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Problem formulation

A set of actions .
A set of real-valued functions .# = {f, : & — R|p € O}.
At each time ¢, the agent is presented with a subset @ C .

The agent selects an action A; € &%, and then recieve a reward Rj.
H, is the history (@4, A1, Ry, , 1, Ri—1, %%).

The agent employs a policy m = {m|t € N}, m,(H;) is a
distribution over .« with support 2.

e We assume that E[R;|Hr, 0, A] = fo(As).
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Problem formulation

@ The T-proiod regret of a policy 7 is defined by
T
Regret(T, m,0) ZIE maxfg — fo(Ay)|0].
t=1

e The T-period Bayesian regret is defined by E[Regret(T',, )],
where the expectation is taken with respect to the prior
distribution over 6. Hence,

T

BayesRegret(T, m) = 3 Efmax fy(a) — fo(4,))
t=1 t
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VC dimension

Given a sample Dy, = {(@1,%1),. .., (Zn,Yn)}, and define S = {z1,...,2,}. Consider the set

Hs = Hay,..zn = {(R(x1),...,h(xn) : h € H}.

Definition (Growth Function). The growth function is the mazimum number of ways into which n points
can be classified by the function class:

Gn(n)= sup |Hs|.

T,

Definition (VC Dimension). The VC dimension of a class H is the largest n = dyc(H) such that
Gy(n)=2".

In other words, VC dimension of a function class H is the cardinality of the largest set that it can shatters.




A finite binary-valued function class

F ={f,: o —={0,1}|pe{l,...,n}}.

A finite action set &/ = {1,...,n}.

Let fy,(a) =1(p = a).

In time step ¢, Ry = f,(As).

If p is uniformly distributed over {1,...,n}, it’s easyy to see that
the Bayesian regret grows linearly with n.
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Explanation

We fomulate this probelm as a supervised learning problem:

o At each time step, an action A; is sampled uniformly from 7 and
the reward fg(A;) is observed.

e For large n, the time it takes to effectively learn to predict fp(A).
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Eluder dimension

DEFINITION 2. An action a € 54 is e-dependent on actions {a,,...,a,} S s with respect to F if any pair of
functions f, f € 7, satisfying v > (f(ay) — f(a,))? < € also satisfies f(a)— f(a) < €. Further, a is e-independent
of {a,,...,a,} with respect to F if a is not e-dependent on {a,,...,a,}.

DEFINITION 3. The €-eluder dimension dim (7, €) is the length d of the longest sequence of elements in
such that, for some € > €, every element is €-independent of its predecessors.




VC dimension

DEeFINITION 4. An action a is VC-independent of 4 C s if for any f, f € 7, there exists some f € F, which
agrees with f on @ and with f on s(; that is, f(a) = f(a) and f(a) = f(a) for all @ e 5. Olherwme, ais
VC-dependent on 3.

DEFINITION 5. The VC dimensi0~n of a class of bina:y—vallied functions with domain 5/ is the largest cardinality
of a set o C of such that every a € 3 is VC-independent of o/\{a}.
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Eluder dimension for common function class

o Finite action spaces.
For all € > 0, the e-eluder dimension of &7 is bounded by |.#7|.

e Euclid space.
The dimension of Euclid space for linear functions is 0-elider
dimension of this space.
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Linear models

e Reward functions are parameterized by a vector § € © C R,
o Feature mapping ¢ : & + R? such that fy(a) =< ¢(a),0 >.

o An ellipsoidal confidence set ©; = {p € R : ||p — b4||v;, < V/Bi},
where V; := 3t #(Ay)d(Ay)T + M for some A € R captures the

amount of exploration carried put in each direction up to time t.
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Linear models

Algorithm 2 (Linear-Gaussian UCB)

1. Update Statistics:

m, < E[6|H,]

E’I <~ [E[(G - ‘u,r)(ﬂ - Ju’z)T | Hr]
2. Select Action:

A, e argmax{($(a), p,) +Blog(n)[¢(a)]s,}

acdl

3. Increment ¢ and Go to Step 1.
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Linear models

Assume there exist constants v and S such that for all a € o/ and
p €0, llpll2 <5 and |[¢(a)l]2 < v. Then
dimp(F,€) < 3d(e/(e —1))1log{3 + 3((25)/e)?} + 1.
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Linear models

Define

k—1
on =50 { (= f)00) || S~ f)*(0) < prop € O,

i=1

Then the e-eluder dimension is the longest sequence such that wy > €.
Let ¢y, = d(ar),

® p=p1—p2

and &, = 17 gio]

In this case, S (for = fo2)?(ai) = p" Bp,

and by the triangle inequality ||p||2 < 2S.
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Linear models

Step 1. If wy > €, then ¢} Vi toy > %, where Vj, := & + Al and
A= (€/(29))2.

wi < max{p” ¢y, : pT pp < (€)%, p"Ip < (25)%}
< max{p" ¢y, : p" Vip < 2(¢')*}

= VAP |kl
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Linear models

Step 2. If w; > €, for each i < k, then detVy > A4(3)*~! and
detV < ((+2(k — 1))/d+ A)?

Proor. Since V, = V,_| + ¢ dF, using the matrix determinant lemma,

2

Recall that det V, is the product of the eigenvalues of V,, whereas trace[V, ] is the sum. As noted in Dani et al. [16], detV, is
maximized when all eigenvalues are equal. This implies det V, < ((trace[V,])/d)? < ((y*(t = 1))/d+N)¢. O

3 3 k-1 3 k—1
detV, =detV,_ (1 + ¢! V') > detV,_, (5) > de‘“”(i) = A“(—) .

O

v
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Linear models

Step 3. Complete proof.

Step 2 shows that (3)*=D4 < qq[(k — 1)/d] + 1, where

ap =7 /A = (257/¢)?.

Let B(r,a) = max{B : (1 +z)8 < aB + 1}, then the number of times
wg > € can occur is bounded by dB(1/2,ap) + 1.

We now derive an explicit bound on B(x, &) for any x < 1. Note that any B > 1 must satisfy the inequality In{l1 4+ x}B <
In{l + a}+In B. Since In{1 +x} > x/(1 4 x), using the transformation of variables y = B[x/(1 +x)] gives
+x y e

2 1 1+x
+V+lny§ln{l+a}+ln—+— = y=< (ln{l+a}+ln +")A
x x e e—1 x

1
y<In{l+a}+In

This implies B(x, &) < ((1+x)/x)(e/(e —1))(In{1 + a} + In((1 + x)/x)). The claim follows by plugging in & = a, and
x=1/2. O

O
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Posterior

XunUI Liu

Algorithm 3 (Independent posterior sampling)

1. Sample Model:
9, ~ N(ﬂ!—lﬁ 2r—l)
2. Select Action:
A, eargmax,_, 0 (a)
3. Update Statistics: For each a,
By, < E[0, | H ]
3 0a < E[(0,— Hea)? | H,]
4. Increment ¢ and Go to Step 1.

Algorithm 4 (Linear posterior sampling)

1. Sample Model:
0, ~ N, 2, ))
2. Select Action:
Ar € arg maxae’,{(qb(a)’ 61)
3. Update Statistics:
< E[0] H]
I, < E[(0—p)(0—p)" [H]
4. Increment f and Go to Step 1.
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UCB regret decomposition

Consider a UCB algorithm with a UCB sequence U = {U|t € N}. Let
Ay € argmax, ¢, Ui(a) and A* € argmax, ¢, fo(a). We have the
following regret decomposition:

fo(AY) = fo(Ar) = fo(A}) — Up(Ar) 4+ Ur(Ar) — fo(Ar)
< [fo(A}) = Ue(AD)] + [Ue(Ar) — fo(A)]

Bayesian regret:

T

t=1
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Posterior sampling regret decomposition

PROPOSITION 1. For any UCB sequence {U, | t € N},

T T
BayesRegret(7., ") = EY_[U,(A,) = f,(A)]+E X [fo(A)) — U,(A])]

=1 t=1

forall T eN.
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Posterior sampling regret decomposition

Proor. Note that, conditioned on H,, the optimal action A} and the action A, selected by posterior sampling
are identically distributed, and U, is deterministic. Hence E[U,(A}) | H,]=E[U,(A,) | H,]. Therefore

E[fo(A7) — fo(A)] = E[E[Fo(A]) — fo(A) | H,]]

(E[

(E[U,(A) = U(AD) + fo(AD) — fy (A | H,]]
(E[

[

E[U:(A) = fo(A) | Hi]+ELf3(A)) — Uy (A7) | H,]]
Ui(A)) = fo(AD] +ELfy (A7) — U, (AD)].

A /M /[ M

Summing over ¢ gives the result. O
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Bounds for general function classes

e Assumption 1. For all f € .% and a € &, f(a) € [0,C].

e Assumption 2. For all ¢t € N, Ry — f0(A;) conditioned on
(Hy, 0, Ay) is o-sub-Gaussian.
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Confidence Bounds

Let Lay(f) = X0 (f(A) — Ry)?, and 5 € argminge » Loy (f).

LEMMA 3. For any 6 > 0 and f: sl R, with probability at least 1 — 6,

Ly (F) = Ly (f) + 5 If — full3. g, — 407 log(1/8)

simultaneously for all t € N,
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Confidence bounds

B(7.8,a) =80 log(N(7. a, || -||.)/8) +2t(8C + /8a2In(412/8)).
PROPOSITION 6. For all >0 and a >0, if
T =Af €T I = fF s, = /B (T 5. )
for all t €N, then

P(fﬂeﬁf?,)zl—za.
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Confidence bounds

DEerFINITION 1. The Kolmogorov dimension of a function class F is given by
logN(%, a, | -
dimy (7) = limsup w
alo log(1/a)
In particular, we have the following result.

PROPOSITION 7. For any fixed class of functions F,

BT, /1%, 1)) = 16(1 + o(1) + dim g (F)) log 1.
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Bayesian regret bounds

LemmA 4. For all T eN, ifinf .5 _f,(a) < fy(a) < sup,5_f,(a) for all €N and a € 51 with probability
at least 1 —1/T, then

T
BayesRegret(T, 7"°) < C+EY_ w5 (A,).

=1




Bayesian regret bounds

ProPOSITION 8. If (B, > 0|t €N) is a nondecreasing sequence and 7 ,:={f € F: || f —ﬁLSHl £ </ B}, then

ZT:I(w,,-!(A,) >€) < (4'87 + l)dimE(Ff', €)

2
=1 €

for all T eN and € > 0.




Bayesian regret bounds

LeEmMA 5. If (B, = 0|1 €N) is a nondecreasing sequence and 7, :={f € F: ||f—ﬁLS||Z‘E1 <./B.}, then

T
2wy, (A) <1+dimp(F, T7)C +4y/dimg(F, T-") B, T
=1

forall T eN.

ProposiTioN 10.  For any fixed class of functions F,

BayesRegret(T, 77%) < 1+ [dim,(F, T~") 4+ 1]C + 160/dim(F, T-1) (1 + o(1) 4+ dim (7)) log(T) T
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ProposiTION 8. If (B, > 0|t €N) is a nondecreasing sequence and 7, :={f € F: ||f —f:LSHZ £ =/ B} then

il(w:;,(/*,) >€) < (% + 1) dim (7, €)

for all T eN and € > 0.




Step 1: If w;(A;) > ¢, then A is e-dependent on fewer than 4837 /€
disjooint subsequences of (Ay,...,A;—1) for T > t.

wi(Ar) > e= Hf,iG T, f(Ar) — f(Ay) > €
= If A; is e-dependent on a subsequence of (Ay,..., A;_1),

k
then Y (F(4)) — £(4,))* > &
j=1

= If A; is e-dependent on K disjoint subsequences
2 2 2
then||f — fll3,5, > Ke

1 = flloge < W = 2o + W1 = 5l < 20/ < 20/Br
It’s follows that K < 4837/€2.
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Step 2: For any action sequence (a1, ...,ar), there is some element a;
that is e-dependent on at least 7/d — 1 disjoint subsequences, where
d := dimpg(F,e).
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Step 3:
Consider taking (a1, ...,a;) to be the subsequence of (Aj,..., Ar), in
which the elements satisfies wy(Ay) > e.

= 7/d—1< 487/
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LEMMA 5. If (B, =0/t €N) is a nondecreasing sequence and F,:= {f € F: ||f—f:“||2w£1 </B,}, then

T

Y ws (A) < 1+dimg(F, T7)C +4/dim (F, T-")B, T

t=1

forall T eN.




Step 1:

ProoOF. To reduce notation, write d =dim, (7,7 ') and w, = w,(A,). Reorder the sequence (w,,. .., w;) =
(w;, ..., w;), where w; >w;, >--->w,; . We have

T T T T T
Zw»;'(A,) =sz, =Zwi'1{wl' < Tﬁl} +Zw,-'l{w1' >T ') < 1+Zu)j’l{w,»l >T7').
=1 =1 r=1

=1 =1




Step 2:
o d=dimp(F,T71) > dimg(F,¢), for all e > T~
o Y1 1(w > €) < ((4Br)/€® + 1)d.
° wt>ez>zgzll(wk>e) > t.
e € < +\/(4Brd)/(t —d).

o wy < min{C,+/(467rd)/(t — d)}.
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T
S w, Huw, >T '} <dC+ Z 1! <dC+2,/d,8T] —dr—dC+4\/d,BTT.

=1 t=d+1 =0
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Thanks!
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