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Current RL success paradigm

▶ RL algorithms can learn complex behaviors in simulation, where active (on-policy) data
collection is straightforward.

Figure: Go and Game: ‘good simulator ≈ infinite accessible data with almost no expense as long as
the computation resources is provided’
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Motivation: the real-world applications

▶ In real-world applications, the performance is limited by the expense of active data
collection.

– Deploying a policy to collect new data is costly. (E.g. Recommendation systems,
DiDi/Uber.)

– Safety concern with updating/executing the policy online. (E.g. Robotic control, Healthcare
applications, autonomous driving, communication networks.)

▶ Deploying a new policy may only be done at a low frequency after extensive testing and
evaluation.

▶ Good news:
– In some of these cases, the offline dataset are often very large, potentially encompassing

years of logged experience. (Our focus today)
– We can build good simulators based on some specific applications and try to transfer what

we learn in simulators to real environments. (Sim2Real)
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Offline Datasets

Figure: We want to make use of these fixed and static offline datasets when doing RL as environment
interaction is (often) costly and even dangerous.

Introduction 6 / 61



Outline

Introduction
Motivation
Offline RL Problems

Statistical limits
Finite horizon episodic setting
Infinite horizon discounted setting

Introduction 7 / 61



Offline Reinforcement Learning

Fundamental Question:
How to effectively utilize offline datasets for future decisions while the agents are not able to

interact with the environment to gather new data?

(a) online reinforcement learning

rollout(s)

update

rollout data

(b) off-policy reinforcement learning

rollout(s)

update

rollout data

buffer

(c) offline reinforcement learning

rollout(s)

learn

buffer

data collected once 
with any policy

deployment

training phase

Figure: Pictorial illustration of classic online reinforcement learning (a), classic off-policy reinforcement
learning (b), and offline reinforcement learning (c). In online reinforcement learning. (Figure from
[Levine, Kumar, Tucker, and Fu, 2020])
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Offline Reinforcement Learning

Fundamental Question:
How to effectively utilize offline datasets for future decisions while the agents are not able to

interact with the environment to gather new data?

▶ Learning and generalizing by incorporating diverse historical experience without further
trial and errors,

– Not just imitating historical experience. (Introspective Intelligence)
▶ Better sample efficiency.
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Offline RL Problematics (I)

Insufficient coverage and Distributional shift

▶ Fixed under-explored offline dataset: dataset without enough exploration often cannot
cover enough states and actions.

▶ Even for tabular setting, there is no guarantee that the optimal policy can be found using
the under-explored dataset.

– Not possible to find optimal policy with little data coverage on the state-action region that
optimal policy frequently visits.

▶ Problems with large or continuous state and action spaces require function
approximation to generalize across states and actions.

– Under-explored data will lead to erroneous generalization of the function for state-action
pairs in under-explored region.
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Offline RL Problematics (II)

Extrapolation error from distributional shift

▶ Problems with large or continuous state and action spaces require function approximation.
▶ Erroneous generalization/extrapolation error of the state-action value function (Q-value

function) learned with function approximators leads to high bootstrapping error. [Kumar
et al., 2019, Wu et al., 2019]

Figure: Incorrectly high Q-values for OOD actions may be used for backups, leading to accumulation
of error.
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Offline RL Problematics (III)

Boostrapping Error

▶ Suppose the offline dataset is collected by the behavior policy πβ(a|s) (possibly multiple).
▶ For one transition tuple collected by behaviour policy πβ(a|s) with policy induced

state-action distribution β(s, a):

(s, a, s′) ∼ β(s, a)P (s′|s, a)

▶ Illustration via Q value iteration:

Qk+1(s, a)︸ ︷︷ ︸
Errors accumulated into Q(s,a)

← r(s, a) + γ max
a′

Qk(s′, a′)︸ ︷︷ ︸
usually query at unseen a′

– Q(s′, a′) for s′ ≁ β: Out-of-distribution (OoD) state
– Q(s′, a′) for s′ ∼ β, a′ far from πβ(a

′|s′): OoD action.Introduction 12 / 61



Offline RL Problematics (IV)

Error Propagation
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Offline RL Problematics Lead to Wrong Behavior Consequences

Figure: Learning goal-reaching policy
from offline dataset D. Wrongly linear
extrapolation! (Figure from [Luo et al.,
2019])

▶ Reward = -1 if not reaching the goal
▶ V ∗ = - minkovski distance to goal
▶ Learned (linear) value function

– Correct within the support of offline dataset D
– Wrong outside the support

▶ Resulting wrong behavior induced from learned value
▶ Conclusions: Learning from D only guarantees

accurate predictions on the offline data distribution
– e.g. Q-learning with D results over-estimation

outside the support of D.
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Statistical limits analysis setup in the episodic RL setting

▶ MDP M = (S,A, P,R,H)

– State space S, action space A, P : S ×A → ∆(S) is the transition operator,
R : S ×A → ∆(R) is the reward distribution. H ∈ Z+ is the planning horizon

▶ For simplicity, we assume a fixed initial state s1 ∈ S.
▶ A (stochastic) policy π : S → ∆(A) chooses an action a randomly based on the current

state s.
▶ The policy π induces a (random) trajectory s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH , where

a1 ∼ π1 (s1) r1 ∼ R (s1, a1) , s2 ∼ P (s1, a1) , a2 ∼ π2 (s2) , etc.
▶ To streamline our analysis, for each h ∈ [H], we use Sh ⊆ S to denote the set of states at

level h, and we assume Sh do not intersect with each other.
▶ We assume, almost surely, that rh ∈ [−1, 1] for all h ∈ [H].
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Statistical limits analysis setup in the episodic RL setting

▶ Value Functions: Given a policy π, h ∈ [H] and (s, a) ∈ Sh ×A, the Q -function and
value function are defined as:

Qπ
h(s, a) = E

[
H∑

h′=h

rh′ | sh = s, ah = a, π

]
, V π

h (s) = E

[
H∑

h′=h

rh′ | sh = s, π

]

▶ For a policy π, we define V π = V π
1 (s1) to be the value of π from the fixed initial state s1.
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Linear Function Approximation and Realizability Assumption

▶ Linear Function Approximation. A feature extractor ϕ : S ×A → Rd

– either hand-crafted feature extractor or a pre-trained neural network that transforms a
state-action pair to a d -dimensional embedding

– and the Q-functions can be predicted by linear functions of the features.
▶ Assumption 1: Linear Qπ realizability (Realizable Linear Function Approximation).
▶ For every policy π : S → ∆(A), there exists θπ1 , . . . θ

π
H ∈ Rd such that for all

(s, a) ∈ S ×A and h ∈ [H],

Qπ
h(s, a) = (θπh)

⊤
ϕ(s, a)
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Offline RL setting for statistical limits analysis

▶ In Offline RL setting,
– the agent does not have direct access to the MDP/Environment
– and instead is given access to data distributions {µh}Hh=1 where for each

h ∈ [H], µh ∈ ∆(Sh ×A) for analysis.
▶ The inputs of the agent are H datasets {Dh}Hh=1 ,

▶ and for each h ∈ [H], Dh consists i.i.d. samples of the form (s, a, r, s′) ∈
Sh ×A× R× Sh+1 tuples, where (s, a) ∼ µh, r ∼ r(s, a), s′ ∼ P (s, a).
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Offline evaluation problem

▶ Here we focus on the offline policy evaluation problem with linear function approximation:
▶ Given a policy π : S → ∆(A) and a feature extractor ϕ : S ×A → Rd,

▶ Goal: output an accurate estimate of the value of π (i.e., V π ) approximately, using the
collected datasets {Dh}Hh=1, with as few samples as possible.
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Other notations will be used later

▶ For a vector x ∈ Rd, we use ∥x∥2 to denote its ℓ2 norm.
▶ For a positive semidefinite matrix A, we use ∥A∥2 to denote its operator norm, and

σmin(A) to denote its smallest eigenvalue.
▶ For two positive semidefinite matrices A and B, we write A ⪰ B to denote the Löwner

partial ordering of matrices, i.e, A ⪰ B if and only if A−B is positive semidefinite.
▶ For a policy π : S → ∆(A), we use µπ

h to denote the marginal distribution of sh under π,
i.e., µπ

h(s) = Pr [sh = s | π].
▶ For a vector x ∈ Rd and a positive semidefinite matrix A ∈ Rd×d, we use ∥x∥A to denote√

x⊤Ax.
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Sufficient feature coverage assumption

▶ Assumption 2 (Feature Coverage).
▶ For all (s, a) ∈ S ×A, assume our feature map is bounded such that ∥ϕ(s, a)∥2 ≤ 1.

▶ Furthermore, suppose for each h ∈ [H], the data distributions µh satisfy the following
minimum eigenvalue condition:

σmin

(
E(s,a)∼µh

[
ϕ(s, a)ϕ(s, a)⊤

])
= 1/d

▶ Note that 1/d is the largest possible minimum eigenvalue due to that, for any data
distribution µ̃h, σmin

(
E(s,a)∼µ̃h

[
ϕ(s, a)ϕ(s, a)⊤

])
≤ 1

d by the fact ∥ϕ(s, a)∥2 ≤ 1 for all
(s, a) ∈ S ×A and the trace argument.
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Remark: when the horizon H = 1

▶ Remark: Clearly, for the case where H = 1, the realizability assumption (Assumption 1 ),
and feature coverage assumption (Assumption 2 ) imply that the ordinary least squares
estimator will accurately estimate θ1[Hsu, Kakade, and Zhang, 2014].

▶ Main result in this paper shows that these assumptions are not sufficient for offline policy
evaluation for long horizon problems.
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Worst-case Lower bound for Offline Policy Evaluation problem

Theorem 1.
Suppose Assumption 2 holds. Fix an algorithm that takes as input both a policy and a feature
mapping. There exists a (deterministic) MDP satisfying Assumption 1, such that for any
policy π : S → ∆(A), the algorithm requires Ω

(
(d/2)H

)
samples to output the value of π up

to constant additive approximation error with probability at least 0.9.
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Remarks on the Lower bound

▶ Remark 1 (The sparse reward case). As stated, the theorem uses a deterministic MDP
(with stochastic rewards). See Appendix A for another hard case where the transition is
stochastic and the reward is deterministic and sparse (only occurring at two states at
h = H ).
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Remarks on the Lower bound

▶ Remark 2 (Least-Squares Policy Evaluation (LSPE) has exponential variance).
▶ Most näve algorithm here would be LSPE,

– i.e., using ordinary least squares (OLS) to estimate θπ, starting at level h = H

– and then proceeding backwards to level h = 1, using the plug-in estimator from the previous
level.

▶ Here, LSPE will provide an unbiased estimate (provided the feature covariance matrices
are full rank, which will occur with high probability).

▶ Interestingly, as a direct corollary, the above theorem implies that LSPE has exponential
variance in H.

▶ Later we will have a more detailed discussion on LSPE. More generally, our theorem
implies that there is no estimator that can avoid such exponential dependence in the
offline setting.
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Remarks on the Lower bound
▶ Remark 3 (Least-Squares Value Iteration (LSVI) versus Least-Squares Policy

Iteration (LSPI)).
▶ The most naive algorithm here would be LSVI,

– i.e., using ordinary least squares (OLS) to estimate θ∗, starting at level h = H

– and then proceeding backwards to level h = 1, using the plug-in estimator from the previous
level and the bellman operator.

▶ As a corollary, the above theorem implies that LSVI will require an exponential number of
samples to find a near-optimal policy.

▶ On the other hand, if the regression targets are collected by using rollouts (i.e. on-policy
sampling) as in LSPI [Lagoudakis and Parr, 2003], then a polynomial number of samples
suffice. See Section D in [Du et al., 2020 ] for an analysis.

▶ Therefore, Theorem 4.1 implies an exponential separation on the sample complexity
between LSVI and LSPI. Of course, LSPI requires adaptive data samples (why?) and thus
does not work in the offline setting.
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Hard instance construction

▶ Feature dimension d assumed to be even. Denote d̂ := d/2 for convenience.
▶ State Space, Action Space and Transition Operator.
▶ The action space A = {a1, a2} .
▶ For each h ∈ [H],Sh contains d̂+ 1 states s1h, s

2
h, . . . , s

d̂
h and sd̂+1

h .

▶ For each h ∈ [H − 1], for each c ∈ {1, 2, . . . , d̂+ 1}, we have

P (sch, a) =

{
sd̂+1
h+1 a = a1

sch+1 a = a2
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Hard instance construction

▶ Reward Distributions. Let 0 ≤ r0 ≤ d̂−H/2 be a parameter to be determined.
▶ For each (h, c) ∈ [H − 1]× [d̂] and a ∈ A, we set R (sch, a) = 0

▶ and for c = d̂+ 1, we set

R
(
sd̂+1
h , a

)
= r0 ·

(
d̂(H−(h−1))/2 − d̂(H−h)/2

)
.

▶ For the last level H, for each c ∈ [d̂] and a ∈ A, we set

R (scH , a) =

{
1 with probability (1 + r0) /2

−1 with probability (1− r0) /2

so that E [R (scH , a)] = r0. Moreover, for all actions a ∈ A, R
(
sd̂+1
H , a

)
= r0 · d̂1/2
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Hard instance construction

▶ Feature Mapping.
▶ Let e1, e2, . . . , ed be a set of orthonormal vectors in Rd. Here, one possible choice is to set

e1, e2, . . . , ed to be the standard basis vectors.
▶ For each (h, c) ∈ [H]× [d̂], we set ϕ (sch, a1) = ec, ϕ (sch, a2) = ec+d̂,

▶ and for c = d̂+ 1, set
ϕ
(
sd̂+1
h , a

)
=

1

d̂1/2

∑
c∈[d̂]

ec

for all a ∈ A
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Verifying Realizability Assumption

Lemma 2.
For every policy π : S → ∆(A), for each h ∈ [H], for all (s, a) ∈ Sh ×A, we have
Qπ

h(s, a) = (θπh)
⊤
ϕ(s, a) for some θπh ∈ Rd

▶ Proof. We first verify Qπ is linear for the first H − 1 levels. For each
(h, c) ∈ [H − 1]× [d̂], we have

Qπ
h (s

c
h, a1) = R (sch, a1)+R

(
sd̂+1
h+1, a1

)
+R

(
sd̂+1
h+2, a1

)
+. . .+R

(
sd̂+1
H , a1

)
= r0 ·d̂(H−h)/2

▶ Moreover, for all a ∈ A,

Qπ
h

(
sd̂+1
h , a

)
= R

(
sd̂+1
h , a

)
+R

(
sd̂+1
h+1, a1

)
+R

(
sd̂+1
h+2, a1

)
+. . .+R

(
sd̂+1
H , a1

)
= r0·d̂(H−h+1)/2
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Verifying Realizability Assumption (Cont.)

▶ Therefore, if we define

θπh =

d̂∑
c=1

r0 · d̂(H−h)/2 · ec +
d̂∑

c=1

Qπ
h (s

c
h, a2) · ec+d̂

then Qπ
h(s, a) = (θπh)

⊤
ϕ(s, a) for all (s, a) ∈ Sh ×A

▶ Now we verify that the Q-function is linear for the last level.
▶ Clearly, for all c ∈ [d̂] and a ∈ A, Qπ

H (scH , a) = r0 and Qπ
H

(
sd̂+1
H , a

)
= r0 ·

√
d̂.

▶ Thus by defining θπH =
∑d

c=1 r0 · ec, we have Qπ
H(s, a) = (θπH)

⊤
ϕ(s, a) for all

(s, a) ∈ SH ×A
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Verifying the Feature Converage Assumption

▶ The Data Distributions. For each level h ∈ [H], the data distribution µh is a uniform
distribution over

{(
s1h, a1

)
,
(
s1h, a2

)
,
(
s2h, a1

)
,
(
s2h, a2

)
, . . . ,

(
sd̂h, a1

)
,
(
sd̂h, a2

)}
.

▶ Notice that
(
sd̂+1
h , a

)
is not in the support of µh for all a ∈ A.

▶ It can be seen that,

E(s,a)∼µh

[
ϕ(s, a)ϕ(s, a)⊤

]
=

1

d

d∑
c=1

ece
⊤
c =

1

d
I
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Lower bound

▶ We show that it is information-theoretically hard for any algorithm to distinguish the case
r0 = 0 and r0 = d̂−H/2.

▶ We fix the initial state to be sd̂+1
1 , and consider any policy π : S → ∆(A).

a. When r0 = 0, all reward values will be zero, and thus V π(sd̂+1
1 ) = 0

b. When r0 = d̂−H/2, the value of π would be V π(sd̂+1
1 ) = r0 · d̂H/2 = 1.

▶ Thus, if the algorithm approximates the value of the policy up to an error of 1/2, then it
must distinguish the case that r0 = 0 and r0 = d̂−H/2.
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Lower bound

▶ For the case r0 = 0 and r0 = d̂−H/2, the data distributions {µh}Hh=1 , the feature mapping
ϕ : S ×A → Rd, the policy π to be evaluated and the transition operator P are the same.

▶ Thus, in order to distinguish the case r0 = 0 and r0 = d̂−H/2, the only way is to query the
reward distribution by using sampling taken from the data distributions.

▶ For all state-action pairs (s, a) in the support of the data distributions of the first H − 1

levels, the reward distributions will be identical. This is because for all s ∈ Sh\
{
sd̂+1
h

}
and a ∈ A, we have R(s, a) = 0.

▶ For the case r0 = 0 and r0 = d̂−H/2, for all state-action pairs (s, a) in the support of the
data distribution of the last level,

R(s, a) =

{
1 with probability (1 + r0) /2

−1 with probability (1− r0) /2
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Lower bound

▶ Therefore, to distinguish the case that r0 = 0 and r0 = d̂−H/2, the agent needs to
distinguish two reward distributions

r1 =

{
1 with probability 1/2

−1 with probability 1/2

and

r2 =

 1 with probability
(
1 + d̂−H/2

)
/2

−1 with probability
(
1− d̂−H/2

)
/2

▶ It is well known that in order to distinguish r1 and r2 with probability at least 0.9, any
algorithm requires Ω

(
d̂H
)

samples. See e.g. Lemma 5.1 in [Anthony and Bartlett, 2009] .

See also [Chernoff, 1972, Mannor and Tsitsiklis, 2004].
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Remark of the lower bound

▶ The key in our construction is the state sd̂+1
h in each level, whose feature vector is defined

to be
∑

c∈[d̂] ec/d̂
1/2.

▶ In each level, sd̂+1
h amplifies the Q-values by a d̂1/2 factor, due to the linearity of the

Q-function.
▶ After all the H levels, the value will be amplified by a d̂H/2 factor.
▶ Since sd̂+1

h is not in the support of the data distribution, the only way for the agent to
estimate the value of the policy is to estimate the expected reward value in the last
level.

▶ Our construction forces the estimation error of the last level to be amplified exponentially
and thus implies an exponential lower bound.
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Hardness reduction from policy optimization to policy evaluation

▶ Although we focus on offline policy evaluation in this work, our hardness result also holds
for finding near-optimal policies under Assumption 1 in the offline RL setting with linear
function approximation.

▶ Simple reduction.
– At the initial state, if the agent chooses action a1, then the agent receives a fixed reward

value (say 0.5) and terminates.
– If the agent chooses action a2, then the agent transits to our hard instance. Therefore, in

order to find a policy with suboptimality at most 0.5, the agent must evaluate the value of
the optimal policy in our hard instance up to an error of 0.5, and hence the hardness result
holds.

Statistical limits 40 / 61



Upper bound: Low Distribution Shift or Policy Completeness are

Sufficient

▶ Notation. For each h ∈ [H], define

Λh = E(s,a)∼µh

[
ϕ(s, a)ϕ(s, a)⊤

]
to be the feature covariance matrix of the data distribution at level h.

▶ Moreover, for each h ∈ [H − 1], define

Λ̄h+1 = E(s,a)∼µh,s̄∼P (·|s,a)
[
ϕ(s̄, π(s̄))ϕ(s̄, π(s̄))⊤

]
to be the feature covariance matrix of the one-step lookahead distribution induced
by the data distribution at level h and π.
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▶ Moreover, define Λ̄1 = ϕ (s1, π (s1))ϕ (s1, π (s1))
⊤
.

▶ We define Φh to be a N × d matrix, whose i-th row is ϕ
(
sih, a

i
h

)
, and define Φ̄h+1 to be

another N × d matrix whose i-th row is ϕ
(
s̄ih, π

(
s̄ih
))

.

▶ For each h ∈ [H] and i ∈ [N ], define ξih = rih + V
(
s̄ih
)
−Q

(
sih, a

i
h

)
.

▶ Clearly, E
[
ξih
]
= 0 and

∣∣ξih∣∣ ≤ 2H.

▶ We also use ξh to denote a vector whose i-th entry is ξih
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LSPE Algorithm
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The result of ordinary LSPE

Lemma 3.
Suppose λ > 0 in Algorithm 1, and for the given policy π, there exists θ1, θ2, . . . , θd ∈ Rd such
that for each h ∈ [H], Qπ

h(s, a) = ϕ(s, a)⊤θh for all (s, a) ∈ Sh ×A. Then we have

(
Qπ (s1, π (s1))− Q̂ (s1, π (s1))

)2
=

∥∥∥∥∥
H∑

h=1

Λ̂−1
1 Φ⊤

1 Φ̄2Λ̂
−1
2 Φ⊤

2 Φ̄3 · · ·
(
Λ̂−1
h Φ⊤

h ξh − λΛ̂−1
h θh

)∥∥∥∥∥
2

Λ̄1

Proof.
See Appendix B.1.
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Low distribution shift assumption

▶ Low Distribution Shift. The first special we focus on is the case where the distribution
shift between the data distributions and the distribution induced by the policy to be
evaluated is low.

▶ To measure the distribution shift formally, our main assumption is as follows.
▶ Assumption 3. We assume that for each h ∈ [H], there exists Ch ≥ 1 such that

Λh ⪯ ChΛh.
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Upper bound under low distribution shift

Theorem 4.
Suppose for the given policy π, there exists θ1, θ2, . . . , θd ∈ Rd such that for each h ∈
[H], Qπ

h(s, a) = ϕ(s, a)⊤θh for all (s, a) ∈ Sh ×A and ∥θh∥2 ≤ H
√
d
]3

Let
λ = CH

√
d log(dH/δ)N for some C > 0. With probability at least 1− δ, for some c > 0,

(
Qπ

1 (s1, π (s1))− Q̂1 (s1, π (s1))
)2
≤ c ·

(
H∏

h=1

Ch

)
· dH5 ·

√
d log(dH/δ)

N

Proof.
See Appendix B.2.
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Illustration of error amplification on hard instance

▶ The factor
∏H

h=1 Ch in implies that the estimation error will be amplified geometrically as
the algorithm proceeds.

▶ If we run Algorithm 1 on the hard instance in Section 4, when h = H, the estimation error
on V (scH) would be roughly N−1/2 for each c ∈ [d̂].

▶ When using the linear predictor at level H to predict the value of s∗H , the error will be
amplified by d̂1/2.

▶ When h = H − 1, the dataset contains only scH−1 for c ∈ [d̂], and the estimation error on
the value of scH−1 will be the same as that of s∗H , which is roughly (d̂/N)1/2

▶ Again, the estimation error on the value of s∗H−1 will be
(
d̂2/N

)1/2
when using the linear

predictor at level H − 1.
▶ As the algorithm proceeds, the error will eventually be amplified by a factor of d̂H/2,

which corresponds to the factor
∏H

h=1 Ch in Theorem 5.2
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Explanation of
√

d̂ amplification

▶
(
V̂H(sH)− VH(sH)

)2
?

θ̂H − θH = Λ̂−1
H

(
N∑
i=1

ϕ(siH , aiH)
(
riH − rH

))

∥θ̂H − θH∥ ≤ εH

∥∥∥∥∥Λ̂−1
H

(
N∑
i=1

ϕ(siH , aiH)

)∥∥∥∥∥ ≈ εH

∥∥∥∥ d

N
I · N

d
1

∥∥∥∥ = εH
√
d

▶ Λ = 1
dI. Then C ≥ d

2 = d̂ satisfies the condition CΛ ⪰ Λ, since

Λ =
1

d

∑
c∈[d̂]

ec

∑
c∈[d̂]

ec

T

⪰ 1

d

[
1 0

0 0

]
=

1

d
Qdiag

(
d

2
, 0, · · · , 0

)
QT
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Policy Completeness Assumption

▶ Assumption 4. For the given policy π, for any h > 1 and θh ∈ Rd with
sup(s,a)∈Sh×A

∣∣ϕ(s, a)⊤θh∣∣ ≤ H, there exists θ′ ∈ Rd with ∥θ′∥2 ≤ H
√
d, such that for

any (s, a) ∈ Sh−1 ×A

E[R(s, a)] +
∑
s′∈Sh

P (s′ | s, a)ϕ (s′, π (s′))
⊤
θh = ϕ(s, a)⊤θ′
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Results under policy completeness

▶ Under Assumption 4 and the additional assumption that the feature covariance matrix of
the data distributions have lower bounded eigenvalue, i.e., σmin (Λh) ≥ λ0 for all h ∈ [H]

for some λ0 > 0,

– prior work [Chen and Jiang, 2019] has shown that for Algorithm 1, by taking N =

poly (H, d, 1/ε, 1/λ0) samples, we have
(
Qπ

1 (s1, π (s1))− Q̂1 (s1, π (s1))
)2

≤ ε.
▶ The above analysis again implies that geometric error amplification is a real issue in offline

RL, and sample-efficient offline RL is impossible unless
– the distribution shift is sufficiently low, i.e.,

∏H
h=1 Ch is bounded,

– or stronger representation condition such as policy completeness is assumed as in prior works
[Szepesvári and Munos, 2005 , Chen and Jiang, 2019].
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Notations for infinite horizon discounted setting

▶ Wang, Foster, and Kakade [2020] recently showed that in finite-horizon batch RL, the
sample complexity of evaluating a given policy π has an information-theoretic lower bound
that is exponential in the horizon, even if realizable linear features are given

– i.e., φ : S ×A → Rd such that Qπ(·) = ⟨φ(·), θπ⟩ for some parameter θπ ∈ Rd
)

– and data provides good feature coverage (i.e., E
[
φφ⊤] has lower-bounded eigenvalues under

the data distribution).
▶ Amortila, Jiang, and Xie [2020] show that its analogy in the discounted setting has a

stronger statement (infinite sample complexity) with a simpler construction (1-d feature, 2
states, and arbitrary discount factor.)
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Construction

▶ Consider the deterministic MDP in Figure with a discount factor γ ∈ (0, 1), where every
state only has 1 action (which we omit in the notations).

▶ sA transitions to sB with 0 reward, and sB has a self-loop with r reward per step.
▶ The batch data only contains the tuple (sA, 0, sB) .

▶ The feature map is 1-dimensional: φ (sA) = γ and φ (sB) = 1.

▶ Clearly, without data from sB , the learner cannot know the value of r, hence cannot
determine the value of sA or sB , even with an infinite amount of data.
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Verifying realizabilty assumptions

▶ Realizability: We show that V π(·) = ⟨φ(·), θ⟩ for some θ ∈ R.
▶ By the Bellman equation, V π (sA) = γV π (sB).
▶ Therefore, V π (sA) = ⟨φ (sA) , V

π (sB)⟩.
▶ Similarly V π (sB) = 1 · V π (sB) = ⟨φ (sB) , V

π (sB)⟩ .
▶ So V π(·) is always linearly-realizable, with θ = V π (sB) =

r
1−γ being the unknown

coefficient.
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Verifying coverage assumptions

▶ Coverage: Translating the condition of Wang et al. (2020) to the discounted case, it is
required that: (1) ∥φ(·)∥2 ≤ 1 always holds, and (2) E

[
φφ⊤] has polynomially lower

bounded eigenvalues.
▶ (1) is satisfied in our construction.
▶ (2) since we only have data from sA, the feature covariance matrix under the data

distribution is φ (sA)φ (sA)
⊤
= γ2, whose only eigenvalue is γ2 and is well above 0 as

long as γ is.
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Extensions for general d

▶ Although it is sufficient to prove the lower bound for d = 1, the construction easily scales
to arbitrary d :

▶ We simply make d copies of the construction in Figure 1, and assign a coordinate of
φ : S → Rd to each copy. Let data be uniform over the sA of all copies, so the feature
covariance matrix is γ2/d · I

ϕ(siA) :=



0
...
γ

0
...


(i− th component)
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Extensions for general d and the controlled setting

▶ The extension to the controlled case is similar.
▶ Let a denote the action of sA in Figure.
▶ We introduce a second action a′ for sA that transitions to sC with 0 reward, and sC is

absorbing with reward r′.

▶ Let the 2-dimensional feature map be: φ (sA, a) = [γ, 0]⊤,

φ (sA, a
′) = [0, γ]⊤, φ (sB) = [1, 0]⊤, φ (sC) = [0, 1]⊤.

▶ It is easy to verify that Q⋆ is realizable by take θ = [ r
1−γ ,

r′

1−γ ].
▶ However, Q⋆ (sA, a) =

γ
1−γ r and Q⋆ (sA, a

′) = γ
1−γ r

′ can independently take arbitrary
values between [0, γ/(1− γ)] (assuming rewards lie in [0,1]), so the learner cannot choose
a near-optimal action even with infinite data.
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Lower bound proposition

▶ Proposition 1 (Informal). For any d ≥ 1, γ ∈ (0, 1), given realizable linear features, the
value function learned by any batch RL algorithm must have Ω(1) worst-case error, even
with an infinitely large dataset that has Θ(1/d) feature coverage.
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Final Remark

▶ While the discounted setting allows a very simple construction for the lower bound, this
does not imply that the construction for the finite-horizon setting can be simplified in a
similar manner.

▶ In fact, we believe that the careful construction of [Wang et al., 2020] that cleverly
exponentiates a negligibly small error is necessary for the finite horizon setting.

▶ Such a difference between the finite-horizon setting and the discounted setting, however,
does challenge the conventional wisdom that the results in the finite horizon setting and
the discounted setting are often similar and translate to each other with
H = O(1/(1− γ)) up to minor differences.

▶ Are these two lower bounds ”essentially the same”, or does their difference imply some
fundamental difference between the finite-horizon and the discounted settings?
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