### Information-Directed Sampling

Presenter: Hao Liang

The Chinese University of Hong Kong, Shenzhen, China

December 24, 2020

Mainly based on:

Daniel Russo, Benjamin Van Roy (2018) Learning to Optimize via Information-Directed Sampling. Operations Research 66(1):230-252. https://doi.org/10.1287/opre.2017.1663

# Introduction

- Classical MAB problem requires striking a balance between exploring poorly understood actions and exploiting previously acquired knowledge to attain high rewards.
- There has been significant interest in addressing problems with more complex information structures, in which sampling one action can provide information about other actions.
  - e.g. linear bandit
- ► UCB and TS can achieve strong performance in the linear bandit problem
- However, these approaches can perform very poorly when faced with more complex information structures.
- Information-directed sampling (IDS) is proposed to deal with online decision making with complex information structures.

# Setting

- Bayesian formulation: uncertain quantities are modeled as random variables.
- ► The decision maker (DM) sequentially chooses actions (A<sub>t</sub>)<sub>t∈N</sub> from a finite action set A and observes the corresponding outcomes (Y<sub>t,At</sub>)<sub>t∈N</sub>.
- A random outcome  $Y_{t,a} \in \mathscr{Y}$  associated with each action  $a \in \mathscr{A}$  and time  $t \in \mathbb{N}$ .
- ▶  $Y_t \equiv (Y_{t,a})_{a \in \mathscr{A}}$  the vector of outcomes at time  $t \in \mathbb{N}$ .
- ▶ There is a random variable  $\theta$  such that conditioned on  $\theta$ ,  $(Y_t)_{t \in \mathbb{N}}$  is an iid sequence.
  - MAB with independent arms:  $Y_t = \theta + \eta_t$ ,  $\eta_t$  iid zero-mean noise
- Randomness in θ captures the DM's prior uncertainty about the environment, and the remaining randomness in Y<sub>t</sub> captures intrinsic randomness in observed outcomes.

# Policy

- $A_t$  is chosen based on the history of observations  $\mathscr{F}_t = (A_1, Y_{1,A_1}, \dots, A_{t-1}, Y_{t-1,A_{t-1}})$ up to time t.
- A randomized policy  $\pi = (\pi_t)_{t \in \mathbb{N}}$  is a sequence of deterministic functions, where  $\pi_t (\mathscr{F}_t)$  specifies a probability distribution over the action set  $\mathscr{A}$ .
- Let  $\mathscr{D}(\mathscr{A})$  denote the set of probability distributions over  $\mathscr{A}$ .
- $\blacktriangleright A_t \sim \pi_t \left( \mathscr{F}_t \right) \in \mathscr{D}(\mathscr{A})$
- ▶ With some abuse of notation, write  $\pi_t = \pi_t(\mathscr{F}_t)$ , where  $\pi_t(a) = \mathbb{P}(A_t = a \mid \mathscr{F}_t)$ .

# Regret

- ▶ The agent associates a reward R(y) with each outcome  $y \in \mathscr{Y}$  via a fixed and known function  $R(): \mathscr{Y} \to \mathbb{R}$ .
- Let  $R_{t,a} = R(Y_{t,a})$  denote the realized reward of action a at time t.
- Uncertainty about  $\theta$  induces uncertainty about  $A^* \in \arg \max_{a \in \mathscr{A}} \mathbb{E}[R_{1,a} \mid \theta]$
- The expected Bayesian regret

$$\mathbb{E}[\operatorname{Regret}(T,\pi)] = \mathbb{E}\left[\sum_{t=1}^{T} \left(R_{t,A^*} - R_{t,A_t}\right)\right] = \mathbb{E}[\mathbb{E}[\sum_{t=1}^{T} \left(R_{t,A^*} - R_{t,A_t}\right)|\theta]],$$

where the expectation is taken over the randomness in the actions  $A_t$  and the outcomes  $Y_t$ , and over the prior distribution over  $\theta$ .

## **Further notations**

- Set  $\alpha_t(a) = \mathbb{P}(A^* = a \mid \mathscr{F}_t)$  to be the posterior distribution of  $A^*$ .
- ▶ KL divergence between P and Q is  $D_{\text{KL}}(P||Q) = \int \log\left(\frac{dP}{dQ}\right) dP$
- ▶ Shannon entropy  $H(P) = -\sum_{x \in \mathscr{X}} P(x) \log(P(x))$
- $\blacktriangleright$  The mutual information under the posterior distribution between  $X_1$  and  $X_2$

$$I_{t}(X_{1};X_{2}) := D_{\mathrm{KL}}\left[\mathbb{P}\left((X_{1},X_{2}) \in \cdot \mid \mathscr{F}_{t}\right) \|\mathbb{P}\left(X_{1} \in \cdot \mid \mathscr{F}_{t}\right)\mathbb{P}\left(X_{2} \in \cdot \mid \mathscr{F}_{t}\right)\right]$$

▶  $I_t(X_1; X_2)$  is a random variable because of its dependence on  $\mathbb{P}(\cdot | \mathscr{F}_t)$ .

# Further notations (Cont')

Information gain from an action a is

$$g_{t}(a) := I_{t}\left(A^{*}; Y_{t,a}\right) = \mathbb{E}\left[H\left(\alpha_{t}\right) - H\left(\alpha_{t+1}\right) \mid \mathscr{F}_{t}, A_{t} = a\right]$$

▶ Expected instantaneous regret of action a is  $\Delta_t(a) := \mathbb{E} \left[ R_{t,A^*} - R_{t,a} \mid \mathscr{F}_t \right]$ 

$$\blacktriangleright \ g_t(\pi) := \sum_{a \in \mathscr{A}} \pi(a) g_t(a) \text{ and } \Delta_t(\pi) := \sum_{a \in \mathscr{A}} \pi(a) \Delta_t(a)$$

- Information ratio  $\Psi_t(\pi) := \frac{\Delta_t(\pi)^2}{g_t(\pi)}$
- $\blacktriangleright \ \mathbb{E}_t[\cdot] = \mathbb{E}\left[\cdot \mid \mathscr{F}_t\right] \text{ and } \mathbb{P}_t(\cdot) = \mathbb{P}\left(\cdot \mid \mathscr{F}_t\right)$

# Motivation

- ▶ In principle Bayes-optimal policy can be computed via dynamic programming.
- Computing or even storing this Bayes-optimal policy is generally infeasible.
- How to develop computationally efficient heuristics?
- ▶ IDS is motivated by accounting for kinds of information that alternatives fail to address:
  - Indirect information
  - Cumulating information
  - Irrelevant information
- Refer to IDS as a design principle rather than an algorithm.
  - Does not specify basic computational steps but only an abstract objective.
  - Need to design tractable algorithms for specific problem classes.

# Information-Directed Sampling

- Information ratio (IR)  $\Psi_t(\pi) = \frac{\Delta_t(\pi)^2}{g_t(\pi)}$  measures the squared regret incurred per-bit of information acquired about the optimum.
- ▶ IDS balances between exploration and exploitation via minimizing IR at each round

$$\pi_t^{\text{IDS}} \in \underset{\pi \in \mathscr{D}(\mathscr{A})}{\arg\min} \Psi_t(\pi)$$

- ▶ IDS myopically minimizes this notion of cost-per-bit of information in each period.
- IDS is stationary randomized policy
  - Each action is randomly sampled
  - This action distribution is determined by the posterior distribution of  $\theta$  and otherwise independent of the time period

# The role of randomization in policy

- Two actions  $\mathscr{A} = \{a_1, a_2\}$
- $\textbf{P} \ R_{a_1} \text{ is known to be distributed } \mathsf{Ber}(\frac{1}{2}), \ R_{a_2} \sim \begin{cases} \mathsf{Ber}(\frac{3}{4}) & \mathsf{w.p.} \ p_0 \\ \mathsf{Ber}(\frac{1}{4}) & \mathsf{w.p.} \ 1-p_0 \end{cases}$
- Consider a stationary deterministic policy where each action A<sub>t</sub> is a deterministic function of the posterior probability p<sub>t-1</sub>
- Suppose that for some  $p_0 > 0$ , the policy selects  $A_1 = a_1$
- ▶  $p_t = p_0$  and  $A_t = a_1$  for all t and expected regret grows linearly with time.

• If 
$$A_1 = a_2$$
 for all  $p_0 > 0$  then  $A_t = a_2$  for all  $t$ 

#### Algorithm Design Principles

# The role of randomization in policy (Cont')

- For any deterministic stationary policy, there exists a prior probability p<sub>0</sub> such that expected regret grows linearly with time.
- ▶ A sublinear bound on (worst case) expected regret of IDS can be established.
- The expected regret of IDS does not grow linearly as does that of any stationary deterministic policy for the preceding example.
- Increasing complexity? An important property simplifies solutions.
- ▶ There exists a distribution with support of at most two actions that attains the minimum.

# Alternative design principles

▶ UCB:  $A_t \in \arg \max_{a \in \mathscr{A}} B_t(a)$  with maximal upper confidence bound

$$\blacktriangleright \mathsf{TS:} \ \pi_t^{\mathrm{TS}} = \alpha_t = \mathbb{P}\left(A^* = \cdot \mid \mathscr{F}_t\right)$$

- also called probability matching: matching action distribution to posterior distribution of optimal action
- Specific UCB and TS algorithms are known to be asymptotically efficient for MAB with independent arms and satisfy strong regret bounds for problems with dependent arms.
- UCB and TS do not pursue indirect information and thus can perform very poorly relative to IDS for some natural problem classes.
- ▶ They restrict attention to sampling actions that have some chance of being optimal.

# **Example 2: A Revealing Action**

•  $\mathscr{A} = \{0, 1, \dots, K\}$  and  $\theta$  is drawn uniformly at random from a finite set  $\Theta = \{1, \dots, K\}$ •  $Y_{t,a} = R_{t,a}$ . Under  $\theta$ , the reward of action a is  $R_{t,a} = \begin{cases} 1 & \theta = a, \\ 1/2\theta & a = 0, \\ 0 & otherwise. \end{cases}$ 

> Action 0 never yields the maximal reward, and is therefore never selected by TS or UCB.

- They will select among actions {1,...,K}, ruling out only a single action at a time until a reward 1 is earned and the optimal action is identified.
- ▶ Their expected regret therefore grows linearly in *K*.

# **Regret bounds**

- Establishes regret bounds for IDS for several classes of online optimization problems
  - Uncorrelated arms
  - Linear bandit
  - Full information
- These regret bounds follow from the information theoretic analysis of TS (Russo and Van Roy 2016), where regret bound for any policy is bounded in terms of its IR.
- Because the IR of IDS is always smaller than that of TS, the bounds on regret of TS immediately yield regret bounds for IDS.

## **General bound**

### **Proposition 1.**

For any policy  $\pi = (\pi_1, \pi_2, \pi_3, \ldots)$  and time  $T \in \mathbb{N}$ ,

 $\mathbb{E}[\operatorname{Regret}(T,\pi)] \leqslant \sqrt{\bar{\Psi}_T(\pi)H(\alpha_1)T},$ 

where  $\bar{\Psi}_T(\pi) \equiv \frac{1}{T} \sum_{t=1}^{I} \mathbb{E}_{\pi} \left[ \Psi_t(\pi_t) \right]$  is the average expected information ratio under  $\pi$ . Corollary 0.1.

For any  $\pi = (\pi_1, \pi_2, ...)$  such that  $\Psi_t(\pi_t) \leqslant \lambda$  almost surely for each  $t \in [T]$ . Then,

$$\mathbb{E}[\operatorname{Regret}(T,\pi)] \leqslant \sqrt{\lambda H(\alpha_1) T}$$

 H(α<sub>1</sub>) captures the magnitude of the decision-maker's prior uncertainty about which action is optimal.
 Regret Bounds

# Specialized Bounds on the Minimal Information Ratio

- The bounds on the IR roughly captures the extent to which sampling some actions allows the DM to make inferences about other actions.
  - Worst case/independent arms:  $\Psi_t\left(\pi_t^{\mathrm{IDS}}
    ight) \leq |\mathscr{A}|/2$
  - Best case/full information:  $\Psi_t \left( \pi_t^{\text{IDS}} \right) \le 1/2$
  - Intermediate case/linear bandit:  $\Psi_t\left(\pi_t^{\mathrm{IDS}}\right) \leq d/2$
- ► The proofs of these bounds follow from the analysis of TS and the fact that  $\Psi_t \left( \pi_t^{\text{IDS}} \right) \leq \Psi_t \left( \pi_t^{\text{TS}} \right)$
- Some work by Bubeck et al. (2015) and Bubeck and Eldan (2016) bounds the IR when the reward function is convex.

► Assumption 1: 
$$\sup_{\bar{y} \in \mathscr{Y}} R(\bar{y}) - \inf_{\underline{y} \in \mathscr{Y}} R(\underline{y}) \leq 1$$

#### Regret Bounds

# Worst case

#### **Proposition 2.**

For any  $t \in \mathbb{N}, \Psi_t\left(\pi_t^{\mathrm{IDS}}\right) \leqslant |\mathscr{A}|/2$  almost surely.

- Combining Proposition 2 with Corollary 0.1 shows that  $\mathbb{E}\left[\operatorname{Regret}\left(T, \pi^{\mathrm{IDS}}\right)\right] \leq \sqrt{\frac{1}{2}|\mathscr{A}|H(\alpha_1)T}.$
- This bound holds for general MAB problems with arbitrary information structure. Can be much smaller under specific information structures.

# **Full information**

▶ The outcome  $Y_{t,a}$  is perfectly revealed by observing  $Y_{t,\tilde{a}}$  for some  $\tilde{a} \neq a$ .

### **Proposition 3.**

Suppose for each  $t \in \mathbb{N}$  there is a random variable  $Z_t : \Omega \to \mathscr{Z}$  such that for each  $a \in \mathscr{A}, Y_{t,a} = (a, Z_t)$ . Then for all  $t \in \mathbb{N}, \Psi_t \left( \pi_t^{\text{IDS}} \right) \leq \frac{1}{2}$  almost surely.

- Combining this result with Corollary 0.1 shows that  $\mathbb{E}\left[\operatorname{Regret}\left(T, \pi^{\operatorname{IDS}}\right)\right] \leq \sqrt{\frac{1}{2}H(\alpha_1)T}$ .
- ► A worst-case bound on  $H(\alpha_1)$  yields  $\mathbb{E}\left[\operatorname{Regret}\left(T, \pi^{\operatorname{IDS}}\right)\right] \leqslant \sqrt{\frac{1}{2}\log(|\mathscr{A}|)T}$ .
- ▶ Dani et al. (2007) show this bound is order optimal:  $\inf_{\pi} \mathbb{E}[\operatorname{Regret}(T, \pi)] \ge c_0 \sqrt{\log(|\mathscr{A}|)T}$

# Linear bandit

Observations from taking one action allow the DM to make inferences about other actions.

#### **Proposition 4.**

If  $\mathscr{A} \subset \mathbb{R}^d$ ,  $\Theta \subset \mathbb{R}^d$ , and  $\mathbb{E}[R_{t,a} \mid \theta] = a^T \theta$  for each action  $a \in \mathscr{A}$ , then  $\Psi_t(\pi_t^{\text{IDS}}) \leq d/2$  almost surely for all  $t \in \mathbb{N}$ .

- ► This result shows the inequalities  $\mathbb{E} \left[ \text{Regret} \left( T, \pi^{\text{IDS}} \right) \right]$  $\leqslant \sqrt{\frac{1}{2}H(\alpha_1) dT} \leqslant \sqrt{\frac{1}{2}\log(|\mathscr{A}|) dT}$  for linear bandit problems.
- ▶ Dani et al. (2007) again show this bound is order optimal in the sense that, when the action set is  $\mathscr{A} = \{0, 1\}^d$  such that  $\inf_{\pi} \mathbb{E}[\operatorname{Regret}(T, \pi)] \ge c_0 \sqrt{\log(|\mathscr{A}|) dT}$ .

#### Regret Bounds

- Provide guidance and examples of designing efficient computational methods that implement IDS for specific problem classes.
- Assume posterior distributions can be efficiently computed and stored, e.g., tractable finite uncertainty sets or conjugate priors.
- Focus in the problem of generating an action  $A_t$  given the posterior distribution over  $\theta$ .
- ▶ Two of the algorithms approximate IDS using samples from the posterior distribution.

# **Evaluating the Information Ratio**

- Given a finite action set  $\mathscr{A} = \{1, \dots, K\}$ , view action distribution  $\pi$  as a K-dimensional vector of problem probabilities.
- ► No general efficient procedure for computing <sup>→</sup> and <sup>g</sup> given a posterior distribution, require computing integrals over possibly high-dimensional spaces.
- Such computation can often be carried out efficiently by leveraging the functional form of the specific posterior distribution and often requires numerical integration.

## **Finite Sets**

$$\blacktriangleright \Theta = \{1, \dots, L\}, \ \mathscr{A} = \{1, \dots, K\}, \ \mathscr{Y} = \{1, \dots, N\}.$$

- The reward function  $R: y \mapsto \mathbb{R}$  is arbitrary.
- Let  $p_1$  be the prior probability mass function of  $\theta$  and let  $q_{\theta,a}(y)$  be the probability, conditioned on  $\theta$ , of observing y when action a is selected.
- $\blacktriangleright$   $p_t$  can be computed recursively via Bayes' rule:

$$p_{t+1}(\theta) \leftarrow \frac{p_t(\theta)q_{\theta,A_t}\left(Y_{t,A_t}\right)}{\sum_{\theta' \in \Theta} p_t\left(\theta'\right)q_{\theta',A_t}\left(Y_{t,A_t}\right)}$$

# Finite Sets (Cont')

$$\begin{array}{l} \mbox{Algorithm 1 (finitelR } (L,K,N,R,p,q)) \\ 1: \Theta_a \leftarrow \left\{ \theta \mid a = \arg\max_{a'} \Sigma_y q_{\theta,a'}(y) R(y) \right\}, \quad \forall \theta \\ 2: \ p(a^*) \leftarrow \sum_{\theta \in \Theta_{a^*}} p(\theta), \quad \forall a^* \\ 3: \ p_a(y) \leftarrow \Sigma_\theta p(\theta) q_{\theta,a}(y), \quad \forall a, y, \theta \\ 4: \ p_a(a^*,y) \leftarrow \frac{1}{p(a^*)} \sum_{\theta \in \Theta_a^*} q_{\theta,a}(y), \quad \forall a, y, a^* \\ 5: \ R^* \leftarrow \sum_a \sum_{\theta \in \Theta_a} \Sigma_y p(\theta) q_{\theta,a}(y) R(y) \\ 6: \ \vec{g}_a \leftarrow \Sigma_{a^*,y} p_a(a^*,y) \log \frac{p_a(a^*,y)}{p(a^*)p_a(y)}, \quad \forall a \\ 7: \ \vec{\Delta}_a \leftarrow R^* - \sum_{\theta} p(\theta) \Sigma_y q_{\theta,a}(y) R(y), \quad \forall a \\ 8: \ \text{return } \vec{\Delta}, \vec{g} \end{array}$$

# **Optimizing the Information Ratio**

IDS selects an action by solving

$$\min_{\pi \in \mathscr{S}_{K}} \frac{\left(\pi^{\top} \vec{\Delta}\right)^{2}}{\pi^{\top} \vec{g}}$$
(1)

where  $\mathscr{S}_{K} = \left\{ \pi \in \mathbb{R}_{+}^{K} : \Sigma_{k} \pi_{k} = 1 \right\}$  is the K-dimensional unit simplex.

#### **Proposition 5.**

For all  $\vec{\Delta}, \vec{g} \in \mathbb{R}^K_+$  such that  $\vec{g} \neq 0$ , the function  $\pi \mapsto (\pi^\top \vec{\Delta})^2 / \pi^\top \vec{g}$  is convex on  $\{\pi \in \mathbb{R}^K : \pi^\top \vec{g} > 0\}$ . Moreover, this function is minimized over  $\mathscr{S}_K$  by some  $\pi^*$  for which  $|\{k : \pi^*_k > 0\}| \leq 2$ 

# **Optimizing the Information Ratio (Cont')**

- While IDS is a randomized policy, it suffices to randomize over two actions.
- $\triangleright$  q can be computed by solving for the first-order necessary condition or approximated by a bisection method.

► The compute time of this algorithm scales with 
$$K^2$$
.  
Algorithm 3(IDSAction( $K, \vec{\Delta}, \vec{g}$ ))  
1:  $q_{a,a'} \leftarrow \arg \min_{q' \in [0,1]} \left[ q' \vec{\Delta}_a + (1 - q') \vec{\Delta}_{a'} \right]^2 / \left[ q' \vec{g}_a + (1 - q') \vec{g}_{a'} \right], \quad \forall a < K, a' > a$   
2:  $(a^*, a^{**}) \leftarrow \arg \min_{a < K, a' > a} \left[ q_{a,a'} \vec{\Delta}_a + (1 - q_{a,a'}) \vec{\Delta}_{a'} \right]^2 / \left[ q_{a,a'} \vec{g}_a + (1 - q_{a,a'}) \vec{g}_{a'} \right]$   
3: Sample  $b \sim$  Bernoulli  $(q_{a^*,a^*})$   
4: return  $ba^* + (1 - b)a^{**}$ 

#### Computational methods

\_\_\_\_

### **Approximating the Information Ratio**

- The dominant source of complexity in computing  $\vec{\Delta}$  and  $\vec{g}$  is in the calculation of requisite integrals, which can require integration over high-dimensional spaces.
- Replace integrals with sample-based estimates.
- $\blacktriangleright$  Takes as input M representative samples of  $\theta$

Algorithm 2 (Sample IR  $(K, q, R, M, \theta^1, \dots, \theta^M)$ )  $1: \hat{\Theta}_a \leftarrow \left\{ m \mid a = \arg \max_{a'} \sum_{y} q_{\theta^m, a'}(y) R(y) \right\}$ 2:  $\hat{p}(a^*) \leftarrow \left| \hat{\Theta}_{a^*} \right| / M, \quad \forall a^*$ 3:  $\hat{p}_{q}(u) \leftarrow \Sigma_{m} q_{q} \rho_{m}(u)/M$ .  $\forall u$ 4:  $\hat{p}_a(a^*, y) \leftarrow \sum_{m \in \Theta_a} q_{a, \theta^m}(y)/M, \quad \forall a^*, y$  $5: \hat{R}^* \leftarrow \sum_{a,y} \hat{p}_a(a,y) R(y)$  $6: \vec{g}_a \leftarrow \Sigma_{a^*,y} \hat{p}_a \left(a^*, y\right) \log \frac{\hat{p}_a(a^*, y)}{\hat{p}(a^*)\hat{p}_a(y)}, \quad \forall a$ 7:  $\vec{\Delta}_a \leftarrow R^* - M^{-1} \Sigma_m \Sigma_u g_{\theta^m a}(y) R(y), \quad \forall a$ 8: return  $\vec{\Delta}$ .  $\vec{a}$ Computational methods

# Variance-based information ratio

$$g_{t}(a) = I_{t} (A^{*}; Y_{t,a})$$

$$= \sum_{a^{*} \in \mathbb{A}} \mathbb{P}_{t} (A^{*} = a^{*}) \cdot D_{\mathrm{KL}} (\mathbb{P}_{t} (Y_{t,a} = \cdot \mid A^{*} = a^{*}) ||\mathbb{P}_{t} (Y_{t,a} = \cdot))$$

$$\geqslant \sum_{a^{*} \in \mathbb{A}} \mathbb{P}_{t} (A^{*} = a^{*}) \cdot D_{\mathrm{KL}} (\mathbb{P}_{t} (R_{t,a} = \cdot \mid A^{*} = a^{*}) ||\mathbb{P}_{t} (R_{t,a} = \cdot))$$

$$\geqslant 2 \sum_{a^{*} \in \mathscr{A}} \mathbb{P}_{t} (A^{*} = a^{*}) (\mathbb{E}_{t} [R_{t,a} \mid A^{*} = a^{*}] - \mathbb{E}_{t} [R_{t,a}])^{2}$$

$$= 2\mathbb{E}_{t} \left[ (\mathbb{E}_{t} [R_{t,a} \mid A^{*}] - \mathbb{E}_{t} [R_{t,a}])^{2} \right]$$

$$= 2 \operatorname{Var}_{t} (\mathbb{E}_{t} [R_{t,a} \mid A^{*}])$$

$$\blacktriangleright \operatorname{Let} v_{t}(a) := \operatorname{Var}_{t} (\mathbb{E}_{t} [R_{t,a} \mid A^{*}])$$

▶ Implication: Actions with high variance  $v_t(a)$  must yield substantial information about which action is optimal.

# Variance-based information ratio

$$\min_{\pi \in \mathscr{S}_K} \frac{\left(\pi^\top \vec{\Delta}\right)^2}{\pi^\top \vec{v}}$$

#### **Proposition 6.**

Suppose  $\sup_{y} R(y) - \inf_{y} R(y) \leq 1$  and

$$\pi_t \in \operatorname*{arg\,min}_{\pi \in \mathscr{S}_K} \frac{\Delta_t(\pi)^2}{v_t(\pi)}$$

Then  $\Psi_t(\pi_t) \leq |\mathscr{A}|/2$ . Moreover, if  $\mathscr{A} \subset \mathbb{R}^d$ ,  $\Theta \subset \mathbb{R}^d$ , and  $\mathbb{E}[R_{t,a} \mid \theta] = a^T \theta$  for each action  $a \in \mathscr{A}$ , then  $\Psi_t(\pi_t) \leq d/2$ .

# Variance-based IDS: linear bandit

$$\begin{split} & \mathscr{A} = \{1, \dots, K\}, y = \mathbb{R}, \text{ and } R(y) = y. \ \theta \in \mathbb{R}^d \sim \mathcal{N}(\mu_1, \Sigma_1). \\ & \mathsf{A} \text{ known feature matrix } \Phi = [\Phi_1, \cdots, \Phi_K] \in \mathbb{R}^{d \times K}, \ Y_{t,A_t} | \theta, A_t \sim \mathcal{N}\left(\Phi_{A_t}^\top \theta, \eta^2\right). \\ & \Sigma_{t+1} = \left(\Sigma_t^{-1} + \Phi_{A_t} \Phi_{A_t}^\top / \eta^2\right)^{-1}, \ \mu_{t+1} = \Sigma_{t+1} \left(\Sigma_t^{-1} \mu_t + Y_{t,A_t} \Phi_{A_t} / \eta^2\right), \\ & \mathsf{Let} \ \mu_t^a = \mathbb{E}_t \left[\theta \mid A^* = a\right] \text{ and } L_t = \mathbb{E}_t \left[\left(\mu_t^{A^*} - \mu_t\right) \left(\mu_t^{A^*} - \mu_t\right)^\top\right] \\ & v_t(a) = \operatorname{Var}_t \left(\mathbb{E}_t \left[R_{t,a} \mid A^*\right]\right) \\ & = \operatorname{Var}_t \left(\mathbb{E}_t \left[\Phi_a^\top \theta \mid A^*\right]\right) \\ & = \operatorname{Var}_t \left(\Phi_a^\top \mathbb{E}_t \left[\theta \mid A^*\right]\right) \\ & = \Phi_a^\top \mathbb{E}_t \left[\left(\mu_t^{A^*} - \mu_t\right) \left(\mu_t^{A^*} - \mu_t\right)^\top\right] \Phi_a \\ & = \Phi_a^\top L_t \Phi_a \end{aligned}$$

# Variance-based IDS: linear bandit (Cont')

Algorithm 3 (linearSampleVIR  $(K, d, M, \theta^1, \dots, \theta^M)$ )  $1: \hat{\mu} \leftarrow \Sigma_m \theta^m / M$  $2: \hat{\Theta}_a \leftarrow \left\{m: \left(\Phi^\top \theta^m\right)_a = \max_{a'} \left(\Phi \theta^m\right)_{a'}\right\}, \quad \forall a$ 3:  $\hat{p}^*(a) \leftarrow \left| \hat{\Theta}_a \right| / M, \quad \forall a$  $4: \hat{\mu}^a \leftarrow \Sigma_{\theta \in \hat{\Theta}_a} \theta / \left| \hat{\Theta}_a \right|, \quad \forall a$  $5: \hat{L} \leftarrow \Sigma_a \hat{p}^*(a) \left(\hat{\mu}^a - \hat{\mu}\right) \left(\hat{\mu}^a - \hat{\mu}\right)^\top$  $6: \rho^* \leftarrow \Sigma_a \hat{p}^*(a) \Phi_a^\top \hat{\mu}^a$  $7: \vec{v}_a \leftarrow \Phi_{-}^{\top} \hat{L} \Phi_{-}^{\top}, \quad \forall a$  $8: \vec{\Delta}_a \leftarrow \rho^* - \Phi_a^\top \hat{\mu}, \quad \forall a$ 9: return  $\vec{\Delta}$ .  $\vec{v}$ 

### **Beta-Bernoulli Bandit**

• The mean reward of each arm is drawn from  $\text{Beta}(1,1)/\mathcal{U}(0,1)$ 



(a) Binary rewards

Figure: 1,000 independent trials of an experiment with 10 arms and a time horizon of 1,000 Computational Results \$31/36\$

# Beta-Bernoulli Bandit (Cont')

| Algorithm      |      |       | Optimized for time horizon |           |       |           |      |       |      |
|----------------|------|-------|----------------------------|-----------|-------|-----------|------|-------|------|
|                | IDS  | V-IDS | TS                         | Bayes UCB | UCB1  | UCB-Tuned | MOSS | KG    | KG*  |
| Mean regret    | 18.0 | 18.1  | 28.1                       | 22.8      | 130.7 | 36.3      | 46.7 | 51.0  | 18.4 |
| Standard error | 0.4  | 0.4   | 0.3                        | 0.3       | 0.4   | 0.3       | 0.2  | 1.5   | 0.6  |
| Quantile 0.10  | 3.6  | 5.2   | 13.6                       | 8.5       | 104.2 | 24.0      | 36.2 | 0.7   | 2.9  |
| Quantile 0.25  | 7.4  | 8.1   | 18.0                       | 12.5      | 117.6 | 29.2      | 40.0 | 2.9   | 5.4  |
| Quantile 0.50  | 13.3 | 13.5  | 25.3                       | 20.1      | 131.6 | 35.2      | 45.2 | 11.9  | 8.7  |
| Quantile 0.75  | 22.5 | 22.3  | 35.0                       | 30.6      | 144.8 | 41.9      | 51.0 | 82.3  | 16.3 |
| Quantile 0.90  | 35.6 | 36.5  | 46.4                       | 40.5      | 154.9 | 49.5      | 57.9 | 159.0 | 46.9 |
| Quantile 0.95  | 51.9 | 48.8  | 53.9                       | 47.0      | 160.4 | 54.9      | 64.3 | 204.2 | 76.6 |

Figure: Realized Regret Over 2,000 Trials in Bernoulli Experiment

### Independent Gaussian Bandit

|                |       | Time h | orizon agnostic | Optimized for time horizon |             |       |       |
|----------------|-------|--------|-----------------|----------------------------|-------------|-------|-------|
| Algorithm      | V-IDS | TS     | Bayes UCB       | GPUCB                      | Tuned GPUCB | KG    | KG*   |
| Mean regret    | 58.4  | 69.1   | 63.8            | 157.6                      | 53.8        | 65.5  | 50.3  |
| Standard error | 1.7   | 0.8    | 0.7             | 0.9                        | 1.4         | 2.9   | 1.9   |
| Quantile 0.10  | 24.0  | 39.2   | 34.7            | 108.2                      | 24.2        | 16.7  | 19.4  |
| Quantile 0.25  | 30.3  | 47.6   | 43.2            | 130.0                      | 30.1        | 20.8  | 24.0  |
| Quantile 0.50  | 39.2  | 61.8   | 57.5            | 156.5                      | 41.0        | 25.9  | 29.9  |
| Quantile 0.75  | 56.3  | 80.6   | 76.5            | 184.2                      | 58.9        | 36.4  | 40.3  |
| Quantile 0.90  | 104.6 | 104.5  | 97.5            | 207.2                      | 86.1        | 155.3 | 74.7  |
| Quantile 0.95  | 158.1 | 126.5  | 116.7           | 222.7                      | 112.2       | 283.9 | 155.6 |

Table 2. Realized Regret Over 2,000 Trials in Independent Gaussian Experiment

Table 3. Competitive Performance Without Knowing the Time Horizon

| Time horizon T    | 10  | 25   | 50   | 75   | 100  | 250  | 500  | 750  | 1,000 | 2,000 |
|-------------------|-----|------|------|------|------|------|------|------|-------|-------|
| Regret of V-IDS   | 9.8 | 16.1 | 21.1 | 24.5 | 27.3 | 36.7 | 48.2 | 52.8 | 58.3  | 68.4  |
| Regret of $KG(T)$ | 9.2 | 15.3 | 20.5 | 22.9 | 25.4 | 35.2 | 45.3 | 52.3 | 62.9  | 80.0  |

Figure:  $R_a \sim \mathcal{N}(\theta_a, 1)$ ,  $\theta_a \sim \mathcal{N}(0, 1)$ 

#### Computational Results

### **Asymptotic Optimality**

- ► The seminal work of Lai and Robbins (1985) provides the asymptotic lower bound  $\liminf_{T\to\infty} \frac{\mathbb{E}[\operatorname{Regret}(T,\pi)|\theta]}{\log T} \ge \sum_{a\neq A^*} \frac{\theta_{A^*} - \theta_a}{D_{\operatorname{KL}}(\theta_{A^*} \|\theta_a)} := c(\theta).$
- when applied with an independent uniform prior, both Bayes UCB and TS are known to attain this lower bound (Kaufmann et al. 2012a, b).



Figure:  $\theta = (0.3, 0.2, 0.1)$ . 10,000 time periods. 200 independent trials. Uniform prior. Computational Results 34/36

## Linear Bandit

•  $a \in \mathbb{R}^5$ ,  $R_a = a^T \theta + \epsilon_t$  where  $\theta \sim \mathcal{N}(0, 10I)$  and  $\epsilon_t \sim \mathcal{N}(0, 1)$ •  $\mathscr{A}$  contains 30 actions, each with features  $\sim \mathcal{U}([-1/\sqrt{5}, 1/\sqrt{5}])$ 



Figure: Regret in Linear-Gaussian Model

### **Runtime Comparison**

Table 6. Bernoulli Experiment: Compute Time per Decision in Seconds

| Arms | IDS      | V-IDS    | TS       | Bayes UCB | UCB1     | KG       | Approx KG* |
|------|----------|----------|----------|-----------|----------|----------|------------|
| 10   | 0.011013 | 0.01059  | 0.000025 | 0.000126  | 0.000008 | 0.000036 | 0.074618   |
| 30   | 0.047021 | 0.047529 | 0.000023 | 0.000147  | 0.000005 | 0.000017 | 0.215145   |
| 50   | 0.104328 | 0.10203  | 0.000024 | 0.000176  | 0.000005 | 0.000017 | 0.358505   |
| 70   | 0.18556  | 0.178689 | 0.000028 | 0.000167  | 0.000005 | 0.000017 | 0.494455   |

 Table 7. Independent Gaussian Experiment: Compute Time per Decision in Seconds

| Arms | V-IDS    | TS       | Bayes UCB | GPUCB    | KG       | KG*      |
|------|----------|----------|-----------|----------|----------|----------|
| 10   | 0.00298  | 0.000008 | 0.00002   | 0.00001  | 0.000146 | 0.001188 |
| 30   | 0.012597 | 0.000005 | 0.000009  | 0.000005 | 0.000097 | 0.003157 |
| 50   | 0.023084 | 0.000006 | 0.000009  | 0.000005 | 0.000094 | 0.005146 |
| 70   | 0.03913  | 0.000006 | 0.000009  | 0.000005 | 0.000098 | 0.006364 |

 Table 8. Linear Gaussian Experiment: Compute Time per Decision in Seconds

| Arms | Dimension | V-IDS    | TS       | Bayes UCB | GPUCB    | KG       | KG*      |
|------|-----------|----------|----------|-----------|----------|----------|----------|
| 15   | 3         | 0.004305 | 0.000178 | 0.000139  | 0.000048 | 0.002709 | 0.311935 |
| 30   | 5         | 0.008635 | 0.000064 | 0.000048  | 0.000038 | 0.004789 | 0.589998 |
| 50   | 20        | 0.026222 | 0.000077 | 0.000083  | 0.000068 | 0.008356 | 1.051552 |
| 100  | 30        | 0.079659 | 0.000115 | 0.000148  | 0.00013  | 0.017034 | 2.067123 |