## **Zero-order Convex Optimization: An Introduction**

#### Ziniu Li

ziniuli@link.cuhk.edu.cn

The Chinese University of Hong Kong, Shenzhen, Shenzhen, China

Nov. 28, 2020

Mainly based on the paper:

Duchi, John C., et al. "Optimal rates for zero-order convex optimization: The power of two function evaluations." IEEE Transactions on Information Theory 61.5 (2015): 2788-2806.

#### **Outline**

#### Introduction to Zero-order Optimization

### Key Results

**Smooth Optimization** 

Non-smooth Optimization

Lower Bounds

#### Proofs

Proof of Theorem 1

**Proof of Proposition 1** 

Conclusion

## Introduction to Zero-order Optimization

▶ We consider the following optimization:

$$\min_{x \in \mathcal{X}} f(x).$$

- ▶ When *f* is convex and importantly differentiable, many first-order (i.e., gradient-based) methods can be applied [Nesterov, 2018].
  - Typically, the convergence rate is dimension-free.
- ▶ However, if *f* is non-differentiable and only zero-order information is available?
  - We have access to f(x) but not  $\nabla f(x)$ .
  - Even  $\nabla f(x)$  could not be properly defined.

# **ZO Application: Adversarial Attack**

- Imagine there is a hacker who wants to attack the trained neural nets.
  - He can send a query to the "black-box" model and get the feedback.
- ▶ The objective to find some adversarial examples that incurs large losses:

$$\min_{\epsilon \in \mathbb{R}^d} \quad -\mathcal{L}(f(x_0 + \epsilon), y), \quad \text{s.t. } ||\epsilon|| \le \delta.$$



## **ZO Application: Adversarial Attack**

▶ The hacker can only adopt a ZO algorithm to optimize the adversarial example.



# **ZO Application: Adversarial Attack**



# More Applications of Zero-order Optimization

- ▶ Bandit Optimization [Flaxman et al., 2005, Bartlett et al., 2008, Agarwal et al., 2010].
- Simulation-based optimization [Spall, 2005].
- Graphical model inference [Wainwright and Jordan, 2008].
- ▶ Policy optimization [Wierstra et al., 2014, Salimans et al., 2017].
- Escaping the local minimum in ERM [Jin et al., 2018].

# Main Difficulty of Zero-Order Optimization

- The curse of dimension) Convergence rate of ZO methods scales up with dimension d [Duchi et al., 2012b, Jamieson et al., 2012, Shamir, 2013, Duchi et al., 2015].
- Consider to optimize a Lipschitz continuous function  $f: |f(x) f(y)| \le L||x y||$  with only zero-order information.
  - The lower bound of total evaluation numbers suggests an exponential dependence on d.

Lower Bound: 
$$\left\lfloor \frac{L}{2\epsilon} \right\rfloor^d$$

– The simple method of grid search is minimax optimal!

Upper Bound: 
$$\left(\left\lfloor \frac{L}{2\epsilon} \right\rfloor + 1\right)^d$$

#### Outline

Introduction to Zero-order Optimization

### Key Results

**Smooth Optimization** 

Non-smooth Optimization

Lower Bounds

#### Proofs

Proof of Theorem 1

Proof of Proposition 1

Conclusion

Key Results 9 / 73

### A General Start: Stochastic Optimization

We need to restrict our attention to not-so-hard class: convex function class.

$$\min_{\theta \in \Theta} f(\theta) := \mathbb{E}_P \left[ F(\theta; X) \right] = \int_{\mathcal{X}} F(\theta; x) \, dP(x). \tag{1}$$

where  $\Theta \subseteq \mathbb{R}^d$  is a compact convex set, P is a distribution over  $\mathcal{X}$  and for every  $x \in \mathcal{X}$  we have  $F(\cdot;x)$  is closed and convex.

- Each iteration, we have access to  $F(\theta; x)$  by drawing x from P (this process is not controlled by algorithms).
  - In machine learning, x is a training sample,  $F_i(\theta;x)$  is the individual loss and  $f(\theta)$  is the population/empirical loss.
  - We do not know  $\nabla f(\theta)$  or even  $\nabla F(\theta;x)$ .

Key Results 10/73

### Intuition of Zero-order Optimization

We can utilize multiple function evaluations to approximate the directional derivative:

$$F'(\theta; z, x) = \lim_{u \downarrow 0} \frac{1}{u} \left( F(\theta + uz; x) - F(\theta; x) \right) = \langle \nabla F(\theta; x), z \rangle.$$

In high-level, zero-order algorithms sample a noisy gradient to optimize.

$$\frac{1}{u} \left( F(\theta + uz; x) - F(\theta; x) \right) z \approx zz^{\top} \nabla F(\theta; x).$$

where u > 0 is a small perturbation size and z is a random vector.

▶ Taking the expectation on both sides and with the assumption that  $\mathbb{E}\left[zz^{\top}\right] = \mathbb{I}_d$ , we obtain an estimate of  $\nabla F(\theta;x)$ .

Key Results 11/73

# **Algorithmic Assumptions**

▶ We consider a mirror descent type algorithm:

$$\theta^{t+1} = \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ \left\langle g^t, \theta \right\rangle + \frac{1}{\alpha(t)} D_{\psi} \left( \theta, \theta^t \right) \right\}, \tag{2}$$

- $\{\alpha(t)\}_{t=1}^{\infty}$  is a non-increasing sequence of step sizes.
- $-g^t \in \mathbb{R}^d$  is a (subgradient) vector.
- $D_{\psi}$  is a Bregman distance defined by the proximal function  $\psi$ :

$$D_{\psi}(\theta,\tau) := \psi(\theta) - \psi(\tau) - \langle \nabla \psi(\tau), \theta - \tau \rangle.$$

# **Algorithmic Assumptions**

### Assumption 1.

The proximal function  $\psi$  is 1-strongly convex with respect to the norm  $||\cdot||$ . The domain  $\Theta$  is compact and there exists  $R<\infty$  such that  $D_{\psi}(\theta^*,\theta)\leq \frac{1}{2}R^2$  for  $\theta\in\Theta$ .

If we consider  $||\cdot||$  as  $\ell_2$ -norm,  $\psi(\theta)=\frac{1}{2}||\theta||_2^2$  and  $\Theta=\mathbb{R}^n$ , we have  $D_{\psi}(\theta,\tau)=\frac{1}{2}\,\|\theta-\tau\|_2^2$ , and,

$$\theta^{t+1} = \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ \left\langle g^t, \theta \right\rangle + \frac{1}{\alpha(t)} D_{\psi} \left( \theta, \theta^t \right) \right\}$$
$$= \theta^t - \alpha(t) g^t.$$

Key Results 13 / 73

# **Algorithmic Assumptions**

#### Assumption 2.

There is a constant  $G < \infty$  such that the (sub)gradient g satisfies that  $\mathbb{E}\left[||g(\theta;X)||^2\right] \leq G^2$  for all  $\theta \in \Theta$ .

- ightharpoonup The variance of (sub)gradient is controlled by G.
- ▶ This holds when  $F(\cdot; x)$  are G-Lipschitz continuous with respect to the norm  $||\cdot||$ .

Key Results 14 / 73

#### **Outline**

#### Introduction to Zero-order Optimization

### Key Results

**Smooth Optimization** 

Non-smooth Optimization

Lower Bounds

#### Proofs

Proof of Theorem 1

Proof of Proposition 1

Conclusion

Key Results 15 / 73

#### Main Idea

▶ The directional gradient estimate can approximate the gradient:

$$G_{\rm sm}(\theta; u, z, x) := \frac{F(\theta + uz; x) - F(\theta; x)}{u} z, \tag{3}$$

$$\mathbb{E}\left[\mathbf{G}_{\mathrm{sm}}(\theta;u,z,x)\right] = \nabla f(\theta) + u \cdot \mathrm{bias}, \tag{4}$$

here we assume  $x \sim P(x)$  and  $z \sim \mu(z)$  and the bias term will be shown later.

lacktriangle We use a noisy gradient estimate  $g^t$  and shrink the parameter u to control the bias.

$$g^{t} = \mathbf{G}_{sm}\left(\theta^{t}; u_{t}, Z^{t}, X^{t}\right) = \frac{F\left(\theta^{t} + u_{t}Z^{t}; X^{t}\right) - F\left(\theta^{t}; X^{t}\right)}{u_{t}} Z^{t}.$$
 (5)

Key Results 16/73

## More Assumptions about Smooth Optimization

▶ Different from stochastic mirror descent, zero-order algorithms need to ensure the parameter domain is well-defined.

### Assumption 3.

The domain of Functions F and support of  $\mu$  satisfies

$$\operatorname{dom} F(\cdot; x) \supset \Theta + u \operatorname{supp} \mu \quad \text{for } x \in \mathcal{X}.$$

and,

$$\mathbb{E}_{\boldsymbol{\mu}}\left[ZZ^{\top}\right] = \mathbb{I}_d.$$

## More Assumptions about Smooth Optimization

### **Assumption 4.**

For  $Z \sim \mu$ , the quantity  $M(\mu) = \sqrt{\mathbb{E}\left[\|Z\|^4 \|Z\|_*^2\right]}$  is finite. Moreover, there is a function  $s: \mathbb{N} \to \mathbb{R}_+$  such that

$$\mathbb{E}\left[\|\langle g, Z \rangle Z\|_*^2\right] \le s(d)\|g\|_*^2 \quad \text{for any vector } g \in \mathbb{R}^d. \tag{6}$$

- ▶ For example,  $\mu$  is a standard Gaussian distribution  $\mathcal{N}(0, \mathbb{I}_d)$  and  $||\cdot||$  is the  $\ell_2$ -norm.
- $\blacktriangleright \ \mathbb{E}\left[||\langle g,Z\rangle Z||_2^2\right] = \mathbb{E}\left[g^\top ZZ^\top ZZ^\top g\right] = g^\top \mathbb{E}\left[(2+d)\mathbb{I}\right]g \Longrightarrow s(d) \lesssim d.$

Key Results 18/73

### More Assumptions about Smooth Optimization

### Assumption 5.

There is a function  $L: \mathcal{X} \to \mathbb{R}_+$  such that for P-almost every  $x \in \mathcal{X}$ , the function  $F(\cdot; x)$  has L(x)-Lipschitz continuous gradient with respect to the norm  $||\cdot||$  and moreover the quantity  $L(P) := \sqrt{\mathbb{E}\left[\left(L(X)\right)^2\right]}$  is finite.

Key Results 19/73

## **Gradient Approximation**

#### Lemma 1.

Under Assumption 4 and 5, the gradient estimate (3) has the expectation:

$$\mathbb{E}\left[G_{\mathrm{sm}}(\theta; u, Z, X)\right] = \nabla f(\theta) + uL(P)v(\theta, u),\tag{7}$$

for a vector  $v=v(\theta,u)$  such that  $||v||_* \leq \frac{1}{2}\mathbb{E}\left[||Z||^2||Z||_*\right]$ . Its expected squared norm has the bound

$$\mathbb{E}\left[\|\mathcal{G}_{sm}(\theta; u, Z, X)\|_{*}^{2}\right] \leq 2s(d)\mathbb{E}\left[\|g(\theta; X)\|_{*}^{2}\right] + \frac{1}{2}u^{2}L(P)^{2}M(\mu)^{2}.$$
 (8)

Here  $g(\theta; x) \in \partial F(\theta; x)$  is a subgradient with  $\mathbb{E}[g(\theta; x)] \in \partial f(\theta)$ .

Key Results 20/73

## Implication of Lemma 1

ightharpoonup The estimate  $g^t$  is unbiased up to a correction term of u.

$$\mathbb{E}\left[\mathsf{G}_{\mathrm{sm}}(\theta;u,Z,X)\right] = \nabla f(\theta) + uL(P)v(\theta,u).$$

lacktriangle The second moment is also unbiased up to an order  $u_t^2$  correction—within a factor s(d).

$$\mathbb{E}\left[\|\mathsf{G}_{\mathrm{sm}}(\theta;u,Z,X)\|_{*}^{2}\right] \leq 2s(d)\mathbb{E}\left[\|g(\theta;X)\|_{*}^{2}\right] + \frac{1}{2}u^{2}L(P)^{2}M(\mu)^{2}.$$

ightharpoonup As long as we shrink  $u_t$ , we can obtain arbitrary accurate estimates of the directional derivative.

# **Proof of Lemma 1: Preliminary**

- We start with a general <u>convex</u> function h with  $\underline{L_h$ -Lipschitz continuous gradient w.r.t the norm  $||\cdot||$ .
- ightharpoonup For any u>0, we have that

$$h'(\theta, z) = \frac{\langle \nabla h(\theta), uz \rangle}{u} \le \frac{h(\theta + uz) - h(\theta)}{u} \le \frac{\langle \nabla h(\theta), uz \rangle + (L_h/2) \|uz\|^2}{u}$$
$$= h'(\theta, z) + \frac{L_h u}{2} \|z\|^2,$$

▶ Therefore for any  $z \in \mathbb{R}^d$ , we have that

$$\frac{h(\theta + uz) - h(\theta)}{u}z = h'(\theta, z)z + \frac{L_h u}{2} ||z||^2 \gamma(u, \theta, z)z, \tag{9}$$

where  $\gamma$  is some function with range contained in [0,1].

Key Results 22 / 73

## **Proof of Lemma 1: Preliminary**

lacktriangle By our assumption that  $\mathbb{E}\left[ZZ^{\top}\right]=\mathbb{I}_d$ , (9) implies that

$$\mathbb{E}\left[\frac{h(\theta + uZ) - h(\theta)}{u}Z\right] = \mathbb{E}\left[h'(\theta, Z)Z + \frac{L_h u}{2}||Z||^2\gamma(u, \theta, Z)Z\right]$$
(10)

$$= \mathbb{E}\left[\langle \nabla h(\theta), Z \rangle Z\right] + \mathbb{E}\left[\frac{L_h u}{2} \|Z\|^2 \gamma(u, \theta, Z) Z\right]$$
(11)

$$= \nabla h(\theta) + uL_h v(\theta, u), \tag{12}$$

where  $v(\theta,u) \in \mathbb{R}^d$  is an error vector with  $||v(\theta,u)||_* \leq \frac{1}{2}\mathbb{E}\left[\left\|Z\right\|^2\left\|Z\right\|_*\right]$ .

Key Results 23 / 73

#### Proof of Lemma 1: The First Moment

▶ Recalling the gradient estimate in (7), expression (12) implies that

$$\mathbb{E}\left[G_{sm}(\theta; u, Z, x)\right] = \nabla F(\theta; x) + uL(x)v(\theta, u),\tag{13}$$

for some vector  $v = v(\theta, u)$  with  $2||v||_* \le \mathbb{E}\left[\|Z\|^2 \|Z\|_*\right]$ .

Now taking the expectation over X, for the first term we have  $\mathbb{E}\left[\nabla F(\theta;X)\right] = \nabla f(\theta^t)$ . For the second term, by Jensen's inequality we have that

$$\mathbb{E}\left[L(X)\|v(\theta,u)\|_*\right] \leq \sqrt{\mathbb{E}\left[L(X)^2\right]} \|v\|_* \leq \frac{1}{2} L(P) \mathbb{E}\left[\|Z\|^2 \|Z\|_*\right],$$

from which the bound (7) follows.

Key Results 24/73

#### Proof of Lemma 1: The Second Moment

▶ Applying (9) to  $F(\cdot; X)$ , we obtain that

$$G_{sm}(\theta; u, Z, X) = \langle g(\theta; X), Z \rangle Z + \frac{L(X)u}{2} ||Z||^2 \gamma Z,$$

for some function  $\gamma \equiv \gamma(u, \theta, Z, X) \in [0, 1]$ .

▶ To upper bound the second moment, we use the relation  $(a+b)^2 \le 2a^2 + 2b^2$ :

$$\mathbb{E}\left[\|G_{\text{sm}}(\theta; u, Z, X)\|_{*}^{2}\right] \leq \mathbb{E}\left[\left(\|\langle g(\theta, X), Z\rangle Z\|_{*} + \frac{1}{2}\|L(X)u\|Z\|^{2}\gamma Z\|_{*}\right)^{2}\right]$$

$$\leq 2\mathbb{E}\left[\|\langle g(\theta, X), Z\rangle Z\|_{*}^{2}\right] + \frac{u^{2}}{2}\mathbb{E}\left[L(X)^{2}\|Z\|^{4}\|Z\|_{*}^{2}\right]$$

$$\leq 2s(d)\mathbb{E}\left[\|g(\theta; X)\|_{*}^{2}\right] + \frac{1}{2}u^{2}L(P)^{2}M(\mu)^{2}.$$

Key Results 25 / 73

## **Key Result For Smooth Optimization**

#### Theorem 1.

Under Assumption 1, 2 3, 4 and 5, consider a sequence  $\{\theta^t\}_{t=1}^{\infty}$  generated by the mirror descent update (2) using the gradient estimator (5), with step and perturbation parameter

$$\alpha(t) = \alpha \frac{R}{2G\sqrt{s(d)}\sqrt{t}} \quad \text{ and } \quad u_t = u \frac{G\sqrt{s(d)}}{L(P)M(\mu)} \cdot \frac{1}{t} \quad \text{ for } t = 1, 2, \dots$$

Then for all k,

$$\mathbb{E}\left[f(\widehat{\theta}(k)) - f(\theta^*)\right] \le 2\frac{RG\sqrt{s(d)}}{\sqrt{k}}\max\left\{\alpha, \alpha^{-1}\right\} + \alpha u^2 \frac{RG\sqrt{s(d)}}{k} + u\frac{RG\sqrt{s(d)}\log(2k)}{k},\tag{14}$$

where  $\widehat{\theta}(k) = \frac{1}{k} \sum_{t=1}^{k} \theta^t$  and the expectation is taken w.r.t. samples X and Z.

Key Results 26 / 73

## Implication of Theorem 1

▶ We first compare the result with stochastic mirror descent with first-order information.

| Method      | Step Size                                | Perturbation Size                                    | Optimality Gap                                       |
|-------------|------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| First-order | $\frac{\alpha}{\sqrt{t}}$                |                                                      | $\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$         |
| Zero-order  | $\alpha \frac{R}{2G\sqrt{s(d)}\sqrt{t}}$ | $u\frac{G\sqrt{s(d)}}{L(P)M(\mu)} \cdot \frac{1}{t}$ | $\mathcal{O}\left(rac{\sqrt{s(d)}}{\sqrt{k}} ight)$ |

- ▶ The convergence rate only slows down by  $\sqrt{s(d)}$ !
  - If we consider  $\mu$  a Gaussian distribution over  $\mathbb{R}^d$  or a uniform distribution over  $\ell_2$ -ball,  $s(d) \lesssim d$ .
  - This is partially because we have to use a small step size in ZO algorithms.

Key Results 27 / 73

## Implication of Theorem 1

- ▶ We see that a small perturbation size is applied to control the bias.
- Variance-control can also be achieved by multiple independent samples  $Z^{t,i}$ ,  $i=1,\cdots,m$  to construct a more accurate gradient estimate.

$$g^{t} = \frac{1}{m} \sum_{i=1}^{m} G_{\text{sm}}(\theta^{t}; u_{t}, Z^{t,i}, X^{t}).$$

▶ In this way, we may achieve a standard  $RG/\sqrt{k}$  convergence rate (see the next page).

Key Results 28 / 73

## **Smooth Optimization with Multiple Function Evaluations**

#### Corollary 1.

Let  $Z^{t,i}$ ,  $i=1,\cdots,m$  be sampled independently according to  $\mu$  and at each iteration of mirror descent use the gradient estimate  $g^t=\frac{1}{m}\sum_{i=1}^m {\it G}_{\rm sm}(\theta^t;u_t,Z^{t,i},X^t)$  with the step and perturbation sizes

$$\alpha(t) = \alpha \frac{R}{2G \max\{\sqrt{d/m}, 1\}} \cdot \frac{1}{\sqrt{t}} \quad \text{ and } \quad u_t = u \frac{G}{L(P)d^{3/2}} \cdot \frac{1}{t}.$$

There exists a universal constant  $C \leq 5$  such that for all k,

$$\mathbb{E}\left[f(\widehat{\theta}(k)) - f(\theta^*)\right] \le C \frac{RG\sqrt{1 + d/m}}{\sqrt{k}} \left[\max\left\{\alpha, \alpha^{-1}\right\} + \alpha u^2 \frac{1}{\sqrt{k}} + u \frac{\log(2k)}{k}\right].$$

Key Results 29 / 73

## More Cooments on Corollary 1 and Theorem 1

- We could achieve a "dimension-free" result by choose  $m \approx d$  in Corollary 1.
- ► However, if we define the sample complexity as the total number of function evaluations, the sample complexity is clearly not dimension-free.
  - There is a (currently unknown) trade-off about how many evaluations to apply.
- ▶ In high dimensional scenarios, we can properly choose the proximal function and the norm || · || to release the true power of mirror descent.
  - Refer to [Duchi et al., 2015, Corollary 3] and [Beck and Teboulle, 2003].
- ▶ The term of  $\max\{\alpha, \alpha^{-1}\}$  is said to be robust in stochastic optimization.
  - i.e., if we specify  $\alpha$  wrongly, the final result is not so bad (ref to [Nemirovski et al., 2009]).

Key Results 30 / 73

#### Outline

Introduction to Zero-order Optimization

### Key Results

Smooth Optimization

Non-smooth Optimization

Lower Bounds

#### Proofs

Proof of Theorem 1

Proof of Proposition 1

Conclusion

Key Results 31 / 73

# **Difficulty in Non-smooth Optimization**

lacktriangle Recall that by L-Lipschitz continuous gradient of  $F(\cdot;x)$ , we have

$$\mathbb{E}\left[\left\|\mathsf{G}_{\mathrm{sm}}(\theta;u,Z,X)\right\|_{*}^{2}\right] \leq 2s(d)\mathbb{E}\left[\left\|g(\theta;X)\right\|_{*}^{2}\right] + \frac{1}{2}u^{2}L(P)^{2}M(\mu)^{2}$$

$$\lesssim \underbrace{s(d)}_{\lesssim \frac{\mathbf{d}}{2}} \mathbb{E}\left[\left\|g(\theta;X)\right\|_{*}^{2}\right] \qquad \left(u \propto \frac{\sqrt{s(d)\mathbb{E}\left[\left\|g(\theta;X)\right\|_{*}^{2}\right]}}{L(P)M(\mu)}\right)$$

For non-smooth case, we only have G-Lipschitz continuity, we have that

$$\mathbb{E}\left[\left\|\mathbf{G}_{\mathrm{sm}}(\boldsymbol{\theta}; \boldsymbol{u}, \boldsymbol{Z}, \boldsymbol{X})\right\|_{*}^{2}\right] \leq \mathbb{E}\left[\left\|\frac{F(\boldsymbol{\theta} + \boldsymbol{u}\boldsymbol{Z}; \boldsymbol{x}) - F(\boldsymbol{\theta}; \boldsymbol{x})}{\boldsymbol{u}}\boldsymbol{Z}\right\|_{2}^{2}\right] \leq G^{2}\underbrace{\mathbb{E}\left[\left\|\boldsymbol{Z}\right\|_{2}^{4}\right]}_{>d^{2}}.$$

▶ That is, the  $\mathcal{O}(d^2)$  term for non-smooth in contrast to the  $\mathcal{O}(d)$  term for the smooth case.

Key Results 32/73

## **Solution: Smoothing the Non-smooth Functions**

 $\blacktriangleright$  For a general function  $f(\theta)$ , we can define the smoothed objective function,

$$f_u(\theta) := \mathbb{E}[f(\theta + uZ)] = \int f(\theta + uz) d\mu(z).$$

- ▶ If f is Lipschitz continuous and convex, we can show that  $f_u(\theta)$  is differentiable even though f is not [Duchi et al., 2012a, Nesterov and Spokoiny, 2017].
- Implication: if we smooth the non-smooth function  $F(\theta; x)$  slightly, we may achieve a convergence rate that is roughly the same as that in smooth case.

Key Results 33 / 73

#### **Gradient Estimate for Non-smooth Functions**

Based on the above intuition, we can construct the gradient estimate:

$$G_{ns}(\theta; u_1, u_2, z_1, z_2, x) := \frac{F(\theta + u_1 z_1 + u_2 z_2; x) - F(\theta + u_1 z_1; x)}{u_2} z_2.$$
 (15)

Here  $z_1, z_2$  are independently drawn from distributions  $\mu_1$  and  $\mu_2$  and  $\{u_{1,t}\}_{t=1}^{\infty}$  and  $\{u_{2,t}\}_{t=1}^{\infty}$  are two positive non-increasing sequences with  $u_{2,t} \leq u_{1,t}$ .

And similarly, we have

$$g^{t} = \frac{F(\theta^{t} + u_{1,t}Z_{1}^{t} + u_{2,t}Z_{2}^{t}; X^{t}) - F(\theta^{t} + u_{1,t}Z_{1}^{t}; X^{t})}{u_{2,t}}Z_{2}^{t},$$
(16)

where  $Z_1^t$  serves the "smoothing" function and  $Z_2^t$  severs the gradient estimate function.

Key Results 34/73

### More Assumptions For Non-smooth Functions

#### Assumption 6.

There is a function  $G: \mathcal{X} \to \mathbb{R}_+$  such that for every  $x \in \mathcal{X}$ , the function  $F(\cdot; x)$  is G(x)-Lipschitz with respect to the  $\ell_2$ -norm  $||\cdot||$  and the quantity  $G(P) = \sqrt{\mathbb{E}[G(X)^2]}$  is finite.

Key Results 35 / 73

### More Assumptions For Non-smooth Functions

#### Assumption 7.

The smoothing distributions are one of the following pairs:

- **b** both  $\mu_1$  and  $\mu_2$  are standard normal distribution in  $\mathbb{R}^d$ .
- **b** both  $\mu_1$  and  $\mu_2$  are uniform on the  $\ell_2$ -ball of radius  $\sqrt{d+2}$ .
- $\blacktriangleright$   $\mu_1$  is uniformly on the  $\ell_2$ -ball of radius  $\sqrt{d+2}$  and  $\mu_2$  is uniform on the  $\ell_2$ -sphere of radius  $\sqrt{d}$ .

In addition, the domain of  $F(\cdot;x)$  is well defined:

$$\operatorname{dom} F(\cdot; x) \supset \Theta + u_{1,1} \operatorname{supp} \mu_1 + u_{2,1} \operatorname{supp} \mu_2$$
 for  $x \in \mathcal{X}$ .

Key Results 36 / 73

## **Gradient Approximation For Non-smooth Functions**

#### Lemma 2.

Under Assumption 6 and 7, the gradient estimator (15) has the expectation:

$$\mathbb{E}\left[G_{\text{ns}}\left(\theta; u_1, u_2, Z_1, Z_2, X\right)\right] = \nabla f_{u_1}(\theta) + \frac{u_2}{u_1} G(P) v\left(\theta, u_1, u_2\right), \tag{17}$$

where  $v=v(\theta,u_1,u_2)$  has bound  $\|v\|_2 \leq \frac{1}{2}\mathbb{E}\left[\|Z_2\|_2^3\right]$ . There exists a universal constant c such that

$$\mathbb{E}\left[\|G_{\text{ns}}(\theta; u_1, u_2, Z_1, Z_2, X)\|_2^2\right] \le cG(P)^2 d\left(\sqrt{\frac{u_2}{u_1}} d + 1 + \log d\right). \tag{18}$$

Key Results 37/73

#### Comments on Lemma 2

- Compared to Lemma 1, Lemma 2 suggests that the gradient estimate is nearly unbiased.
- If we could choose a small  $u_2$  such that  $\sqrt{\frac{u_2}{u_1}}d$  is almost negligible, then we recover the convergence rate of smooth optimization.
- Actually, there still is an additional  $\log d$  term but it is expected to remove this in future works.

Key Results 38/73

## **Convergence Result For Non-smooth Optimization**

#### Theorem 2.

Under Assumption 1, 6 and 7, consider a sequence  $\{\theta^t\}_{t=1}^{\infty}$  generated according to mirror descent update 2 using the gradient estimator (16) with step and perturbation sizes

$$\alpha(t) = \alpha \frac{R}{G(P)\sqrt{d\log(2d)}\sqrt{t}}, \quad u_{1,t} = u\frac{R}{t}, \quad \text{ and } \quad u_{2,t} = u\frac{R}{d^2t^2}.$$

Then there exists a universal constant c such that for all k,

$$\mathbb{E}\left[f(\widehat{\theta}(k)) - f(\theta^*)\right] \le c \max\left\{\alpha, \alpha^{-1}\right\} \frac{RG(P)\sqrt{d\log(2d)}}{\sqrt{k}} + cuRG(P)\sqrt{d}\frac{\log(2k)}{k}, \quad (19)$$

where  $\widehat{\theta}(k) = \frac{1}{k} \sum_{t=1}^{k} \theta^t$  and the expectation is taken w.r.t. samples X and Z.

Key Results 39 / 73

#### Comments on Theorem 2

Compared to Theorem 1, Theorem 2 suggests that two-point zero-order algorithms for non-smooth functions is at worst a factor  $\sqrt{\log d}$  worse than the rate for smooth functions.

Key Results 40 / 73

#### Outline

Introduction to Zero-order Optimization

### Key Results

Smooth Optimization

Non-smooth Optimization

Lower Bounds

#### Proofs

Proof of Theorem 1

Proof of Proposition 1

Conclusion

Key Results 41 / 73

# **Minimax Error and Minimax Optimal**

- Let  $\mathcal{F}$  be a collection of pairs (F, P), each of which defines a problem instance (1).
- Let  $\mathbb{A}_k$  denote the collection of all algorithms that receives a sequences  $(Y_1, \dots, Y_k)$ , each of which contains two-point evaluations:

$$Y^t = \left[ F(\theta^t, X^t), F(\tau^t, X^t) \right].$$

Here  $(\theta^t, \tau^t)$  can be determined by the algorithm.

▶ Given an algorithm  $A \in A_k$  and a pair  $(F, P) \in \mathcal{F}$ , the optimality gap is defined as

$$\epsilon_k(\mathcal{A}, F, P, \Theta) := f(\widehat{\theta}(k)) - \inf_{\theta \in \Theta} f(\theta) = \mathbb{E}_P[F(\widehat{\theta}(k); X)] - \inf_{\theta \in \Theta} \mathbb{E}_P[F(\theta; X)],$$

where  $\widehat{\theta}(k)$  is the output of algorithm  $\mathcal{A}$  at iteration k.

Key Results 42 / 73

## **Minimax Error and Minimax Optimal**

► The minimax error is defined as

$$\epsilon_k^*(\mathcal{F}, \Theta) := \inf_{\mathcal{A} \in \mathbb{A}_k} \sup_{(F, P) \in \mathcal{F}} \mathbb{E}\left[\epsilon_k(\mathcal{A}, F, P, \Theta)\right],$$
 (20)

where expectation is taken over the observations  $(Y^1, \dots, Y^k)$  and any additional randomness in A.

An algorithm A is called <u>minimax optimal</u> if its upper bound matches the lower bound up to constant and logarithmic terms.

Key Results 43 / 73

## **Lower Bound For Two-point Evaluations**

▶ For a given  $\ell_p$ -norm  $||\cdot||_p$ , we consider the class of linear functionals:

$$\mathcal{F}_{G,p} := \{ (F,P) \mid F(\theta;x) = \langle \theta, x \rangle \quad \text{with} \quad \mathbb{E}_P \left[ \|X\|_p^2 \right] \le G^2 \}.$$

- Each of which satisfies Assumption 6 (i.e., Lipschitz continuity).
- ▶ Moreover,  $\nabla F(\cdot; x)$  has Lipschitz constant 0 for all x.
- $\blacktriangleright$  We consider the domain is equal to some  $\ell_q$ -ball of radius, i.e.,

$$\Theta = \left\{ \theta \in \mathbb{R}^d \big| \left\| \theta \right\|_q \le R \right\}.$$

Key Results 44 / 73

## **Lower Bound For Two-point Evaluations**

### Proposition 1.

For the class  $\mathcal{F}_{G,2}$  and  $\Theta=\left\{ heta\in\mathbb{R}^dig|\left\| heta
ight\|_q\leq R
ight\}$ , we have

$$\epsilon_k^* \left( \mathcal{F}_{G,2}, \Theta \right) \ge \frac{1}{12} \left( 1 - \frac{1}{q} \right) \frac{GR}{\sqrt{k}} \min \left\{ d^{1 - 1/q}, k^{1 - 1/q} \right\}.$$
(21)

▶ For  $k \ge d$ , this lower bound translates to  $\Omega\left(\frac{GR}{\sqrt{k}}d^{1-1/q}\right)$ .

Key Results 45 / 73

#### Comments on Lower Bound 1

- For  $q \ge 2$ , the  $\ell_2$ -ball of radius  $d^{1/2-1/q}R$  contains the  $\ell_q$ -ball of radius R, so the upper bound in Theorem 1 and 2 be analyzed here.
- In particular, we have the upper bound that

$$\frac{RG\sqrt{d}}{\sqrt{k}} \le \frac{RG\sqrt{d}d^{1/2-1/q}}{\sqrt{k}} = \frac{RGd^{1-1/q}}{\sqrt{k}}.$$

► This implies that the algorithm for smooth optimization is optimal up to constant factors and the algorithm for non-smooth optimization is also tight to within logarithmic factors.

Key Results 46 / 73

### **Lower Bound For Multiple Evaluations**

An inspection of the proof of Proposition 1 yields that

$$\epsilon_k^* \left( \mathcal{F}_{G,2}, \Theta \right) \ge \frac{1}{10} \left( 1 - \frac{1}{q} \right) \frac{GR}{\sqrt{mk}} \min \left\{ d^{1-1/q}, k^{1-1/q} \right\}.$$
(22)

- ▶ In Corollary 1, we have the upper bound  $\mathcal{O}\left(RG\frac{\sqrt{d/m}}{\sqrt{k}}\right)$ .
- ightharpoonup This indicates that when m o d, the algorithm also achieves minimax optimal.

Key Results 47 / 73

#### Outline

Introduction to Zero-order Optimization

### Key Results

**Smooth Optimization** 

Non-smooth Optimization

Lower Bounds

#### **Proofs**

Proof of Theorem 1

Proof of Proposition 1

Conclusior

Proofs 48 / 73

#### Outline

Introduction to Zero-order Optimization

### Key Results

**Smooth Optimization** 

Non-smooth Optimization

Lower Bounds

#### **Proofs**

Proof of Theorem 1

Proof of Proposition 1

Conclusion

Proofs 49 / 73

### **Proof of Theorem 1**

▶ By mirror descent with Assumption 1, we have that [Beck and Teboulle, 2003, Nemirovski et al., 2009, Shalev-Shwartz, 2012]:

$$\sum_{t=1}^{t} f(\theta^{t}) - f(\theta^{*}) \le \sum_{t=1}^{k} \left\langle g^{t}, \theta^{t} - \theta^{*} \right\rangle \le \frac{1}{2\alpha(k)} R^{2} + \sum_{t=1}^{k} \frac{\alpha(t)}{2} \left\| g^{t} \right\|_{*}^{2}. \tag{23}$$

Now let's introduce the error vector  $e^t := \nabla f(\theta^t) - g^t$ ,

$$\sum_{t=1}^{k} \left( f\left(\theta^{t}\right) - f\left(\theta^{*}\right) \right) \leq \sum_{t=1}^{k} \left\langle g^{t}, \theta^{t} - \theta^{*} \right\rangle + \sum_{t=1}^{k} \left\langle e^{t}, \theta^{t} - \theta^{*} \right\rangle 
\leq \frac{1}{2\alpha(k)} R^{2} + \sum_{t=1}^{k} \frac{\alpha(t)}{2} \left\| g^{t} \right\|_{*}^{2} + \sum_{t=1}^{k} \left\langle e^{t}, \theta^{t} - \theta^{*} \right\rangle.$$
(24)

Proofs 50 / 73

### Proof of Theorem 1

For the second moment term, by (8) in Lemma 1, we have that

$$\mathbb{E}\left[\left\|g^{t}\right\|_{*}^{2}\right] \leq 2s(d)G^{2} + \frac{1}{2}u_{t}^{2}L(P)^{2}M(\mu)^{2}.$$
(25)

We can properly choose  $u_t \propto \frac{\sqrt{s(d)G}}{L(P)M(\mu)}$  to control this term.

For the last term in (24), by (7) in Lemma 1, we have that

$$\sum_{t=1}^{k} \mathbb{E}\left[\left\langle e^{t}, \theta^{t} - \theta^{*}\right\rangle\right] \leq L(P) \sum_{t=1}^{k} u_{t} \mathbb{E}\left[\left\|v_{t}\right\|_{*} \left\|\theta^{t} - \theta^{*}\right\|\right] \leq \frac{1}{2} M(\mu) R L(P) \sum_{t=1}^{k} u_{t}. \quad (26)$$

The last step we use the relation  $||\theta^t - \theta^*|| \leq \sqrt{2D_{\psi}(\theta^*, \theta)} \leq R$ .

### **Proof of Theorem 1**

▶ By combing the above inequalities, we have that

$$\sum_{t=1}^{t} f(\theta^{t}) - f(\theta^{*})$$

$$\leq \frac{R^{2}}{2\alpha(k)} + s(d)G^{2} \sum_{t=1}^{k} \alpha(t) + \frac{L(P)^{2}M(\mu)^{2}}{4} \sum_{t=1}^{k} u_{t}^{2}\alpha(t) + \frac{M(\mu)RL(P)}{2} \sum_{t=1}^{k} u_{t}.$$

It remains to plug-in the chosen step and perturbation sizes and to apply Jensen's inequality.

#### **Outline**

Introduction to Zero-order Optimization

### Key Results

Smooth Optimization

Non-smooth Optimization

Lower Bounds

#### **Proofs**

Proof of Theorem 1

Proof of Proposition 1

Conclusion

Proofs 53 / 73

# **Proof of Proposition 1**

- ▶ Main idea: reduce the optimization to binary hypothesis testing problems.
- First, we construct a finite set of functions, upon of which the optimality gap is lower bounded by the sign difference.
- ► Consequently, we lower bound the probability of sign difference after observing *k* random samples with total variation distance by Le Cam's inequality.
- Finally, we present a sharp bound of total variation distance for this problem.

Proofs 54/73

- $lackbox{ }$  We consider the binary vector v in the Boolean hypercube  $\mathcal{V}=\{-1,1\}^d.$
- ▶ The objective functions are in the form  $F(\theta; x) = \langle \theta, x \rangle$ .
- ► For each v,  $P_v$  is the Gaussian distribution  $\mathcal{N}(\delta v, \sigma^2 \mathbb{I})$ , where  $\delta > 0$  is to be chosen later.
- Now, the problem becomes that

$$\min_{\theta \in \Theta} f_v(\theta) := \mathbb{E}_{P_v} \left[ F(\theta; X) \right] = \delta \langle \theta, v \rangle, \tag{27}$$

where  $\Theta = \{\theta \in \mathbb{R}^d \mid ||\theta||_q \le R\}.$ 

lt's clear that the optimal solution is given by  $\theta^v = -Rd^{1/q}v$ .

Proofs 55 / 73

lacktriangle We claim that for any  $\widehat{\theta} \in \mathbb{R}^d$  the optimality gap is bounded by (see the next page).

$$f_{v}(\widehat{\theta}) - f_{v}(\theta^{v}) \ge \frac{1 - 1/q}{d^{1/q}} \delta R \sum_{j=1}^{d} \mathbf{1} \left\{ \operatorname{sign}\left(\widehat{\theta}_{j}\right) \ne \operatorname{sign}\left(\theta_{j}^{v}\right) \right\}.$$
 (28)

▶ To understand (28), we note that if  $\operatorname{sign}\left(\widehat{\theta}_j\right) = \operatorname{sign}\left(\theta_j^v\right)$  for all j, then (28) holds trivially. Therefore, we only need to care the case where there exist some coordinates j such that  $\operatorname{sign}\left(\widehat{\theta}_j\right) \neq \operatorname{sign}\left(\theta_j^v\right)$ .

Proofs 56 / 73

Let's split  $\theta^v$  the coordinates into two parts:  $\mathcal{I}_+ = \{v_i = 1\}$  and  $\mathcal{I}_- = \{v_i = -1\}$ . Now, we represent  $\theta^v$  as below (only signs are shown):

$$\theta^v = \left(\underbrace{+, \cdots, +}_{\mathcal{I}_-} \mid \underbrace{-\cdots, -}_{\mathcal{I}_+}\right).$$

 $\blacktriangleright$  With the same order, we can also represent the estimator  $\widehat{\theta}$  as below (only signs are shown):

$$\widehat{\theta} = \left( \underbrace{-}_{\mathcal{I}_{-}^{-}}, \underbrace{\cdots, +}_{\mathcal{I}_{+}^{+}} \right) \left( \underbrace{+}_{\mathcal{I}_{+}^{+}} \underbrace{\cdots, -}_{\mathcal{I}_{+}^{-}} \right).$$

Here  $\mathcal{I}_{-}^{-}$  and  $\mathcal{I}_{+}^{+}$  are two "error" sets, in which the sign of  $\widehat{\theta}$  is different from  $\theta^{v}$ .

▶ We define two optimization problems to lower bound the cost due to sign difference.

$$\min v^{\top} \theta$$
, s.t.  $\|\theta\|_{q} \le 1$  (29)

$$\min v^{\top}\theta, \quad \text{s.t. } \|\theta\|_q \le 1; \ \theta_j \le 0, \forall j \in \mathcal{I}_-^-; \ \theta_j \ge 0, \forall j \in \mathcal{I}_+^+. \tag{30}$$

ightharpoonup Denote the optimal solution by  $\theta^A$  and  $\theta^B$ , respectively. We have

$$\theta^A = d^{-1/q} \left( \mathbf{1}_{\mathcal{I}_-} - \mathbf{1}_{\mathcal{I}_+} \right), \quad \text{ and } \quad \theta^B = (d-c)^{-1/q} \left( \mathbf{1}_{\mathcal{I}_-^+} - \mathbf{1}_{\mathcal{I}_-^-} \right),$$

where  $\mathbf{1}_A$  denotes the vector with 1 for coordinates are in A and 0 otherwise. In addition, c is the sum of cardinalities of  $\mathcal{I}_-^-$  and  $\mathcal{I}_+^+$ .

As a consequence, the objective values are given:

$$v^{\top}\theta^A = -d^{1-1/q}$$
, and  $v^{\top}\theta^B = -(d-c)^{1-1/q}$ .

▶ We use the fact that the function  $f(x) = -x^{1-1/q}$  is convex for  $q \in [1, \infty)$ :

$$-\nabla f(d)c \le f(d-c) - f(d) \Longrightarrow \frac{1 - 1/q}{d^{1/q}}c \le -(d-c)^{1-1/q} - (-d^{1-1/q})$$
$$\Longrightarrow \frac{1 - 1/q}{d^{1/q}}c \le v^{\top}\theta^B - v^{\top}\theta^A.$$

Note that  $\theta^B$  is the "optimal" estimator among all estimators with sign differences. Hence, the above bound gives relation (28).

 $lackbox{ We consider the performance on the mixture distribution } \mathbb{P}:=(1/|\mathcal{V}|)\sum_{v\in\mathcal{V}}P_v$ , then,

$$\max_{v} \mathbb{E}_{P_{v}} \left[ f_{v}(\widehat{\theta}) - f_{v}(\theta^{v}) \right] \geq \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{E}_{P_{v}} \left[ f_{v}(\widehat{\theta}) - f_{v}(\theta^{v}) \right] \\
\geq \frac{1 - 1/q}{d^{1/q}} \delta R \sum_{j=1}^{d} \mathbb{P} \left( \operatorname{sign} \left( \widehat{\theta}_{j} \right) \neq -V_{j} \right).$$

As a result, the minimax error is lower bounded as

$$\epsilon_k^* \left( \mathcal{F}_{G,2}, \Theta \right) \ge \frac{1 - 1/q}{d^{1/q}} \delta R \left\{ \inf_{\widehat{v}} \sum_{j=1}^d \mathbb{P} \left( \widehat{v}_j \left( Y^1, \dots, Y^k \right) \ne V_j \right) \right\},$$
(31)

where  $\hat{v}$  denotes any testing function mapping  $\{Y^t\}_{t=1}^k$  to  $\{-1,1\}^d$ .

In the next, we lower bound the testing error by a total variation distance. To do so, we use Le Cam's inequality that for any set A and distributions P, Q, we have

$$P(A) + Q(A^c) \ge 1 - ||P - Q||_{\mathsf{TV}}.$$

We split the coordinates into the positive parts and the negative parts.

$$P_{+j} := \frac{1}{2^{d-1}} \sum_{v \in \mathcal{V}: v_j = 1} P_v \quad \text{ and } \quad P_{-j} := \frac{1}{2^{d-1}} \sum_{v \in \mathcal{V}: v_j = -1} P_v.$$

That is,  $P_{+j}$  and  $P_{-j}$  corresponds to conditional distributions over  $Y^t$  given the events  $\{v_j=1\}$  and  $\{v_j=-1\}$ .

► Applying Le Cam's inequality yields

$$\mathbb{P}\left(\widehat{v}_{j}\left(Y^{1:k}\right) \neq V_{j}\right) = \frac{1}{2}P_{+j}\left(\widehat{v}_{j}\left(Y^{1:k}\right) \neq 1\right) + \frac{1}{2}P_{-j}\left(\widehat{v}_{j}\left(Y^{1:k}\right) \neq -1\right)$$

$$\geq \frac{1}{2}\left(1 - \|P_{+j} - P_{-j}\|_{\text{TV}}\right).$$

▶ Applying the Cauchy-Schwartz inequality , we have an upper bound for  $||P_{+j} - P_{-j}||_{TV}$ :

$$\sum_{j=1}^{d} \|P_{+j} - P_{-j}\|_{\text{TV}} \le \sqrt{d} \left( \sum_{j=1}^{d} \|P_{+j} - P_{-j}\|_{\text{TV}}^{2} \right)^{\frac{1}{2}}.$$

Proofs 62 / 73

▶ Then, we get a lower bound for the minimax error:

$$\epsilon_k^* (\mathcal{F}_{G,2}, \Theta) \ge \left(1 - \frac{1}{q}\right) \frac{d^{1-1/q} \delta R}{2} \left(1 - \frac{1}{\sqrt{d}} \left(\sum_{j=1}^d \|P_{+j} - P_{-j}\|_{\text{TV}}^2\right)^{\frac{1}{2}}\right).$$
(32)

▶ In the following, we present a sharp bound on  $\sum_{i=1}^{d} \|P_{+i} - P_{-i}\|_{TV}^2$ .

Defined the covariance matrix:

$$\Sigma := \sigma^2 \begin{bmatrix} \|\theta\|_2^2 & \langle \theta, \tau \rangle \\ \langle \theta, \tau \rangle & \|\tau\|_2^2 \end{bmatrix} = \sigma^2 [\theta \tau]^\top [\theta \tau], \tag{33}$$

with the corresponding shorthand  $\Sigma^t$  for the covariance computed for the  $t^{th}$  pair  $(\theta^t, \tau^t)$ .

#### Lemma 3.

For each  $j \in \{1, \dots, d\}$ , the total variation norm is bounded as

$$\|P_{+j} - P_{-j}\|_{\text{TV}}^2 \le \delta^2 \sum_{t=1}^k \mathbb{E} \left[ \begin{bmatrix} \theta_j^t \\ \tau_j^t \end{bmatrix}^\top (\Sigma^t)^{-1} \begin{bmatrix} \theta_j^t \\ \tau_j^t \end{bmatrix} \right]. \tag{34}$$

Proofs 64 / 73

► Note the identity:

$$\sum_{j=1}^{d} \begin{bmatrix} \theta_j \\ \tau_j \end{bmatrix} \begin{bmatrix} \theta_j \\ \tau_j \end{bmatrix}^{\top} = \begin{bmatrix} \|\theta\|_2^2 & \langle \theta, \tau \rangle \\ \langle \theta, \tau \rangle & \|\tau\|_2^2 \end{bmatrix}. \tag{35}$$

By Lemma 3, we have that

$$\sum_{j=1}^{d} \|P_{+j} - P_{-j}\|_{\text{TV}}^{2} \leq \delta^{2} \sum_{t=1}^{k} \mathbb{E} \left[ \sum_{j=1}^{d} \operatorname{tr} \left( \left( \Sigma^{t} \right)^{-1} \begin{bmatrix} \theta_{j}^{t} \\ \tau_{j}^{t} \end{bmatrix} \begin{bmatrix} \theta_{j}^{t} \\ \tau_{j}^{t} \end{bmatrix}^{\top} \right) \right]$$
$$= \frac{\delta^{2}}{\sigma^{2}} \sum_{t=1}^{k} \mathbb{E} \left[ \operatorname{tr} \left( \left( \Sigma^{t} \right)^{-1} \Sigma^{t} \right) \right] = 2 \frac{k \delta^{2}}{\sigma^{2}}.$$

**Proofs** 

▶ By now, we find the nearly final lower bound:

$$\epsilon_k^* \left( \mathcal{F}_{G,2}, \Theta \right) \ge \left( 1 - \frac{1}{q} \right) \frac{d^{1 - 1/q} \delta R}{2} \left( 1 - \left( \frac{2k\delta^2}{d\sigma^2} \right)^{\frac{1}{2}} \right). \tag{36}$$

- ▶ We now restrict  $(F, P) \in \mathcal{F}_{G,2}$  and we need to choose parameter  $\sigma^2$  and  $\delta^2$  so that  $\mathbb{E}\left[||X||_2^2\right] \leq G^2$  for  $X \in \mathcal{N}(\delta v, \sigma^2 \mathbb{I}_d)$ .
- We show that the following parameters are sufficient:

$$\begin{split} \sigma^2 &= \frac{8G^2}{9d} \quad \text{and} \quad \delta^2 &= \frac{G^2}{9} \min\left\{\frac{1}{k}, \frac{1}{d}\right\}, \\ \Longrightarrow \quad 1 - \left(\frac{2k\delta^2}{d\sigma^2}\right)^{\frac{1}{2}} &\geq 1 - \left(\frac{18}{72}\right)^{\frac{1}{2}} = \frac{1}{2} \quad \text{and} \quad \mathbb{E}\left[\|X\|_2^2\right] = \frac{8G^2}{9} + \frac{G^2d}{9} \min\left\{\frac{1}{k}, \frac{1}{d}\right\} \leq G^2. \end{split}$$

▶ Plugging the chosen parameters into (36), we get the desired lower bound:

$$\epsilon_k^* (\mathcal{F}_{G,2}, \Theta) \ge \frac{1}{12} \left( 1 - \frac{1}{q} \right) d^{1 - 1/q} RG \min \left\{ \frac{1}{\sqrt{k}}, \frac{1}{\sqrt{d}} \right\}$$

$$= \frac{1}{12} \left( 1 - \frac{1}{q} \right) \frac{d^{1 - 1/q} RG}{\sqrt{k}} \min \{ 1, \sqrt{k/d} \}.$$

Proofs 67/73

#### Outline

#### Introduction to Zero-order Optimization

### Key Results

**Smooth Optimization** 

Non-smooth Optimization

Lower Bounds

#### Proofs

Proof of Theorem 1

Proof of Proposition 1

#### Conclusion

Conclusion 68 / 73

#### Conclusion

- ▶ We focus on the stochastic, convex and zero-order optimization problems.
- ➤ Zero-order algorithms use two-point evaluations to <u>approximate directional derivative</u> that the first-order methods utilize.
- For smooth optimization, we show that stochastic mirror descent based on zero-order gradient estimate is only  $\mathcal{O}\left(\sqrt{d}\right)$  slower than the one based on first-order information.
- For non-smooth optimization, we show that by the smoothing technique, its convergence speed is at most  $\mathcal{O}\left(\sqrt{\log d}\right)$  worse than the one of smooth optimization.
- Lower bounds indicate that the proposed methods are minimax optimal.

Conclusion 69 / 73

### References I

- A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online convex optimization with multi-point bandit feedback. In <u>Proceedings of the 23rd Conference on Learning Theory</u>, pages 28–40, 2010.
- P. L. Bartlett, V. Dani, T. P. Hayes, S. M. Kakade, A. Rakhlin, and A. Tewari. High-probability regret bounds for bandit online linear optimization. In <a href="Proceedings of the 21st Conference on Learning Theory">Proceedings of the 21st Conference on Learning Theory</a>, pages 335–342, 2008.
- A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operation Research Letters, 31(3):167–175, 2003.
- J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized smoothing for stochastic optimization. <u>SIAM Journal on Optimization</u>, 22(2):674–701, 2012a.

Conclusion 70 / 73

### References II

- J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Finite sample convergence rates of zero-order stochastic optimization methods. In <u>Advances in Neural Information Processing</u> Systems 25, pages 1448–1456, 2012b.
- J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates for zero-order convex optimization: The power of two function evaluations. <u>IEEE Transaction on Information Theory</u>, 61(5):2788–2806, 2015.
- A. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit setting: gradient descent without a gradient. In <u>Proceedings of the 16th Annual ACM-SIAM</u> Symposium on Discrete Algorithms, pages 385–394, 2005.
- K. G. Jamieson, R. D. Nowak, and B. Recht. Query complexity of derivative-free optimization. In Advances in Neural Information Processing Systems 25, pages 2681–2689, 2012.

Conclusion 71/73

### References III

- C. Jin, L. T. Liu, R. Ge, and M. I. Jordan. On the local minima of the empirical risk. In Advances in Neural Information Processing Systems 31, pages 4901–4910, 2018.
- A. Nemirovski, A. B. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. <u>SIAM Journal on Optimization</u>, 19(4):1574–1609, 2009.
- Y. Nesterov. Lectures on convex optimization. Springer, 2018.
- Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. Foundations of Computational Mathematics, 17(2):527–566, 2017.
- T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolution strategies as a scalable alternative to reinforcement learning. arXiv, 1703.03864, 2017.
- S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107–194, 2012.

Conclusion 72 / 73

### References IV

- O. Shamir. On the complexity of bandit and derivative-free stochastic convex optimization. In The Proceedings of the 26th Annual Conference on Learning Theory, pages 3–24, 2013.
- J. C. Spall. <u>Introduction to stochastic search and optimization: estimation, simulation, and control</u>. John Wiley & Sons, 2005.
- M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.
- D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural evolution strategies. <u>Journal of Machine Learning Research</u>, 15(1):949–980, 2014.

Conclusion 73 / 73