Risk-Sensitive Reinforcement Learning:
 Near-Optimal Risk-Sample Tradeoff in Regret

Presenter: Hao Liang

The Chinese University of Hong Kong, Shenzhen, China

July 2, 2020

Mainly based on:
Fei, Yingjie, et al. "Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret." arXiv preprint arXiv:2006.13827 (2020).

Background

- Risk-sensitive RL concerns learning policies that take into account risks.
- Effective management of risks in RL is critical to many real-world applications
- Autonomous driving
- Real-time strategy games
- Financial investment
- Neuroscience: model human behaviors in decision making

Objective

- Maximize a Exponential utility function

$$
\begin{equation*}
V=\frac{1}{\beta} \log \left\{\mathbb{E} e^{\beta R}\right\} \tag{1}
\end{equation*}
$$

where R is the return, and $\beta \neq 0$ controls risk preference of the agent.

- (1) admits the Taylor expansion $V=\mathbb{E}[R]+\frac{\beta}{2} \operatorname{Var}(R)+O\left(\beta^{2}\right)$
$-\beta>0$: risk-seeking (favoring high uncertainty in R)
$-\beta<0$: risk-averse (favoring low uncertainty in R)
- $\beta \rightarrow 0: V=\mathbb{E}[R]$, risk-neutral
- (1) covers the entire spectrum of risk sensitivity by varying β

Challenges

- Non-linearity of the objective function
- Induces a non-linear Bellman equation
- Designing a risk-aware exploration mechanism
- How to efficiently explores while adapting to (1) with different β

Contributions

- Propose two provably efficient model-free algorithms that implement risk-sensitive OFU
- Risk-Sensitive Value Iteration (RSVI): $\tilde{O}\left(\lambda\left(|\beta| H^{2}\right) \cdot \sqrt{H^{3} S^{2} A T}\right)$ regret
- Risk-Sensitive Q-learning (RSQ): $\tilde{O}\left(\lambda\left(|\beta| H^{2}\right) \cdot \sqrt{H^{3} S^{2} A T}\right)$ regret
- $\lambda(u):=\left(e^{3 u}-1\right) / u$
- Establish a regret lower bound showing that the exponential dependence on β and H is unavoidable for any algorithm with an $\tilde{O}(\sqrt{T})$ regret

Problem setup

- Episodic $\operatorname{MDPs} \operatorname{MDP}(\mathcal{S}, \mathcal{A}, H, \mathcal{P}, \mathcal{R})$
- \mathcal{S} and \mathcal{A} are finite discrete spaces, and let $S=|\mathcal{S}|$ and $A=|\mathcal{A}|$
- $\mathcal{P}=\left\{P_{h}\right\}_{h \in[H]}$ and $\mathcal{R}=\left\{r_{h}\right\}_{h \in[H]}$ are state transition kernels and reward functions
- Agent does not have access to \mathcal{P} and $r_{h}: \mathcal{S} \times \mathcal{A} \rightarrow[0,1]$ is a deterministic function
- An initial state s_{1} is chosen arbitrarily by the environment
- A policy $\pi=\left\{\pi_{h}\right\}_{h \in[H]}$ of an agent is a sequence of functions $\pi_{h}: \mathcal{S} \rightarrow \mathcal{A}$
- For each $h \in[H]$, we define the value function $V_{h}^{\pi}: \mathcal{S} \rightarrow \mathbb{R}$ of a policy π

$$
\begin{equation*}
V_{h}^{\pi}(s):=\frac{1}{\beta} \log \left\{\mathbb{E}\left[\exp \left(\beta \sum_{h=1}^{H} r_{h}\left(s_{h}, \pi_{h}\left(s_{h}\right)\right)\right) \mid s_{h}=s\right]\right\} \tag{2}
\end{equation*}
$$

Bellman equations and regret

- Define the action-value function $Q_{h}^{\pi}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$

$$
Q_{h}^{\pi}(s, a):=\frac{1}{\beta} \log \left\{\exp \left(\beta \cdot r_{h}(s, a)\right) \mathbb{E}\left[\exp \left(\beta \sum_{h^{\prime}=h+1}^{H} r_{h^{\prime}}\left(s_{h^{\prime}}, a_{h^{\prime}}\right)\right) \mid s_{h}=s, a_{h}=a\right]\right\}
$$

- The Bellman equation associated with policy π is given by

$$
\begin{align*}
Q_{h}^{\pi}(s, a) & =r_{h}(s, a)+\frac{1}{\beta} \log \left\{\mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)}\left[\exp \left(\beta \cdot V_{h+1}^{\pi}\left(s^{\prime}\right)\right)\right]\right\} \tag{3}\\
V_{h}^{\pi}(s) & =Q_{h}^{\pi}\left(s, \pi_{h}(s)\right), \quad V_{H+1}^{\pi}(s)=0 \tag{4}
\end{align*}
$$

- Under some mild regularity conditions, there always exists an optimal policy π^{*} which gives the optimal value $V_{h}^{*}(s)=\sup _{\pi} V_{h}^{\pi}(s)$ for all $(h, s) \in[H] \times \mathcal{S}$

Bellman equations and regret

- The Bellman optimality equation is given by

$$
\begin{align*}
Q_{h}^{*}(s, a) & =r_{h}(s, a)+\frac{1}{\beta} \log \left\{\mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)}\left[\exp \left(\beta \cdot V_{h+1}^{*}\left(s^{\prime}\right)\right)\right]\right\} \tag{5}\\
V_{h}^{*}(s) & =\max _{a \in \mathcal{A}} Q_{h}^{*}(s, a), \quad V_{H+1}^{*}(s)=0 \tag{6}
\end{align*}
$$

- Both Bellman equations are non-linear due to non-linearity of the exponential utility
- s_{1}^{k} the initial state, π^{k} the policy chosen at the beginning of episode k.
- The total regret after K episodes is

$$
\operatorname{Regret}(K):=\sum_{k \in[K]}\left[V_{1}^{*}\left(s_{1}^{k}\right)-V_{1}^{\pi^{k}}\left(s_{1}^{k}\right)\right]
$$

Upper bounds on the value functions and regret

Lemma 1.

For any $(h, s, a) \in \mathcal{S} \times \mathcal{A} \times[H]$, policy π and risk parameter $\beta \neq 0$, we have

$$
0 \leq V_{h}^{\pi}(s) \leq H \quad \text { and } \quad 0 \leq Q_{h}^{\pi}(s, a) \leq H
$$

Consequently, for each $K \geq 1$, all policy sequences π^{1}, \ldots, π^{K} and any $\beta \neq 0$, we have

$$
0 \leq \operatorname{Regret}(K) \leq K H
$$

Proof.
Recall the assumption that the reward functions $\left\{r_{h}\right\}$ are bounded in $[0,1]$. The lower bounds are immediate by definition. For the upper bound, we have $V_{h}^{\pi}(s) \leq \frac{1}{\beta} \log \{\mathbb{E}[\exp (\beta H)]\}=H$. Upper bounds for Q_{h}^{π} and the regret follow similarly.

Algorithm 1: RSVI

Algorithm 1 RSVI		
Input: number of episodes $K \in \mathbb{Z}_{>0}$, confidence level $\delta \in(0,1]$, and risk parameter $\beta \neq 0$		
1: $Q_{h}(s, a) \leftarrow H-h+1$ and $N_{h}(s, a) \leftarrow 0$ for all $(h, s, a) \in[H] \times \mathcal{S} \times \mathcal{A}$		
2: $Q_{H+1}(s, a) \leftarrow 0$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$		
3: Initialize datasets $\left\{\mathcal{D}_{h}\right\}$ as empty		
4: for episode $k=1, \ldots, K$ do		
5: $\quad V_{H+1}(s) \leftarrow 0$ for each $s \in \mathcal{S}$		
6 :	for step $h=H, \ldots, 1$ do	- value estimation
7: Update w_{h} via Equation (8)		
8: \quad for $(s, a) \in \mathcal{S} \times \mathcal{A}$ such that $N_{h}(s, a) \geq$		
9: $\quad b_{h}(s, a) \leftarrow c_{\gamma}\left\|e^{\beta H}-1\right\| \sqrt{\frac{5 \log (2 S A T / \delta)}{N_{h}(s, a)}}$ for some universal constant $c_{\gamma}>0$		
10:$Q_{h}(s, a) \leftarrow\left\{\begin{array}{l} \frac{1}{\beta} \log [\min \\ \frac{1}{\beta} \log [\max \end{array}\right.$		
11: $\quad V_{h}(s) \leftarrow \max _{a^{\prime} \in \mathcal{A}} Q_{h}\left(s, a^{\prime}\right.$		
12. end for		
13: end for		
14: for step $h=1, \ldots, H$ do \quad - policy execution		
15: \quad Take action $a_{h} \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} Q_{h}\left(s_{h}, a\right)$ and observe $r_{h}\left(s_{h}, a_{h}\right)$ and s_{h+1}		
16	$N_{h}\left(s_{h}, a_{h}\right) \leftarrow N_{h}\left(s_{h}, a_{h}\right)+1$	
17:	Insert (s_{h}, a_{h}, s_{h+1}) into \mathcal{D}_{h}	
	end for	

Mechanism of RSVI

- Algorithm 1 is inspired by LSVI-UCB. It follows OFU by applying the UCB by incorporating a bonus term to value estimates of state-action pairs.
- Including the value estimation step (Line 6-13) and the policy execution step (Line 14-18)
- In Line 7, the algorithm computes the intermediate value w_{h} by a least-squares update

$$
\begin{equation*}
w_{h} \leftarrow \underset{w \in \mathbb{R}^{S A}}{\operatorname{argmin}} \sum_{\tau \in[k-1]}\left[e^{\beta\left[r_{h}\left(s_{h}^{\tau}, a_{h}^{\tau}\right)+V_{h+1}\left(s_{h+1}^{\tau}\right)\right]}-w^{\top} \phi\left(s_{h}^{\tau}, a_{h}^{\tau}\right)\right]^{2} \tag{7}
\end{equation*}
$$

where $\phi(\cdot, \cdot)$ denotes the canonical basis in $\mathbb{R}^{S A}$ and $\left\{\left(s_{h}^{\tau}, a_{h}^{\tau} s_{h+1}^{\tau}\right)\right\}_{\tau \in[k-1]}$ are accessed from the dataset \mathcal{D}_{h}.

- Can be efficiently implemented by computing sample means of $e^{\beta\left[r_{h}(s, a)+V_{h+1}\left(s^{\prime}\right)\right]}$ over visited state-action pairs.

Mechanism of RSVI

- In Line 10, the algorithm uses w_{h} to compute the estimate Q_{h}, by adding/subtracting bonus b_{h} and thresholding the sum/difference at $e^{\beta(H-h+1)}$, depending on the sign of β
- The logarithmic-exponential transformation in Line 10 conforms and adapts to the non-linearity in Bellman equations (3) and (4).
- The thresholding operator ensures that Q_{h} and V_{h} stays in the range $[0, H-h+1]$.
- Subtracting bonus when $\beta<0$ implements OFU in a risk-sensitive fashion.
- Belong to batch algorithms.

Algorithm 2: RSQ

```
Algorithm 2 RSQ
Input: number of episodes \(K \in \mathbb{Z}_{>0}\), confidence level \(\delta \in(0,1]\), learning rates \(\left\{\alpha_{t}\right\}\) and risk
    parameter \(\beta \neq 0\)
    1: \(Q_{h}(s, a), V_{h}(s, a) \leftarrow H-h+1\) and \(N_{h}(s, a) \leftarrow 0\) for all \((h, s, a) \in[H] \times \mathcal{S} \times \mathcal{A}\)
    2: \(Q_{H+1}(s, a), V_{H+1}(s, a) \leftarrow 0\) for all \((s, a) \in \mathcal{S} \times \mathcal{A}\)
    3: for episode \(k=1, \ldots, K\) do
4: \(\quad\) Receive the initial state \(s_{1}\)
5: \(\quad\) for step \(h=1, \ldots, H\) do
6: \(\quad\) Take action \(a_{h} \leftarrow \operatorname{argmax}_{a^{\prime} \in \mathcal{A}} Q_{h}\left(s_{h}, a^{\prime}\right)\), and observe \(r_{h}\left(s_{h}, a_{h}\right)\) and \(s_{h+1}\)
7: \(\quad t=N_{h}\left(s_{h}, a_{h}\right) \leftarrow N_{h}\left(s_{h}, a_{h}\right)+1\)
8: \(\quad b_{t} \leftarrow c\left|e^{\beta H}-1\right| \sqrt{\frac{H \log (S A T / \delta)}{t}}\) for some sufficiently large universal constant \(c>0\)
9: \(\quad w_{h}\left(s_{h}, a_{h}\right) \leftarrow\left(1-\alpha_{t}\right) e^{\beta \cdot Q_{h}\left(s_{h}, a_{h}\right)}+\alpha_{t} e^{\beta\left[r_{h}\left(s_{h}, a_{h}\right)+V_{h+1}\left(s_{h+1}\right)\right]}\)
10: \(\quad Q_{h}\left(s_{h}, a_{h}\right) \leftarrow \begin{cases}\frac{1}{\beta} \log \left[\min \left\{e^{\beta(H-h+1)}, w_{h}\left(s_{h}, a_{h}\right)+\alpha_{t} b_{t}\right\}\right], & \text { if } \beta>0 ; \\ \frac{1}{\beta} \log \left[\max \left\{e^{\beta(H-h+1)}, w_{h}\left(s_{h}, a_{h}\right)-\alpha_{t} b_{t}\right\}\right], & \text { if } \beta<0\end{cases}\)
        \(V_{h}\left(s_{h}\right) \leftarrow \max _{a^{\prime} \in \mathcal{A}} Q_{h}\left(s_{h}, a^{\prime}\right)\)
12: end for
    3: end for
```


Mechanism of RSQ

- Algorithm 1 requires storage of historical data $\left\{\mathcal{D}_{h}\right\}$ and computation over them (Line 7).
- Q-learning update Q values in an online fashion as each state-action pair is encountered.
- Based on Q-learning with UCB in the work of [38] and use the same learning rates therein

$$
\alpha_{t}:=\frac{H+1}{H+t} .
$$

- Line 9 updates w_{h} in an online fashion, in contrast with the batch update of Algorithm 1.

Comparisons

- The bonuses in both algorithms depend on β through a common factor $\left|e^{\beta H}-1\right|$.
- A careful analysis on the bonuses and the value estimation steps reveals that the effective bonuses is proportional to $\frac{e^{|\beta| H}-1}{|\beta|}$
- The more risk-sensitive an agent is, the larger bonus it needs to compensate for the uncertainty
- Both algorithms have polynomial time and space complexities in S, A, K and H.
- Algorithm 2 is more efficient than Algorithms 1 in both time and space complexities, since it does not require storing historical data nor computing statistics.

Regret upper bounds for RSVI

Theorem 2.

For any $\delta \in(0,1]$, with probability at least $1-\delta$, the regret of Algorithm 1 is bounded by

$$
\operatorname{Regret}(K) \lesssim \lambda\left(|\beta| H^{2}\right) \cdot \sqrt{H^{3} S^{2} A T \log ^{2}(2 S A T / \delta)}
$$

Corollary 3.

Under the setting of Theorem 1 and when $\beta \rightarrow 0$, with probability at least $1-\delta$, the regret of Algorithm 1 is bounded by

$$
\operatorname{Regret}(K) \lesssim \sqrt{H^{3} S^{2} A T \log ^{2}(2 S A T / \delta)}
$$

Regret upper bounds for RSVI

- Theorem 2 adapts to both risk-seeking and risk-averse settings through a common factor of $\lambda\left(|\beta| H^{2}\right)$.
- Corollary 3 recovers the regret bound of [4, Theorem 2] under the standard RL setting and is nearly optimal.
- Corollary 3 also reveals that Theorem 2 interpolates between the risk-sensitive and risk-neutral settings.

Proof of Theorem 2: preliminaries

- Let $s_{h}^{k}, a_{h}^{k}, w_{h}^{k}, Q_{h}^{k}$ and V_{h}^{k} and V_{h}^{k} denote the values of $s_{h}, a_{h}, w_{h}, Q_{h}$ and V_{h} in episode k
- Let N_{h}^{k} and D_{h}^{k} denote the value of N_{h} and D_{h} at the end of episode $k-1$.

Fact 4.

Consider $x, y, b \in \mathbb{R}$ such that $x \geq y$.
(a) if $y \geq g$ for some $g>0$, then $\log (x)-\log (y) \leq \frac{1}{g}(x-y)$
(b) Assume further that $y \geq 0$. If $b \geq 0$ and $x \leq u$ for some $u>0$, then
$e^{b x}-e^{b y} \leq b e^{b u}(x-y)$; if $b<0$, then $e^{b y}-e^{b x} \leq(-b)(x-y)$

Fact 5.

Define $\lambda_{0}:=\frac{e^{|\beta| H}-1}{|\beta|}$ and $\lambda_{2}:=e^{|\beta|\left(H^{2}+H\right)}$. Then we have $\lambda_{0} \lambda_{2} H \leq \frac{e^{3|\beta| H^{2}}-1}{|\beta|}$.

Proof warmup

- Define $d:=S A, l:=\log (2 d T / \delta)$ for a given $\delta \in(0,1]$.
- Define $\phi(s, a)$ as canonical basis of $\mathbb{R}^{S A}$ and let Λ_{h}^{k} be a diagonal matrix in $\mathbb{R}^{d \times d}$ with each (s, a)-th diagonal entry equal to $\max \left\{N_{h}^{k-1}(s, a), 1\right\}$.
- Fix a tuple $(s, a, k, h) \in \mathcal{S} \times \mathcal{A} \times[K] \times[H]$ such that $N_{h}^{k-1}(s, a) \geq 1$ and fix a policy π
- Set $w_{h}^{\pi}=e^{\beta \cdot Q_{h}^{\pi}(\cdot, \cdot)}$,

$$
\begin{aligned}
Q_{h}^{\pi}(s, a)=\frac{1}{\beta} \log \left(e^{\beta \cdot Q_{h}^{\pi}(s, a)}\right) & =\frac{1}{\beta} \log \left(\left\langle\phi(s, a), e^{\beta \cdot Q_{h}^{\pi}(\cdot, \cdot)}\right\rangle\right)=\frac{1}{\beta} \log \left(\left\langle\phi(s, a), w_{h}^{\pi}\right\rangle\right) \\
w_{h}^{\pi}(s, a)=e^{\beta \cdot Q_{h}^{\pi}(s, a)} & =\left\langle\phi(s, a),\left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in[k-1]} \phi_{h}^{\tau}\left[e^{\beta \cdot Q_{h}^{\pi}\left(s_{h}^{\tau}, a_{h}^{\tau}\right)}\right]\right\rangle
\end{aligned}
$$

Proof warmup

- Define $d:=S A, l:=\log (2 d T / \delta)$ for a given $\delta \in(0,1]$.
- Define $\phi(s, a)$ as canonical basis of $\mathbb{R}^{S A}$ and let Λ_{h}^{k} be a diagonal matrix in $\mathbb{R}^{d \times d}$ with each (s, a)-th diagonal entry equal to $\max \left\{N_{h}^{k-1}(s, a), 1\right\}$.
- Fix a tuple $(s, a, k, h) \in \mathcal{S} \times \mathcal{A} \times[K] \times[H]$ such that $N_{h}^{k-1}(s, a) \geq 1$ and fix a policy π
- Set $w_{h}^{\pi}=e^{\beta \cdot Q_{h}^{\pi}(\cdot, \cdot)}$,

$$
\begin{gathered}
Q_{h}^{\pi}(s, a)=\frac{1}{\beta} \log \left(e^{\beta \cdot Q_{h}^{\pi}(s, a)}\right)=\frac{1}{\beta} \log \left(\left\langle\phi(s, a), e^{\beta \cdot Q_{h}^{\pi}(\cdot, \cdot)}\right\rangle\right)=\frac{1}{\beta} \log \left(\left\langle\phi(s, a), w_{h}^{\pi}\right\rangle\right) \\
w_{h}^{\pi}(s, a)=e^{\beta \cdot Q_{h}^{\pi}(s, a)}=\left\langle\phi(s, a),\left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in[k-1]} \phi_{h}^{\tau}\left[e^{\beta \cdot Q_{h}^{\pi}\left(s_{h}^{\tau}, a_{h}^{\tau}\right)}\right]\right\rangle
\end{gathered}
$$

Proof warmup

- Define

$$
\begin{aligned}
& q_{1}^{+}:= \begin{cases}\left\langle\phi(s, a), w_{h}^{k}\right\rangle+b_{h}^{k}(s, a), & \text { if } \beta>0 \\
\left\langle\phi(s, a), w_{h}^{k}\right\rangle-b_{h}^{k}(s, a), & \text { if } \beta<0,\end{cases} \\
& q_{1}:= \begin{cases}\min \left\{e^{\beta(H-h+1)}, q_{1}^{+}\right\}, & \text {if } \beta>0 \\
\max \left\{e^{\beta(H-h+1)}, q_{1}^{+}\right\}, & \text {if } \beta<0\end{cases}
\end{aligned}
$$

- By the definition of Λ_{h}^{k} and $\phi_{h^{\prime}}^{k}$ observe that

$$
w_{h}^{k}(s, a)=\left\langle\phi(s, a), w_{h}^{k}\right\rangle=\left\langle\phi(s, a),\left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in[k-1]} \phi_{h}^{\tau}\left[e^{\beta\left[r_{h}^{T}+V_{h+1}^{k}\left(s_{h+1}^{\tau}\right)\right]}\right]\right\rangle
$$

- Define $G_{0}:=\left(Q_{h}^{k}-Q_{h}^{\pi}\right)(s, a)=\frac{1}{\beta} \log \left\{q_{1}\right\}-\frac{1}{\beta} \log \left\{\left\langle\phi(s, a), w_{h}^{\pi}\right\rangle\right\}$
- Need to derive upper and lower bounds for G_{0}.

Proof warmup

$$
\begin{aligned}
G_{0} & =\frac{1}{\beta} \log \left\{q_{1}\right\}-\frac{1}{\beta} \log \left\{\left\langle\phi(s, a),\left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in[k-1]} \phi_{h}^{\tau}\left[e^{\beta \cdot Q_{h}^{\pi}\left(s_{h}^{\tau}, a_{h}^{\tau}\right)}\right]\right\rangle\right\} \\
& =\frac{1}{\beta} \log \left\{q_{1}\right\}-\frac{1}{\beta} \log \left\{\left\langle\phi(s, a),\left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in[k-1]} \phi_{h}^{\tau}\left[\mathbb{E}_{s^{\prime} \sim P_{h}\left(\cdot \mid s_{h}^{\tau}, a_{h}^{\tau}\right)} e^{\beta\left[r_{h}^{\tau}+V_{h+1}^{\pi}\left(s^{\prime}\right)\right]}\right]\right\rangle\right\} \\
& =: \frac{1}{\beta} \log \left\{q_{1}\right\}-\frac{1}{\beta} \log \left\{q_{3}\right\}
\end{aligned}
$$

- In order to control G_{0}, we define an intermediate quantity

$$
q_{2}:=\left\langle\phi(s, a),\left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in[k-1]} \phi_{h}^{\tau}\left[\mathbb{E}_{s^{\prime} \sim P_{h}\left(\cdot \mid s_{h}^{\tau}, a_{h}^{\tau}\right)} e^{\beta\left[r_{h}^{\tau}+V_{h+1}^{k}\left(s^{\prime}\right)\right]}\right]\right\rangle
$$

with q_{2} replaces the quantity V_{h+1}^{π} in q_{3} by V_{h+1}^{k}

Proof warmup

- Decompose the error

$$
\begin{align*}
\left(Q_{h}^{k}-Q_{h}^{\pi}\right)(s, a)=G_{0} & =\left(\frac{1}{\beta} \log \left\{q_{1}\right\}-\frac{1}{\beta} \log \left\{q_{2}\right\}\right)+\left(\frac{1}{\beta} \log \left\{q_{2}\right\}-\frac{1}{\beta} \log \left\{q_{3}\right\}\right) \tag{8}\\
& =G_{1}+G_{2} \tag{9}
\end{align*}
$$

- $\mathrm{G}_{0}, \mathrm{G}_{1}$ and G_{2} are all well-defined, according to the following result.

Lemma 6.

We have $q_{i} \in\left[\min \left\{1, e^{\beta(H-h+1)}\right\}, \max \left\{1, e^{\beta(H-h+1)}\right\}\right]$ for $i \in[3]$

Proof warmup

- Control G_{1} and G_{2}

$$
\begin{align*}
\left(Q_{h}^{k}-Q_{h}^{\pi}\right)(s, a)=G_{0} & =\left(\frac{1}{\beta} \log \left\{q_{1}\right\}-\frac{1}{\beta} \log \left\{q_{2}\right\}\right)+\left(\frac{1}{\beta} \log \left\{q_{2}\right\}-\frac{1}{\beta} \log \left\{q_{3}\right\}\right) \tag{10}\\
& =G_{1}+G_{2} \tag{11}
\end{align*}
$$

- $\mathrm{G}_{0}, \mathrm{G}_{1}$ and G_{2} are all well-defined, according to the following result.

Lemma 7.

We have $q_{i} \in\left[\min \left\{1, e^{\beta(H-h+1)}\right\}, \max \left\{1, e^{\beta(H-h+1)}\right\}\right]$ for $i \in[3]$.

Proof warmup

- Control G_{1} and G_{2}

Lemma 8.

For all $(k, h, s, a) \in[K] \times[H] \times \mathcal{S} \times \mathcal{A}$ that satisifies $N_{h}^{k-1}(s, a) \geq 1$, there exist universal constants $c_{1}, c_{\gamma}>0$ (where c_{γ} is used in Line 9 of Algorithm 1) such that

$$
0 \leq G_{1} \leq c_{1} \cdot \frac{e^{|\beta| H}-1}{|\beta|} \cdot d \sqrt{\iota} \sqrt{\phi(s, a)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi(s, a)}
$$

with probability at least $1-\delta / 2$. Furthermore, if $V_{h+1}^{k}\left(s^{\prime}\right) \geq V_{h+1}^{\pi}\left(s^{\prime}\right)$ for all $s^{\prime} \in \mathcal{S}$, then we have

$$
0 \leq G_{2} \leq e^{|\beta| H} \cdot \mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)}\left[V_{h+1}^{k}\left(s^{\prime}\right)-V_{h+1}^{\pi}\left(s^{\prime}\right)\right]
$$

Proof of Lemma 8

- Start with case $\beta>0$. The case $\beta<0$ follows the same idea.

$$
\begin{aligned}
& \left|q_{1}^{+}-q_{2}-b_{h}^{k}(s, a)\right| \\
= & \left|\left\langle\phi(s, a),\left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in[k-1]} \phi_{h}^{\tau}\left[e^{\beta\left[r_{h}^{\tau}+V_{h+1}^{k}\left(s_{h+1}^{\tau}\right)\right]}-\mathbb{E}_{s^{\prime} \sim P_{h}\left(\cdot \mid s_{h}^{\tau}, a_{h}^{\tau}\right)} e^{\beta\left[r_{h}^{\tau}+V_{h+1}^{k}\left(s^{\prime}\right)\right]}\right]\right\rangle\right| \\
= & \left|\frac{1}{N_{h}^{k-1}(s, a)} \sum_{\left(s, a, s^{+}\right) \in \mathcal{D}_{h}^{k-1}} e^{\beta\left[r_{h}(s, a)+V_{h+1}^{k}\left(s^{+}\right)\right]}-\mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)} e^{\beta\left[r_{h}(s, a)+V_{h+1}^{k}\left(s^{\prime}\right)\right]}\right| \\
\leq & c\left|e^{\beta H}-1\right| \sqrt{\frac{S l}{N_{h}^{k-1}(s, a)}} \\
= & c\left|e^{\beta H}-1\right| \sqrt{S_{l}} \cdot \sqrt{\phi(s, a)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi(s, a)}
\end{aligned}
$$

Proof of Lemma 8

- The first inequality holds by Lemma 16. Choose $c_{\gamma}=c$ in the definition of $b_{h}^{k}(s, a)$,

$$
0 \leq q_{1}^{+}-q_{2} \leq 2 c \cdot\left|e^{\beta H}-1\right| \sqrt{S_{l}} \cdot \sqrt{\phi(s, a)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi(s, a)} .
$$

- Therefore, we have $q_{1} \geq q_{2}$, and thus $G_{1} \geq 0$.
- By Lemma 7 and Fact 4(a) (with $g=1, x=q_{1}$, and $y=q_{2}$)

$$
G_{1} \leq \frac{1}{\beta}\left(q_{1}-q_{2}\right) \leq \frac{1}{\beta}\left(q_{1}^{+}-q_{2}\right) .
$$

- Control $G_{2} . V_{h+1}^{k}\left(s^{\prime}\right) \geq V_{h+1}^{\pi}\left(s^{\prime}\right)$ for all $s^{\prime} \in \mathcal{S}$ implies that $q_{2} \geq q_{3}$ and therefore $G_{2} \geq 0$.

Proof of Lemma 8

- By Fact 4(a) (with $g=1, x=q_{2}$, and $y=q_{3}$) and the fact that $q_{2} \geq q_{3} \geq 1$

$$
\begin{aligned}
G_{2} & \leq \frac{1}{\beta}\left(q_{2}-q_{3}\right) \\
& \leq e^{\beta H}\left\langle\phi(s, a),\left(\Lambda_{h}^{k}\right)^{-1} \sum_{\tau \in[k-1]} \phi_{h}^{\tau}\left[\mathbb{E}_{s^{\prime} \sim P_{h}\left(\cdot \mid s_{h}^{\tau}, a_{h}^{\tau}\right)}\left[V_{h+1}^{k}\left(s^{\prime}\right)-V_{h+1}^{\pi}\left(s^{\prime}\right)\right]\right]\right\rangle \\
& =e^{|\beta| H} \mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)}\left[V_{h+1}^{k}\left(s^{\prime}\right)-V_{h+1}^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- The second step holds by Fact 4(b) (with $b=\beta, x=r_{h}^{\tau}+V_{h+1}^{k}(s)$, and $\left.y=r_{h}^{\tau}+V_{h+1}^{\pi}(s)\right)$ and $H \geq r_{h}^{\tau}+V_{h+1}^{k}(s) \geq r_{h}^{\tau}+V_{h+1}^{\pi}(s) \geq 0$.
- Case $\beta<0$ is similar to the previous one. The proof is hence completed.

Proof of Lemma 8

- The following lemmas establishes the dominance of Q_{h}^{k} over Q_{h}^{*} and V_{h}^{k} over V_{h}^{*}.

Lemma 9.
On the event of Lemma 8, we have $Q_{h}^{k}(s, a) \geq Q_{h}^{\pi}(s, a)$ for all $(k, h, s, a) \in[K] \times[H] \times \mathcal{S} \times \mathcal{A}$.
Lemma 10.
For any $\delta \in(0,1]$, with probability at least $1-\delta / 2$, we have $V_{h}^{k}(s) \geq V_{h}^{\pi}(s)$ for all $(k, h, s) \in[K] \times[H] \times \mathcal{S}$.

Proof of Theorem 2

- Define $\delta_{h}^{k}:=V_{h}^{k}\left(s_{h}^{k}\right)-V_{h}^{\pi_{k}}\left(s_{h}^{k}\right) \zeta_{h+1}^{k}:=\mathbb{E}_{s^{\prime} \sim P_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)}\left[V_{h+1}^{k}\left(s^{\prime}\right)-V_{h+1}^{\pi_{k}}\left(s^{\prime}\right)\right]-\delta_{h+1}^{k}$
- For any $(k, h) \in[K] \times[H]$, we have

$$
\begin{aligned}
\delta_{h}^{k}= & \left(Q_{h}^{k}-Q_{h}^{\pi_{k}}\right)\left(s_{h}^{k}, a_{h}^{k}\right) \\
\leq & c_{1} \cdot \frac{e^{|\beta| H}-1}{|\beta|} \cdot \sqrt{S_{l}} \sqrt{\phi\left(s_{h^{\prime}}^{k} a_{h}^{k}\right)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi\left(s_{h^{\prime}}^{k} a_{h}^{k}\right)} \\
& +e^{|\beta| H} \cdot \mathbb{E}_{s^{\prime} \sim P_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)}\left[V_{h+1}^{k}\left(s^{\prime}\right)-V_{h+1}^{\pi_{k}}\left(s^{\prime}\right)\right] \\
= & c_{1} \cdot \frac{e^{|\beta| H}-1}{|\beta|} \cdot \sqrt{S_{l}} \sqrt{\phi\left(s_{h}^{k}, a_{h}^{k}\right)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi\left(s_{h}^{k}, a_{h}^{k}\right)} \\
& +e^{|\beta| H}\left(\delta_{h+1}^{k}+\zeta_{h+1}^{k}\right)
\end{aligned}
$$

Proof of Theorem 2

- Noting that $V_{H+1}^{k}(s)=V_{H+1}^{\pi_{k}}(s)=0$ and $\delta_{h+1}^{k}+\zeta_{h+1}^{k} \geq 0$, expand the recursion

$$
\delta_{1}^{k} \leq \sum_{h \in[H]} e^{(|\beta| H) h} \zeta_{h+1}^{k}+c_{1} \cdot \frac{e^{|\beta| H}-1}{|\beta|} \cdot \sum_{h \in[H]} e^{(|\beta| H)(h-1)} \sqrt{S \iota} \sqrt{\phi\left(s_{h^{\prime}}^{k} a_{h}^{k}\right)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi\left(s_{h^{\prime}}^{k} a_{h}^{k}\right)}
$$

- Apply Lemma 10 with π set to π^{*}

$$
\begin{aligned}
\operatorname{Regret}(K)= & \sum_{k \in[K]}\left[\left(V_{1}^{*}-V_{1}^{\pi_{k}}\right)\left(s_{1}^{k}\right)\right] \leq \sum_{k \in[K]} \delta_{1}^{k} \\
\leq & e^{|\beta| H^{2}} \sum_{k \in[K] h \in[H]} \zeta_{h+1}^{k} \\
& +c_{1} \cdot \frac{e^{|\beta| H}-1}{|\beta|} \cdot e^{|\beta| H^{2}} \cdot \sqrt{S_{l}} \sum_{k \in[K] h \in[H]} \sqrt{\phi\left(s_{h}^{k}, a_{h}^{k}\right)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi\left(s_{h}^{k}, a_{h}^{k}\right)}
\end{aligned}
$$

Proof of Theorem 2

- Proceed to control the two terms.
- Since V_{H}^{K} is independent of the new observation, $\left\{\zeta_{h+1}^{k}\right\}$ is a martingale difference sequence satisfying $\left|\zeta_{h}^{k}\right| \leq 2 H$ for all $(k, h) \in[K] \times[H]$.
- By the Azuma-Hoeffding inequality, we have for any $t>0$,

$$
\mathbb{P}\left(\sum_{k \in[K]} \sum_{h \in[H]} \zeta_{h+1}^{k} \geq t\right) \leq \exp \left(-\frac{t^{2}}{2 T \cdot H^{2}}\right) .
$$

- With probability $1-\delta / 2$, there holds

$$
\sum_{k \in[K]} \sum_{h \in[H]} \zeta_{h+1}^{k} \leq \sqrt{2 T H^{2} \cdot \log (2 / \delta)} \leq 2 H \sqrt{T \iota}
$$

Proof of Theorem 2

- For the second term, apply Lemma 18 and the Cauchy-Schwartz inequality to obtain

$$
\begin{aligned}
& \sum_{k \in[K] h \in[H]} \sqrt{\phi\left(s_{h}^{k}, a_{h}^{k}\right)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi\left(s_{h}^{k}, a_{h}^{k}\right)} \\
& \leq \sum_{h \in[H]} \sqrt{K} \sqrt{\sum_{k \in[H]} \phi\left(s_{h^{\prime}}^{k} a_{h}^{k}\right)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi\left(s_{h^{\prime}}^{k} a_{h}^{k}\right)} \leq H \sqrt{2 d K_{l}}
\end{aligned}
$$

- Recall Fact 5 and the fact $\frac{e^{|\beta| H}-1}{|\beta|} \geq H$

$$
\begin{aligned}
\operatorname{Regret}(K) & \leq e^{|\beta| H^{2}} \cdot 2 H \sqrt{T \iota}+c_{1} \cdot \frac{e^{|\beta| H}-1}{|\beta|} \cdot e^{|\beta| H^{2}} \cdot H \sqrt{2 d S K \iota^{2}} \\
& \leq\left(c_{1}+2\right) \cdot \frac{e^{|\beta| H}-1}{|\beta|} \cdot e^{|\beta| H^{2}} \cdot \sqrt{2 d H S T \iota^{2}} \\
& \lesssim \lambda\left(|\beta| H^{2}\right) \cdot \sqrt{H^{3} S^{2} A T \log ^{2}(2 S A T / \delta)}
\end{aligned}
$$

Regret upper bounds for RSQ

Theorem 11.

For any $\delta \in(0,1]$, with probability at least $1-\delta$, and when T is sufficiently large, the regret of Algorithm 2 is bounded by

$$
\operatorname{Regret}(K) \lesssim \lambda\left(|\beta| H^{2}\right) \cdot \sqrt{H^{4} S A T \log (S A T / \delta)}
$$

Corollary 12.
Under the setting of Theorem 11 and when $\beta \rightarrow 0$, with probability at least $1-\delta$, the regret of Algorithm 2 is bounded by

$$
\operatorname{Regret}(K) \lesssim \sqrt{H^{4} S A T \log (S A T / \delta)}
$$

Regret lower bound

Theorem 13.

For sufficiently large K and H, the regret of any algorithm obeys

$$
\mathbb{E}[\operatorname{Regret}(K)] \geq \frac{e^{|\beta| H / 2}-1}{|\beta|} \sqrt{T \log T}
$$

- Exponential dependence on the $|\beta|$ and H and a sub-linear dependence on T through the $\tilde{O}(\sqrt{T})$ factor is essentially indispensable.
- Both Theorems are nearly optimal in their dependence on β, H and T.
- Contrast with Lemma 1, an algorithm must incur a regret that is exponential in H in order to achieve a sublinear regret in T.

Proof of Theorem 13

- Construct a bandit instance as a special case of episodic fixed-horizon MDP problem.
- Establish lower bound on the instance in terms of the logarithmic-exponential objective.
- Start with two important lemmas.
- For each $\rho \in[0,1]$, let $\operatorname{Ber}(\rho)$ denote the Bernoulli distribution with parameter ρ

Lemma 14.
Let $p, p^{\prime} \in(0,1)$ be such that $p>p^{\prime}$. We have $D_{\mathrm{KL}}\left(\operatorname{Ber}\left(p^{\prime}\right) \| \operatorname{Ber}(p)\right) \leq \frac{\left(p-p^{\prime}\right)^{2}}{p(1-p)}$.

Proof of Theorem 13

Lemma 15.

Let $K_{0}:=K_{0}(K, \pi)$ be the number of times that the sub-optimal arm is pulled in the K-round two-arm bandit problem with policy π. When K is sufficiently large, we have

$$
\mathbb{E} K_{0} \gtrsim \frac{\log K}{D}
$$

Proof of Theorem 13

- Case $\beta>0$.
- Two-arm bandit problem with K rounds, the reward for pulling arm i

$$
X_{i}= \begin{cases}H & \text { w.p. } p_{i} \\ 0 & \text { w.p. } 1-p_{i}\end{cases}
$$

- $p_{1}>p_{2}$ are to be specified later. Let $\Delta:=p_{1}-p_{2}>0$.
- By Lemma 14, $D_{\mathrm{KL}}\left(X_{2} \| X_{1}\right) \leq \frac{\Delta^{2}}{p_{1}\left(1-p_{1}\right)}$.
- Lemma implies $15 \mathbb{E} K_{0} \gtrsim \frac{\log K \cdot p_{1}\left(1-p_{1}\right)}{\Delta^{2}}$.

Proof of Theorem 13

- Choose $\Delta=C \sqrt{\frac{\log K \cdot p_{1}\left(1-p_{1}\right)}{K}}$ for an universal constant $C>0$.
- Set $p_{2}=e^{-\beta H}$. Since $p_{1}\left(1-p_{1}\right) \leq \frac{1}{4}$, we have $\Delta \lesssim \sqrt{\frac{\log K}{K}}$
- By choosing K and H large enough, we can ensure $\Delta \leq e^{-\beta H}$ and $p_{1}=p_{2}+\Delta \leq \frac{3}{4}$.
- Define X_{i}^{k} to be the outcome of arm X_{i} (if pulled) in round k, and Y^{k} to be the outcome of the arm actually pulled in round k.

Proof of Theorem 13

- Conditional on K_{0}, we have

$$
\begin{aligned}
\operatorname{Regret}(K) & =\frac{1}{\beta} \log \left[\mathbb{E} \exp \left(\beta \sum_{k \in[K]} X_{1}^{k}\right)\right]-\frac{1}{\beta} \log \left[\mathbb{E} \exp \left(\beta \sum_{k \in[K]} Y^{k}\right)\right] \\
& \stackrel{(i)}{=} \frac{1}{\beta} \log \left[\prod_{k=1}^{K} \mathbb{E} \exp \left(\beta X_{1}^{k}\right)\right]-\frac{1}{\beta} \log \left[\prod_{k=1}^{K} \mathbb{E} \exp \left(\beta Y^{k}\right)\right] \\
& \geq \frac{1}{\beta} \log \left[\prod_{k=1}^{K} \mathbb{E} \exp \left(\beta X_{1}^{k}\right)\right]-\frac{1}{\beta} \log \left[\prod_{k=1}^{K} \mathbb{E} \exp \left(\beta X_{2}^{k}\right)\right] \\
& =\frac{K}{\beta} \log \left[\mathbb{E} \exp \left(\beta X_{1}\right)\right]-\frac{K}{\beta} \log \left[\mathbb{E} \exp \left(\beta X_{2}\right)\right] \\
& \geq \frac{K_{0}}{\beta} \log \left[\mathbb{E} \exp \left(\beta X_{1}\right)\right]-\frac{K_{0}}{\beta} \log \left[\mathbb{E} \exp \left(\beta X_{2}\right)\right]
\end{aligned}
$$

Proof of Theorem 13

Taking expectation over K_{0} on both sides

$$
\begin{aligned}
\mathbb{E}[\operatorname{Regret}(K)] & \geq \frac{\mathbb{E} K_{0}}{\beta}\left(\log \mathbb{E} e^{\beta X_{1}}-\log \mathbb{E} e^{\beta X_{2}}\right) \\
& =\frac{\mathbb{E} K_{0}}{\beta} \log \left(\frac{p_{1} e^{\beta H}+\left(1-p_{1}\right)}{p_{2} e^{\beta H}+\left(1-p_{2}\right)}\right) \\
& =\frac{\mathbb{E} K_{0}}{\beta} \log \left(1+\frac{\Delta\left(e^{\beta H}-1\right)}{p_{2} e^{\beta H}+\left(1-p_{2}\right)}\right) \\
& \geq \frac{\mathbb{E} K_{0}}{\beta} \log \left(1+\frac{\Delta\left(e^{\beta H}-1\right)}{1+1}\right) \\
& \geq \frac{\mathbb{E} K_{0}}{\beta} \cdot \frac{1}{4} \Delta\left(e^{\beta H}-1\right) \\
& \gtrsim \frac{1}{\beta} \cdot \frac{\log K \cdot p_{1}\left(1-p_{1}\right)}{\Delta} \cdot\left(e^{\beta H}-1\right) \\
& \gtrsim \frac{1}{\beta} \cdot \sqrt{K \log K \cdot p_{1}\left(1-p_{1}\right)} \cdot\left(e^{\beta H}-1\right) \\
& \gtrsim \frac{1}{\beta} \cdot \sqrt{K \log K} \cdot\left(e^{\beta H / 2}-1\right) \\
& \gtrsim \frac{1}{\beta} \cdot \sqrt{T \log T} \cdot\left(e^{\beta H / 2}-1\right)
\end{aligned}
$$

Proof of Theorem 13

Figure: From bandit model to MDP

Supporting Lemmas of Theorem 2

Lemma 16.

Define

$$
\overline{\mathcal{V}}_{h+1}:=\left\{\bar{V}_{h+1}: \mathcal{S} \rightarrow \mathbb{R} \mid \forall s \in \mathcal{S}, \bar{V}_{h+1}(s) \in\left[\min \left\{e^{\beta(H-h)}, 1\right\}, \max \left\{e^{\beta(H-h)}, 1\right\}\right]\right\}
$$

There exists a universal constant $c>0$ such that with probability $1-\delta$, we have

$$
\left|e^{\beta\left[r_{h}\left(s_{h}^{k}, a_{h}^{k}\right)+V\left(s_{h+1}^{k}\right)\right]}-\mathbb{E}_{s^{\prime} \sim P_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)} e^{\beta\left[r_{h}\left(s_{h}^{k}, a_{h}^{k}\right)+V\left(s^{\prime}\right)\right]}\right| \leq c\left|e^{\beta H}-1\right| \sqrt{\frac{S_{l}}{N_{h}^{k}(s, a)}}
$$

for all $(k, h, s, a) \in[K] \times[H] \times \mathcal{S} \times \mathcal{A}$ and all $V \in \overline{\mathcal{V}}_{h+1}$

Supporting Lemmas of Theorem 2

Lemma 17.

Let $\left\{\phi_{t}\right\}_{t \geq 0}$ be a bounded sequence in \mathbb{R}^{d} satisfying $\sup _{t>0}\left\|\phi_{t}\right\| \leq 1$. Let $\Lambda_{0} \in \mathbb{R}^{d \times d}$ be a $P D$ matrix with $\lambda_{\min }\left(\Lambda_{0}\right) \geq 1$. For any $t \geq 0$, we define $\Lambda_{t}:=\Lambda_{0}+\sum_{i \in[t]} \phi_{i} \phi_{i}^{\top}$. Then, we have

$$
\log \left[\frac{\operatorname{det}\left(\Lambda_{t}\right)}{\operatorname{det}\left(\Lambda_{0}\right)}\right] \leq \sum_{i \in[t]} \phi_{i}^{\top} \Lambda_{i-1}^{-1} \phi_{i} \leq 2 \log \left[\frac{\operatorname{det}\left(\Lambda_{t}\right)}{\operatorname{det}\left(\Lambda_{0}\right)}\right]
$$

Lemma 18.
Let $\iota=\log (2 d T / \delta)$. For any $h \in[H]$, we have

$$
\sum_{k \in[K]}\left(\phi_{h}^{k}\right)^{\top}\left(\Lambda_{h}^{k}\right)^{-1} \phi_{h}^{k} \leq 2 d \iota
$$

