$$

Regret upper bounds for RSQ

Theorem 11.

For any $\delta \in (0,1]$, with probability at least $1 - \delta$, and when T is sufficiently large, the regret of Algorithm 2 is bounded by

 $\operatorname{Regret}(K) \lesssim \lambda \left(|\beta| H^2 \right) \cdot \sqrt{H^4 SAT \log(SAT/\delta)}$

Corollary 12.

Under the setting of Theorem 11 and when $\beta \to 0$, with probability at least $1 - \delta$, the regret of Algorithm 2 is bounded by

 $\operatorname{Regret}(K) \lesssim \sqrt{H^4 SAT \log(SAT/\delta)}$

Regret lower bound

Theorem 13.

For sufficiently large K and H, the regret of any algorithm obeys

$$\mathbb{E}[\operatorname{Regret}(K)] \ge \frac{e^{|\beta|H/2} - 1}{|\beta|} \sqrt{T \log T}.$$

- Exponential dependence on the $|\beta|$ and H and a sub-linear dependence on T through the $\tilde{O}(\sqrt{T})$ factor is essentially indispensable.
- Both Theorems are nearly optimal in their dependence on β , H and T.
- Contrast with Lemma 1, an algorithm must incur a regret that is exponential in H in order to achieve a sublinear regret in T.

- Construct a bandit instance as a special case of episodic fixed-horizon MDP problem.
- Establish lower bound on the instance in terms of the logarithmic-exponential objective.
- Start with two important lemmas.
- ▶ For each $\rho \in [0,1]$, let $Ber(\rho)$ denote the Bernoulli distribution with parameter ρ

Lemma 14.

Let $p, p' \in (0, 1)$ be such that p > p'. We have $D_{\mathrm{KL}}(\mathrm{Ber}(p') || \mathrm{Ber}(p)) \le \frac{(p-p')^2}{p(1-p)}$.

Lemma 15.

Let $K_0 := K_0(K, \pi)$ be the number of times that the sub-optimal arm is pulled in the K-round two-arm bandit problem with policy π . When K is sufficiently large, we have

$$\mathbb{E}K_0 \gtrsim \frac{\log K}{D}.$$

• Case $\beta > 0$.

 \blacktriangleright Two-arm bandit problem with K rounds, the reward for pulling arm i

$$X_i = \begin{cases} H & \text{w.p. } p_i \\ 0 & \text{w.p. } 1 - p_i \end{cases}$$

•
$$p_1 > p_2$$
 are to be specified later. Let $\Delta := p_1 - p_2 > 0$.

• Choose
$$\Delta = C \sqrt{\frac{\log K \cdot p_1(1-p_1)}{K}}$$
 for an universal constant $C > 0$.

• Set
$$p_2 = e^{-\beta H}$$
. Since $p_1 (1 - p_1) \leq \frac{1}{4}$, we have $\Delta \lesssim \sqrt{\frac{\log K}{K}}$

▶ By choosing K and H large enough, we can ensure $\Delta \leq e^{-\beta H}$ and $p_1 = p_2 + \Delta \leq \frac{3}{4}$.

Define X^k_i to be the outcome of arm X_i (if pulled) in round k, and Y^k to be the outcome of the arm actually pulled in round k.

 \blacktriangleright Conditional on K_0 , we have

$$\begin{aligned} \operatorname{Regret}(K) &= \frac{1}{\beta} \log \left[\mathbb{E} \exp \left(\beta \sum_{k \in [K]} X_1^k \right) \right] - \frac{1}{\beta} \log \left[\mathbb{E} \exp \left(\beta \sum_{k \in [K]} Y^k \right) \right] \\ &\stackrel{(i)}{=} \frac{1}{\beta} \log \left[\prod_{k=1}^K \mathbb{E} \exp \left(\beta X_1^k \right) \right] - \frac{1}{\beta} \log \left[\prod_{k=1}^K \mathbb{E} \exp \left(\beta Y^k \right) \right] \\ &\geq \frac{1}{\beta} \log \left[\prod_{k=1}^K \mathbb{E} \exp \left(\beta X_1^k \right) \right] - \frac{1}{\beta} \log \left[\prod_{k=1}^K \mathbb{E} \exp \left(\beta X_2^k \right) \right] \\ &= \frac{K}{\beta} \log \left[\mathbb{E} \exp \left(\beta X_1 \right) \right] - \frac{K}{\beta} \log \left[\mathbb{E} \exp \left(\beta X_2 \right) \right] \\ &\geq \frac{K_0}{\beta} \log \left[\mathbb{E} \exp \left(\beta X_1 \right) \right] - \frac{K_0}{\beta} \log \left[\mathbb{E} \exp \left(\beta X_2 \right) \right] \end{aligned}$$

Taking expectation over K_0 on both sides

$$\begin{split} \mathbb{E}[\operatorname{Regret}(K)] &\geq \frac{\mathbb{E}K_0}{\beta} \left(\log \mathbb{E}e^{\beta X_1} - \log \mathbb{E}e^{\beta X_2} \right) \\ &= \frac{\mathbb{E}K_0}{\beta} \log \left(\frac{p_1 e^{\beta H} + (1 - p_1)}{p_2 e^{\beta H} + (1 - p_2)} \right) \\ &= \frac{\mathbb{E}K_0}{\beta} \log \left(1 + \frac{\Delta \left(e^{\beta H} - 1 \right)}{p_2 e^{\beta H} + (1 - p_2)} \right) \\ &\geq \frac{\mathbb{E}K_0}{\beta} \log \left(1 + \frac{\Delta \left(e^{\beta H} - 1 \right)}{1 + 1} \right) \\ &\geq \frac{\mathbb{E}K_0}{\beta} \cdot \frac{1}{4} \Delta \left(e^{\beta H} - 1 \right) \\ &\gtrsim \frac{1}{\beta} \cdot \frac{\log K \cdot p_1 \left(1 - p_1 \right)}{\Delta} \cdot \left(e^{\beta H} - 1 \right) \\ &\gtrsim \frac{1}{\beta} \cdot \sqrt{K \log K \cdot p_1 \left(1 - p_1 \right)} \cdot \left(e^{\beta H} - 1 \right) \\ &\gtrsim \frac{1}{\beta} \cdot \sqrt{K \log K} \cdot \left(e^{\beta H/2} - 1 \right) \\ &\gtrsim \frac{1}{\beta} \cdot \sqrt{T \log T} \cdot \left(e^{\beta H/2} - 1 \right) \end{split}$$

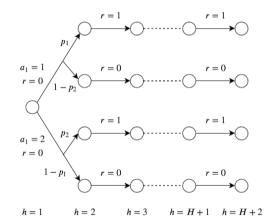


Figure: From bandit model to MDP

Supporting Lemmas of Theorem 2

Lemma 16.

Define

$$\overline{\mathcal{V}}_{h+1} := \left\{ \bar{V}_{h+1} : \mathcal{S} \to \mathbb{R} \mid \forall s \in \mathcal{S}, \bar{V}_{h+1}(s) \in \left[\min\left\{ e^{\beta(H-h)}, 1 \right\}, \max\left\{ e^{\beta(H-h)}, 1 \right\} \right] \right\}$$

There exists a universal constant c > 0 such that with probability $1 - \delta$, we have

$$\left| e^{\beta \left[r_h(s_h^k, a_h^k) + V(s_{h+1}^k) \right]} - \mathbb{E}_{s' \sim P_h(\cdot | s_h^k, a_h^k)} e^{\beta \left[r_h(s_h^k, a_h^k) + V(s') \right]} \right| \le c \left| e^{\beta H} - 1 \right| \sqrt{\frac{S_l}{N_h^k(s, a)}}$$

for all $(k, h, s, a) \in [K] \times [H] \times S \times A$ and all $V \in \overline{\mathcal{V}}_{h+1}$

Appendices

Supporting Lemmas of Theorem 2

Lemma 17.

Let $\{\phi_t\}_{t\geq 0}$ be a bounded sequence in \mathbb{R}^d satisfying $\sup_{t>0} \|\phi_t\| \leq 1$. Let $\Lambda_0 \in \mathbb{R}^{d\times d}$ be a PD matrix with $\lambda_{\min}(\Lambda_0) \geq 1$. For any $t \geq 0$, we define $\Lambda_t := \Lambda_0 + \sum_{i \in [t]} \phi_i \phi_i^{\top}$. Then, we have

$$\log\left[\frac{\det\left(\Lambda_{t}\right)}{\det\left(\Lambda_{0}\right)}\right] \leq \sum_{i \in [t]} \phi_{i}^{\top} \Lambda_{i-1}^{-1} \phi_{i} \leq 2 \log\left[\frac{\det\left(\Lambda_{t}\right)}{\det\left(\Lambda_{0}\right)}\right]$$

Lemma 18.

Let $\iota = \log(2dT/\delta)$. For any $h \in [H]$, we have

$$\sum_{k \in [K]} \left(\phi_h^k\right)^\top \left(\Lambda_h^k\right)^{-1} \phi_h^k \le 2d\iota$$

Appendices