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Introduction to Zero-order Optimization

» We consider the following optimization:

min  f(x).

zeX

» When f is convex and importantly differentiable, many first-order (i.e., gradient-based)
methods can be applied [Nesterov, 2018].

— Typically, the convergence rate is dimension-free.
» However, if f is non-differentiable and only zero-order information is available?

— We have access to f(x) but not V f(z).
— Even Vf(z) could not be properly defined.
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Z0 Application: Adversarial Attack

» Imagine there is a hacker who wants to attack the trained neural nets.

— He can send a query to the “black-box" model and get the feedback.

» The objective to find some adversarial examples that incurs large losses:

min  —L(f(zo+€),y), st |lef| <4
ecRd
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Z0 Application: Adversarial Attack

» The hacker can only adopt a ZO algorithm to optimize the adversarial example.
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Z0 Application: Adversarial Attack
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More Applications of Zero-order Optimization

Bandit Optimization [Flaxman et al., 2005, Bartlett et al., 2008, Agarwal et al., 2010].
Simulation-based optimization [Spall, 2005].

>

>

» Graphical model inference [Wainwright and Jordan, 2008].

> Policy optimization [Wierstra et al., 2014, Salimans et al., 2017].
>

Escaping the local minimum in ERM [Jin et al., 2018].
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Main Difficulty of Zero-Order Optimization

» (The curse of dimension) Convergence rate of ZO methods scales up with dimension d
[Duchi et al., 2012b, Jamieson et al., 2012, Shamir, 2013, Duchi et al., 2015].

» Consider to optimize a Lipschitz continuous function f: |f(z) — f(y)| < L||z — y|| with
only zero-order information.

— The lower bound of total evaluation numbers suggests an exponential dependence on d.

d
Lower Bound: {£J
2¢

— The simple method of grid search is minimax optimal!
I d
Upper Bound: <{—J + 1)
2e
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A General Start: Stochastic Optimization

» We need to restrict our attention to not-so-hard class: convex function class.

min £(6) == B (PO X)] = | F(@:a)aPla). (1)

where © C R? is a compact convex set, P is a distribution over X' and for every z € X’ we
have F'(-;x) is closed and convex.

» Each iteration, we have access to F'(0;x) by drawing = from P (this process is not
controlled by algorithms).

— In machine learning, x is a training sample, F;(0;z) is the individual loss and f(8) is the
population/empirical loss.

— We do not know V f(8) or even VF(6; ).
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Intuition of Zero-order Optimization

» We can utilize multiple function evaluations to approximate the directional derivative:

F'(0;2,2) = lul%% (F(0 +uz;z) — F(0;2)) = (VF(0;2), 2).

» In high-level, zero-order algorithms sample a noisy gradient to optimize.

(F(0 4 uz;x) — F(;2)) 2z = 22 VF(6;2).

SRS

where u > 0 is a small perturbation size and z is a random vector.

> Taking the expectation on both sides and with the assumption that E [zz "] = I, we
obtain an estimate of VF(0;x).
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Algorithmic Assumptions

» We consider a mirror descent type algorithm:

oIt = aregergin {(gt,9> + ﬁle (6, 9t>} J 2)

— {a(t)}2, is a non-increasing sequence of step sizes.
- g' € R% is a (subgradient) vector.
— Dy is a Bregman distance defined by the proximal function :

DTP(97 7—) = w(a) - w(T) - <V1/)(T)7 0 — T>'
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Algorithmic Assumptions

Assumption 1.

The proximal function v is 1-strongly convex with respect to the norm || - ||. The domain © is
compact and there exists R < oo such that D, (6*,0) < %RQ for 6 € ©.

> If we consider || - || as £2-norm, ¥(0) = L||0||3 and © = R™, we have

2
Dy (6,7) = 5 0 — 7ll5, and,

t+1 _ . t e t
0 —aregergm{@ ’9>+a(t)Dw (9,9)

=0'—at)g".
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Algorithmic Assumptions

Assumption 2.

There is a constant G < oo such that the (sub)gradient g satisfies that E [||g(6; X)||?] < G? for
all g € ©.

» The variance of (sub)gradient is controlled by G.

» This holds when F(-;x) are G-Lipschitz continuous with respect to the norm || - ||.
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Main ldea

» The directional gradient estimate can approximate the gradient:

u

E [Gsm(0;u, 2, 2)] = Vf(0) + u - bias,

here we assume z ~ P(z) and z ~ u(z) and the bias term will be shown later.

> We use a noisy gradient estimate g* and shrink the parameter u to control the bias.

F 9t Zt.Xt —F Ht'Xt
9" = Gem (05w, 2", X)) = 0"+ 25 X0 — P05 XT) 0.

Ut
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More Assumptions about Smooth Optimization
» Different from stochastic mirror descent, zero-order algorithms need to ensure the parameter
domain is well-defined.

Assumption 3.

The domain of Functions F' and support of 1 satisfies
dom F(;2) DO +usuppu forx € X.
and,

E.[2Z7] =1,
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More Assumptions about Smooth Optimization

Assumption 4.
For Z ~ u, the quantity M(u) = 4 /E {HZH4 ||Z||i} is finite. Moreover, there is a function
s: N — R, such that

E [IKg, 2)Z|IZ] < s(d)llg?  for any vector g € R*. (6)
> For example, u is a standard Gaussian distribution A/(0,1;) and || - || is the £2-norm.
=,/E |Z|| = V15d6 < d°.
> E[||< Z)713] 9" 227227 g] =g "E[2+d)] g = s(d) < d.
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More Assumptions about Smooth Optimization

Assumption 5.

There is a function L : X — Ry such that for P-almost every x € X, the function F(-;x) has
L(z)-Lipschitz continuous gradient with respect to the norm || - || and moreover the quantity

L(P) := ,/E [(L(X))Q] is finite.
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Gradient Approximation

Lemma 1.
Under Assumption 4 and 5, the gradient estimate (3) has the expectation:

B [Gom (05 u, Z, X)] = V[(0) + uL(P)v(0,u), (7)

for a vector v = v(6, u) such that ||v||. < 3E [||Z]|?||Z||.]. Its expected squared norm has the
bound

E [[16un (60, 2, X)|12] < 25(DE [g(0: X)I12] + Se L(PY M (1) ®)
Here g(0;x) € OF (6;x) is a subgradient with E [¢(0;z)] € 0f(6).
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Implication of Lemma 1

» The estimate ¢’ is unbiased up to a correction term of w.
E [Gsm(0;u, Z, X)) = Vf(0) + uL(P)v(0,u).
» The second moment is also unbiased up to an order u? correction—within a factor s(d).
E [lGon (@, 2, X) 2] < 26(D)E [lg(6: X)I12) + Su*L(P) M(u)*

» ~~ As long as we shrink u;, we can obtain arbitrary accurate estimates of the directional
derivative.
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Proof of Lemma 1: Preliminary

» We start with a general convex function h with Lj-Lipschitz continuous gradient w.r.t the
norm || - |].

» For any u > 0, we have that

(0, 2) = (Vh(9),uz) < h(0 4+ uz) — h(0) < (Vh(6),uz) + (Lp/2) |[uz|]?

(7 (7 (7

L
= 1'(0,2)+ 2=,
» Therefore for any z € R?, we have that

h(0 + uz) — h(0)

u

L
2= H(6,2)2 + Zo= 121w, 0, )z, (9)

where v is some function with range contained in [0, 1].
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Proof of Lemma 1: Preliminary

» By our assumption that E [ZZT] =1I4, (9) implies that

E|MOE “i) —hO) Z} —E [h’(ﬁ, 7)Z + %qu%(u,a Z)Z} (10)
—E(VH0).2)2)+ B | 2|2 w6.2)2) @)
= Vh(0) + uLpv(8,u), (12)

where v(0,u) € R? is an error vector with [|v(6, u)||. < E [||Z||2 HZH*}
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Proof of Lemma 1: The First Moment

» Recalling the gradient estimate in (7), expression (12) implies that
E [Gsm(0;u, Z,2)] = VF(0;2) + uL(x)v(0,u), (13)

for some vector v = v(6, u) with 2|[v||, < E [HZHQ ||Z||*]

> Now taking the expectation over X, for the first term we have E [VF(6; X)] = V f(6%).
For the second term, by Jensen's inequality we have that

E[L(X)[[o(8, uw)ll<] < VE[LX)?] o], < %L(P)E [1Zz1*121.]
from which the bound (7) follows.
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Proof of Lemma 1: The Second Moment
> Applying (9) to F(-; X'), we obtain that

G0, 2.X) = (5(0:X), 2)2 + "5 7202,

for some function v = v(u, 0, Z, X) € [0, 1].
» To upper bound the second moment, we use the relation (a + b)? < 2a? + 2b*:

E[[1Gon(8;u. 2, X)|I2] <E (|<g<9,x>, 2)2. + 5 |E(X)ullZ H%ZH*)

| S

u2
< 2E [|[(g(0, X), 2)Z|12] + S E [L(X)*(|12]"]|2]1]

< 25(D)E [lg(6: X) 2] + Ju*L(PY M (1),
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Key Result For Smooth Optimization

Theorem 1.

Under Assumption 1, 2 3, 4 and 5, consider a sequence {6'}{°, generated by the mirror descent
update (2) using the gradient estimator (5), with step and perturbation parameter

v/s(d
and  uy; = Gis()l fort =1,2,...

o) = LM 1

R
— v
2G+/s(d)V't
Then for all k,

E [70(0) - 1 (6] < awm{a,a—l} + POV | HOVa(d log(2k)

(14)

o~

where (k) = %Zle 0 and the expectation is taken w.r.t. samples X and Z.
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» We first compare the result with stochastic mirror descent with first-order information.

Implication of Theorem 1

Optimality Gap

Method Step Size Perturbation Size
First-order | < o (ﬁ)

! R G\/i 1 Vs(d)
Zero-order aQG\/@\/f LM (9< 7% )

» The convergence rate only slows down by +/s(d)!

— If we consider 1 a Gaussian distribution over R% or a uniform distribution over £-ball,

s(d) < d.

— This is partially because we have to use a small step size in ZO algorithms.

Key Results
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Implication of Theorem 1

» We see that a small perturbation size is applied to control the bias.

» Variance-control can also be achieved by multiple independent samples Z%%, i =1,--- ,m
to construct a more accurate gradient estimate.

m

> G (0% up, 24, X1).
=1

1
g ==
m

> In this way, we may achieve a standard RG/+/k convergence rate (see the next page).
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Smooth Optimization with Multiple Function Evaluations

Corollary 1.
Let Z4', i =1,--- ,m be sampled independently according to ;. and at each iteration of mirror
descent use the gradient estimate g' = L 3" Go (0% uy, Z1%, X') with the step and

perturbation sizes

at) =« r L and ¢ !
= - — Up = U—— * —.
9G max{\/d/m,1} Vi T UL(P)BR
There exists a universal constant C < 5 such that for all k,
~ RG\/1+d/m _ 1 log(2k)
E k) —f(0")] < C—Y—"— max{a,a '} + au’— +
[£(@0)) = £ (07)] < N oot aut
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More Cooments on Corollary 1 and Theorem 1

» We could achieve a “"dimension-free" result by choose m ~ d in Corollary 1.

» However, if we define the sample complexity as the total number of function evaluations,
the sample complexity is clearly not dimension-free.

— There is a (currently unknown) trade-off about how many evaluations to apply.

» In high dimensional scenarios, we can properly choose the proximal function and the norm
[| - || to release the true power of mirror descent.

— Refer to [ , Corollary 3] and [ I

» The term of max{a, o™ '} is said to be robust in stochastic optimization.

— i.e., if we specify o wrongly, the final result is not so bad (ref to [ D-
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Difficulty in Non-smooth Optimization

» Recall that by L-Lipschitz continuous gradient of F(-;x), we have

E [[Gam (85, 2, )] < 25()% [llg6; X)I2] + 5u” L(PYM (1)

. VSE g ]
<d <G?

» For non-smooth case, we only have G-Lipschitz continuity, we have that

FO+uZ;x)— F(0;x 2
B [l (0i0, 2, 3)|F] < 5 || FOHEDZLCD 5] | < e z).
2 S———
>d?

» That is, the O(d?) term for non-smooth in contrast to the O(d) term for the smooth case.
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Solution: Smoothing the Non-smooth Functions

» For a general function f(#), we can define the smoothed objective function,

Fu(8) = E[f(0 + uZ)] = /f(a +uz) du(2).

» If f is Lipschitz continuous and convex, we can show that f, () is differentiable even
though f is not [Duchi et al., 2012a, Nesterov and Spokoiny, 2017].

» Implication: if we smooth the non-smooth function F'(6;z) slightly, we may achieve a

convergence rate that is roughly the same as that in smooth case.
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Gradient Estimate for Non-smooth Functions

» Based on the above intuition, we can construct the gradient estimate:

F (04 uiz1 +ugzo;z) — F(6+ U1Z1;3€)Z
2

Gus (05 u1, u2, 21, 22, @) 1= (15)
U2
Here 21, z9 are independently drawn from distributions p1 and po and {u; ¢}, and
{ua, }$2, are two positive non-increasing sequences with s ; < .
» And similarly, we have
F (0 A Zh Xt — F (0¢ Zt Xt
gt — ( + ULt 1 + U/Q)t 2 ) ( + Ul’t 1 )257 (16)

U2,t
where Z! serves the “smoothing” function and Z% severs the gradient estimate function.
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More Assumptions For Non-smooth Functions

Assumption 6.

There is a function G : X — R4 such that for every x € X, the function F(-;x) is
G(x)-Lipschitz with respect to the {2-norm || - || and the quantity G(P) = \/E [G(X)?] Is finite.
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More Assumptions For Non-smooth Functions

Assumption 7.
The smoothing distributions are one of the following pairs:
» both j11 and piy are standard normal distribution in R?.

» both py and po are uniform on the {5-ball of radius v/d + 2.
» 11 is uniformly on the £5-ball of radius \/d + 2 and o is uniform on the £5-sphere of radius

V.

In addition, the domain of F(-;x) is well defined:

dom F(:;2) D © 4wy g supp i1 + ug1supppe forz € X.
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Gradient Approximation For Non-smooth Functions

Lemma 2.
Under Assumption 6 and 7, the gradient estimator (15) has the expectation:

E [Gns (61 Uy, u2, Z17 ZQaX)] = vful (9) + %G(P)’U (9,’&1,’&2) ’ (17)
1

where v = v(0,u1, u2) has bound ||vs < 1E {||Z2||§} . There exists a universal constant ¢ such
that

E [||Gus (0501, u2, Z1, Zo, X)|? } < ¢G(P) (,/Zidﬂﬂogd). (18)
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Comments on Lemma 2

» Compared to Lemma 1, Lemma 2 suggests that the gradient estimate is nearly unbiased.

» If we could choose a small uy such that Z—jd is almost negligible, then we recover the
convergence rate of smooth optimization.

» Actually, there still is an additional log d term but it is expected to remove this in future

works.
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Convergence Result For Non-smooth Optimization

Theorem 2.

Under Assumption 1, 6 and 7, consider a sequence {0'}3°, generated according to mirror

descent update 2 using the gradient estimator (16) with step and perturbation sizes

at) =« 1 u —uE and wu —ui
G(P)\/dlog(2d)vi 't 2= Vg

Then there exists a universal constant ¢ such that for all k,

+ cuRG(P)\/&% (19)

)

E [f(A(k)) —f (0*)} < emax {a, 071} RG(P)\\/[]@

~

where (k) = ¢ Zle 0 and the expectation is taken w.r.t. samples X and Z.
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Comments on Theorem 2

» Compared to Theorem 1, Theorem 2 suggests that two-point zero-order algorithms for
non-smooth functions is at worst a factor y/log d worse than the rate for smooth functions.
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Minimax Error and Minimax Optimal

» Let F be a collection of pairs (F, P), each of which defines a problem instance (1).

> Let Ay denote the collection of all algorithms that receives a sequences (Y7,---,Y%), each

of which contains two-point evaluations:
Yt = [F(Gt,Xt),F(Tt,Xt)] .

Here (0%, 7%) can be determined by the algorithm.
» Given an algorithm A € Ay and a pair (F, P) € F, the optimality gap is defined as

~ -~

er(A F,P,0) i= f(8(k)) — juf £(6) = Bp[F(A(k); X)] - jnf Ep[F(6; X))

~

where 6(k) is the output of algorithm A at iteration k.
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Minimax Error and Minimax Optimal

» The minimax error is defined as

e (F,0):= inf sup Ele(A, F,P,0O), (20)
AcAr (F P)eF

where expectation is taken over the observations (Y'1,---  Y*) and any additional

randomness in A.

» An algorithm A is called minimax optimal if its upper bound matches the lower bound up

to constant and logarithmic terms.
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Lower Bound For Two-point Evaluations

» For a given £,-norm || - ||,, we consider the class of linear functionals:
Fap={(F,P)|F(6;2) =(0,z) with Ep[|X|2]<G}.

» Each of which satisfies Assumption 6 (i.e., Lipschitz continuity).
» Moreover, VF(+;x) has Lipschitz constant 0 for all z.

> We consider the domain is equal to some £,-ball of radius, i.e.,

0= {9 e R [j6], < R}.
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Lower Bound For Two-point Evaluations

Proposition 1.
For the class Fg 2 and © = {9 € RY| 101, < R}, we have

1 1
Ez (]:G 2,@) > — (1 — ) ?/};min{dl—l/q,kl—l/Q} . (21)

» For k > d, this lower bound translates to Q2 (G—\/}gdlfl/q)
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Comments on Lower Bound 1

» For g > 2, the {5-ball of radius d}/2=1/4R contains the £4-ball of radius R, so the upper
bound in Theorem 1 and 2 be analyzed here.

» In particular, we have the upper bound that

RGVd _ RGVdd'/*~V® _ RGd'~'/
vk T vk Vi

» This implies that the algorithm for smooth optimization is optimal up to constant factors

and the algorithm for non-smooth optimization is also tight to within logarithmic factors.
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Lower Bound For Multiple Evaluations

» An inspection of the proof of Proposition 1 yields that

1 1\ GR
. 0)>—(1-=-) —min{d'""Va -V}, 22
& (Fo2.0) > g (1 1) S min { } 22
» In Corollary 1, we have the upper bound O <RG ”\%m>.

» This indicates that when m — d, the algorithm also achieves minimax optimal.
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Proof of Theorem 1

> By mirror descent with Assumption 1, we have that [Beck and Teboulle, 2003, Nemirovski
et al., 2009, Shalev-Shwartz, 2012]:

¢ k
SR - F07) <> (g0 —07) —RZ Z Vg2 @)
t=1 t=1
» Now let's introduce the error vector e! := V f(6!) —

ji(f@?g*f@ﬂ)é

t=1

M=

k
<gt’9t * +Z et otio*
t=1

o~
Il

1

1 a(t) 2
RZ+Y —=ld*|I” + Lot —o%).
LIS LIRS WSS

(24)

IN
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Proof of Theorem 1

» For the second moment term, by (8) in Lemma 1, we have that
E [||gt||ﬂ < 25(d)G2 + utL(P) 20 (). (25)

\Vs(d)G

We can properly choose u; o TP MG O control this term.
» For the last term in (24), by (7) in Lemma 1, we have that
k

k
> E[( 0" - 0%)] ZutE o, ||6" — 07]]] < % (WRL(P)Y us.  (26)

t=1

The last step we use the relation ||6" — 0*|| < /2D (6*,6) < R.
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Proof of Theorem 1

» By combing the above inequalities, we have that

St - 107)

=1

~

k

2 2 2 k
< ij) TGS a() + LM 2y MUWBRLE) 5~
t=1

» It remains to plug-in the chosen step and perturbation sizes and to apply Jensen’s inequality.
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Proof of Proposition 1

» Main idea: reduce the optimization to binary hypothesis testing problems.

» First, we construct a finite set of functions, upon of which the optimality gap is lower
bounded by the sign difference.

» Consequently, we lower bound the probability of sign difference after observing k& random

samples with total variation distance by Le Cam’s inequality.

» Finally, we present a sharp bound of total variation distance for this problem.
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Proof of Proposition 1: The First Part

» We consider the binary vector v in the Boolean hypercube V = {—1,1}.
» The objective functions are in the form F(6;x) = (6, x).
» For each v, P, is the Gaussian distribution N (§v, o?T), where § > 0 is to be chosen later.

» Now, the problem becomes that

min f,(0) := Ep, [F(0; X)] = 6(0,v), (27)

where © = {6 € R?|[6]|, < R}.

> It's clear that the optimal solution is given by 6V = —Rd/9v.
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Proof of Proposition 1: The First Part

> We claim that for any 6 € R? the optimality gap is bounded by (see the next page).

£.(8) = f, (") > X ;Jq/qcmi 1 {sign (@) + sign (9;?)} : (28)

» To understand (28), we note that if sign (@) = sign (6Y) for all j, then (28) holds trivially.
Therefore, we only need to care the case where there exist some coordinates j such that

sign (@) # sign (0;’)
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Proof of Proposition 1: The First Part

> Let's split 8% the coordinates into two parts: Zy = {v; = 1} and Z_ = {v; = —1}. Now,
we represent 0 as below (only signs are shown):

0= ) 7+ y
v\ J/ \/\ —
- ozt S

Here Z~ and II are two “error” sets, in which the sign of 9 is different from 6V
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Proof of Proposition 1: The First Part

» We define two optimization problems to lower bound the cost due to sign difference.

minv'6, st lof, <1 (29)
minv' 0, st [|f]l, <1; 6, <0,VjeI; 0, >0,VjeIf. (30)

» Denote the optimal solution by #4 and 6%, respectively. We have
0t = a7 (12 ~1z,),  and 0% = (d— )7V (1 — 1y ),

where 1 4 denotes the vector with 1 for coordinates are in A and 0 otherwise. In addition, ¢
is the sum of cardinalities of Z~ and Ii'.
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Proof of Proposition 1: The First Part

> As a consequence, the objective values are given:
v 04 = —d'7V9 and 0P = —(d— )7V,
> We use the fact that the function f(z) = —x'~1/% is convex for q € [1, c0):

171/(1 < 7(dic)171/q7(7d171/q)

=Vf(d)c< fld—ec)— f(d) = W

=

1-1/q TpB TpA
74 c<v'6° —v'0°.

» Note that 08 is the “optimal’ estimator among all estimators with sign differences. Hence,

the above bound gives relation (28).
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Proof of Proposition 1: The Second Part

> We consider the performance on the mixture distribution P := (1/|V[) >y, Py, then,

maxSp, [£,0) = £, ()] = 5 >en [fv@ 18]

> 1;1}q/q5RZP(SIgH( >7é V)

» As a result, the minimax error is lower bounded as
—1/q 2
6 (Fa,0) > - i OR i%lep(aj (Y. YR £V b (31)
j=

where ¥ denotes any testing function mapping {Y*}¥_; to {—1,1}%.
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Proof of Proposition 1: The Second Part

» In the next, we lower bound the testing error by a total variation distance. To do so, we use
Le Cam'’s inequality that for any set A and distributions P, ), we have

P(A) +Q(A°) 21— [P = Qllyy -

» We split the coordinates into the positive parts and the negative parts.

1 1
P+j = F Z P»U and P—] = F Z Pv.
veViv;=1 veEVivj=—1

> That is, P;; and P_; corresponds to conditional distributions over Y given the events
{v; =1} and {v; = —1}.
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Proof of Proposition 1: The Second Part

» Applying Le Cam'’s inequality yields

P (0 (V') £ V5) = 5 Pas (3 (V19) £ 1) + 5P (3 (V) £ 1)

V

1
= 5 (1 - ||P+j - P*j”Tv) :
> Applying the Cauchy-Schwartz inequality , we have an upper bound for ||Py; — P_j|1y:

1
2

d d
2
S Py = Pojllpy VA | D IIP — Pojllzy
Jj=1

j=1
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Proof of Proposition 1: The Second Part

» Then, we get a lower bound for the minimax error:

N|=

§ 1\ d'-Y4§R 1 [ )
€ (FG,2,0) > (1 - q) — |- Va ; 1Py = P—jlly . (32)

» In the following, we present a sharp bound on Z?Zl | Py, — P_j||2TV.
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Proof of Proposition 1: The Third Part

» Defined the covariance matrix:

B en
¥ [w,ﬂ ||T|%] (616} (33)

with the corresponding shorthand X! for the covariance computed for the ¢ pair (6%, 7%).

Lemma 3.
For each j € {1,--- ,d}, the total variation norm is bounded as
k T
2 2 0; 01 9
1Prs = Pojllry <0* 3BT 5 ()| 4| (34)
t=1 J J
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Proof of Proposition 1: The Third Part

> Note the identity:
d T
ss[e ][] fwes en] 5)
pcil BRI O @7 I3

» By Lemma 3, we have that

S 1Py~ Py <87 E [Zt ((Zt)_l [ ; ] [ ; ])]

j=1 t=1 j=1

k&2

S efe(r )] -
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Proof of Proposition 1: The Third Part

» By now, we find the nearly final lower bound:

. 1\ d'~'/96R 2ko?\ 2

> We now restrict (F, P) € Fg 2 and we need to choose parameter 0 and 62 so that
E [||X|]3] < G? for X € N(6v,0°1,).
» We show that the following parameters are sufficient:

8G? G? 11
2_7 2:7
0" =g and ¢ 9 mln{k d}

2k62 ) * 18\¢ 1 862 G%d 11 ,
1 (d02> >1 (72> 5 and E[IX)3] = s T 9 mln{k d} G*.
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Proof of Proposition 1: The Third Part

» Plugging the chosen parameters into (36), we get the desired lower bound:

1 1 1 1
% (F62:0) 2 15 (1 - q) d'~'9RG min {ﬂ m}

1 1\ d*"YIRG s

[y
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Conclusion

» We focus on the stochastic, convex and zero-order optimization problems.

» Zero-order algorithms use two-point evaluations to approximate directional derivative that
the first-order methods utilize.

» For smooth optimization, we show that stochastic mirror descent based on zero-order
gradient estimate is only O (\/E) slower than the one based on first-order information.

» For non-smooth optimization, we show that by the smoothing technique, its convergence
speed is at most O (y/Iogd) worse than the one of smooth optimization.

» Lower bounds indicate that the proposed methods are minimax optimal.
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