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Problem formulation

A set of actions A .

A set of real-valued functions F = {fρ : A 7→ R|ρ ∈ Θ}.
At each time t, the agent is presented with a subset At ⊂ A .

The agent selects an action At ∈ At, and then recieve a reward Rt.

Ht is the history (A1, A1, R1, · · · ,At−1, Rt−1,At).

The agent employs a policy π = {πt|t ∈ N}, πt(Ht) is a
distribution over A with support At.

We assume that E[Rt|HT , θ, At] = fθ(At).
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Problem formulation

The T-proiod regret of a policy π is defined by

Regret(T, π, θ)

T∑
t=1

E[max
a∈At

fθ(a)− fθ(At)|θ].

The T-period Bayesian regret is defined by E[Regret(T, π, θ)],
where the expectation is taken with respect to the prior
distribution over θ. Hence,

BayesRegret(T, π) =

T∑
t=1

E[max
a∈At

fθ(a)− fθ(At)].
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VC dimension
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Example

A finite binary-valued function class
F = {fρ : A 7→ {0, 1}|ρ ∈ {1, . . . , n}}.
A finite action set A = {1, . . . , n}.
Let fρ(a) = 1(ρ = a).

In time step t, Rt = fρ(At).

If ρ is uniformly distributed over {1, . . . , n}, it’s easyy to see that
the Bayesian regret grows linearly with n.
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Explanation

We fomulate this probelm as a supervised learning problem:

At each time step, an action At is sampled uniformly from A and
the reward fθ(At) is observed.

For large n, the time it takes to effectively learn to predict fθ(At).
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Eluder dimension
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VC dimension
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Eluder dimension for common function class

Finite action spaces.
For all ε > 0, the ε-eluder dimension of A is bounded by |A |.
Euclid space.
The dimension of Euclid space for linear functions is 0-elider
dimension of this space.
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Linear models

Reward functions are parameterized by a vector θ ∈ Θ ⊂ Rd.
Feature mapping φ : A 7→ Rd such that fθ(a) =< φ(a), θ >.

An ellipsoidal confidence set Θt = {ρ ∈ Rd : ||ρ− θ̂t||Vt ≤
√
βt},

where Vt :=
∑t

k=1 φ(At)φ(At)
T + λI for some λ ∈ R captures the

amount of exploration carried put in each direction up to time t.
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Linear models
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Linear models

Theorem

Assume there exist constants γ and S such that for all a ∈ A and
ρ ∈ Θ, ||ρ||2 ≤ S and ||φ(a)||2 ≤ γ. Then
dimE(F , ε) ≤ 3d(e/(e− 1)) log{3 + 3((2S)/ε)2}+ 1.
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Linear models

Define

ωk := sup

{
(fρ1 − fρ2)(ak) :

√√√√k−1∑
i=1

(fρ1 − fρ2)2(ai) ≤ ε′ρ1, ρ2 ∈ Θ

}
.

Then the ε-eluder dimension is the longest sequence such that ωk > ε′.

Let φk = φ(ak),

ρ = ρ1 − ρ2,
and Φk =

∑k−1
i=1 φiφ

T
i .

In this case,
∑k−1

i=1 (fρ1 − fρ2)2(ai) = ρTΦkρ,

and by the triangle inequality ||ρ||2 ≤ 2S.
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Linear models

Step 1. If ωk ≥ ε′, then φTk V
−1
k φk ≥ 1

2 , where Vk := Φk + λI and
λ = (ε′/(2S))2.

Proof.

ωk ≤ max{ρTφk : ρTΦkρ ≤ (ε′)2, ρT Iρ ≤ (2S)2}
≤ max{ρTφk : ρTVkρ ≤ 2(ε′)2}

=
√

2(ε′)2||φk||V −1
k
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Linear models

Step 2. If ωi ≥ ε′, for each i < k, then detVk ≥ λd(32)k−1 and
detVk ≤ ((γ2(k − 1))/d+ λ)d.

Proof.
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Linear models

Step 3. Complete proof.

Proof.

Step 2 shows that (32)(k−1)d ≤ α0[(k − 1)/d] + 1, where
α0 = γ2/λ = (2Sγ/ε′)2.
Let B(x, α) = max{B : (1 + x)B ≤ αB + 1}, then the number of times
ωk > ε′ can occur is bounded by dB(1/2, α0) + 1.
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Posterior sampling
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UCB regret decomposition

Consider a UCB algorithm with a UCB sequence U = {Ut|t ∈ N}. Let
Āt ∈ arg maxa∈At

Ut(a) and A∗ ∈ arg maxa∈At
fθ(a). We have the

following regret decomposition:

fθ(A
∗
t )− fθ(Āt) = fθ(A

∗
t )− Ut(Āt) + Ut(Āt)− fθ(Āt)

≤ [fθ(A
∗
t )− Ut(A∗t )] + [Ut(Āt)− fθ(Āt)]

Bayesian regret:

BayesRegret(T, πU ) ≤ E
T∑
t=1

[Ut(Āt)− fθ(Āt)] + E
T∑
t=1

[fθ(A
∗
t )− Ut(A∗t )]
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Posterior sampling regret decomposition
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Posterior sampling regret decomposition
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Bounds for general function classes

Assumption 1. For all f ∈ F and a ∈ A , f(a) ∈ [0, C].

Assumption 2. For all t ∈ N, Rt − fθ(At) conditioned on
(Ht, θ, At) is σ-sub-Gaussian.
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Confidence Bounds

Let L2,t(f) =
∑t−1

1 (f(At)−Rt)2, and f̂LSt ∈ arg minf∈F L2,t(f).
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Confidence bounds
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Confidence bounds
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Bayesian regret bounds
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Bayesian regret bounds
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Step 1: If ωt(At) > ε, then At is ε-dependent on fewer than 4βT /ε
2

disjooint subsequences of (A1, . . . , At−1) for T > t.

ωt(At) > ε⇒ ∃f̄ , f ∈ Ft, f̄(At)− f(At) > ε

⇒ If At is ε-dependent on a subsequence of (A1, . . . , At−1),

then

k∑
j=1

(f̄(Aj)− f(Aj))
2 > ε2

⇒ If At is ε-dependent on K disjoint subsequences

then||f̄ − f ||22,Et
> Kε2

||f̄ − f ||2,Et ≤ ||f̄ − f̂LSt ||2,Et + ||f − f̂LSt ||2,Et ≤ 2
√
βt ≤ 2

√
βT

It’s follows that K < 4βT /ε
2.
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Step 2: For any action sequence (a1, . . . , aτ ), there is some element aj
that is ε-dependent on at least τ/d− 1 disjoint subsequences, where
d := dimE(F , ε).
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Step 3:
Consider taking (a1, . . . , aτ ) to be the subsequence of (A1, . . . , AT ), in
which the elements satisfies ωt(At) > ε.

⇒ τ/d− 1 ≤ 4βT /ε
2.

Xuhui Liu (Nanjing University) RL Theory July 22, 2020 35 / 40



Xuhui Liu (Nanjing University) RL Theory July 22, 2020 36 / 40



Step 1:
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Step 2:

d = dimE(F , T−1) ≥ dimE(F , ε), for all ε > T−1.∑T
t=1 1(ωt > ε) < ((4βT )/ε2 + 1)d.

ωt > ε⇒
∑T

k=1 1(ωk > ε) ≥ t.
ε <

√
(4βTd)/(t− d).

wt ≤ min{C,
√

(4βTd)/(t− d)}.
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Step 3:
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Thanks!
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