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Introduction

▶ Classical MAB problem requires striking a balance between exploring poorly understood
actions and exploiting previously acquired knowledge to attain high rewards.

▶ There has been significant interest in addressing problems with more complex information
structures, in which sampling one action can provide information about other actions.

– e.g. linear bandit
▶ UCB and TS can achieve strong performance in the linear bandit problem
▶ However, these approaches can perform very poorly when faced with more complex

information structures.
▶ Information-directed sampling (IDS) is proposed to deal with online decision making with

complex information structures.
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Setting

▶ Bayesian formulation: uncertain quantities are modeled as random variables.
▶ The decision maker (DM) sequentially chooses actions (At)t∈N from a finite action set A

and observes the corresponding outcomes (Yt,At
)t∈N.

▶ A random outcome Yt,a ∈ Y associated with each action a ∈ A and time t ∈ N.
▶ Yt ≡ (Yt,a)a∈A the vector of outcomes at time t ∈ N.
▶ There is a random variable θ such that conditioned on θ, (Yt)t∈N is an iid sequence.

– MAB with independent arms: Yt = θ + ηt, ηt iid zero-mean noise
▶ Randomness in θ captures the DM’s prior uncertainty about the environment, and the

remaining randomness in Yt captures intrinsic randomness in observed outcomes.
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Policy

▶ At is chosen based on the history of observations Ft =
(
A1, Y1,A1 , . . . , At−1, Yt−1,At−1

)
up to time t.

▶ A randomized policy π = (πt)t∈N is a sequence of deterministic functions, where πt (Ft)

specifies a probability distribution over the action set A .
▶ Let D(A ) denote the set of probability distributions over A .
▶ At ∼ πt (Ft) ∈ D(A )

▶ With some abuse of notation, write πt = πt(Ft), where πt(a) = P (At = a | Ft).

Problem Formulation 4 / 36



Regret

▶ The agent associates a reward R(y) with each outcome y ∈ Y via a fixed and known
function R() : Y → R.

▶ Let Rt,a = R (Yt,a) denote the realized reward of action a at time t.
▶ Uncertainty about θ induces uncertainty about A∗ ∈ argmaxa∈A E [R1,a | θ]
▶ The expected Bayesian regret

E[Regret(T, π)] = E

[
T∑

t=1

(Rt,A∗ −Rt,At
)

]
= E[E[

T∑
t=1

(Rt,A∗ −Rt,At
)|θ]],

where the expectation is taken over the randomness in the actions At and the outcomes
Yt, and over the prior distribution over θ.
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Further notations

▶ Setαt(a) = P (A∗ = a | Ft) to be the posterior distribution of A∗.
▶ KL divergence between P and Q is DKL(P‖Q) =

∫
log

(
dP
dQ

)
dP

▶ Shannon entropy H(P ) = −
∑

x∈X P (x) log(P (x))

▶ The mutual information under the posterior distribution between X1 and X2

It (X1;X2) := DKL [P ((X1, X2) ∈ · | Ft) ‖P (X1 ∈ · | Ft)P (X2 ∈ · | Ft)]

▶ It (X1;X2) is a random variable because of its dependence on P (· | Ft).
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Further notations (Cont’)

▶ Information gain from an action a is

gt(a) := It (A
∗;Yt,a) = E [H (αt)−H (αt+1) | Ft, At = a]

▶ Expected instantaneous regret of action a is ∆t(a) := E [Rt,A∗ −Rt,a | Ft]

▶ gt(π) :=
∑

a∈A π(a)gt(a) and ∆t(π) :=
∑

a∈A π(a)∆t(a)

▶ Information ratio Ψt(π) :=
∆t(π)

2

gt(π)

▶ Et[·] = E [· | Ft] and Pt(·) = P (· | Ft)
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Motivation

▶ In principle Bayes-optimal policy can be computed via dynamic programming.
▶ Computing or even storing this Bayes-optimal policy is generally infeasible.
▶ How to develop computationally efficient heuristics?
▶ IDS is motivated by accounting for kinds of information that alternatives fail to address:

– Indirect information
– Cumulating information
– Irrelevant information

▶ Refer to IDS as a design principle rather than an algorithm.
– Does not specify basic computational steps but only an abstract objective.
– Need to design tractable algorithms for specific problem classes.
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Information-Directed Sampling

▶ Information ratio (IR) Ψt(π) =
∆t(π)

2

gt(π)
measures the squared regret incurred per-bit of

information acquired about the optimum.
▶ IDS balances between exploration and exploitation via minimizing IR at each round

πIDS
t ∈ argmin

π∈D(A )

Ψt(π)

▶ IDS myopically minimizes this notion of cost-per-bit of information in each period.
▶ IDS is stationary randomized policy

– Each action is randomly sampled
– This action distribution is determined by the posterior distribution of θ and otherwise

independent of the time period

Algorithm Design Principles 9 / 36



The role of randomization in policy

▶ Two actions A = {a1, a2}

▶ Ra1
is known to be distributed Ber( 1

2 ), Ra2
∼

{
Ber( 34 ) w.p. p0

Ber( 14 ) w.p. 1− p0

▶ Consider a stationary deterministic policy where each action At is a deterministic function
of the posterior probability pt−1

▶ Suppose that for some p0 > 0, the policy selects A1 = a1

▶ pt = p0 and At = a1 for all t and expected regret grows linearly with time.
▶ If A1 = a2 for all p0 > 0 then At = a2 for all t
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The role of randomization in policy (Cont’)

▶ For any deterministic stationary policy, there exists a prior probability p0 such that
expected regret grows linearly with time.

▶ A sublinear bound on (worst case) expected regret of IDS can be established.
▶ The expected regret of IDS does not grow linearly as does that of any stationary

deterministic policy for the preceding example.
▶ Increasing complexity? An important property simplifies solutions.
▶ There exists a distribution with support of at most two actions that attains the minimum.
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Alternative design principles

▶ UCB: At ∈ argmaxa∈A Bt(a) with maximal upper confidence bound
▶ TS: πTS

t = αt = P (A∗ = · | Ft)

– also called probability matching: matching action distribution to posterior distribution of
optimal action

▶ Specific UCB and TS algorithms are known to be asymptotically efficient for MAB with
independent arms and satisfy strong regret bounds for problems with dependent arms.

▶ UCB and TS do not pursue indirect information and thus can perform very poorly relative
to IDS for some natural problem classes.

▶ They restrict attention to sampling actions that have some chance of being optimal.

Algorithm Design Principles 12 / 36



Example 2: A Revealing Action

▶ A = {0, 1, . . . ,K} and θ is drawn uniformly at random from a finite set Θ = {1, . . . ,K}

▶ Yt,a = Rt,a. Under θ, the reward of action a is Rt,a =


1 θ = a,

1/2θ a = 0,

0 otherwise.

▶ Action 0 never yields the maximal reward, and is therefore never selected by TS or UCB.
▶ They will select among actions {1, . . . ,K}, ruling out only a single action at a time until a

reward 1 is earned and the optimal action is identified.
▶ Their expected regret therefore grows linearly in K.
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Regret bounds

▶ Establishes regret bounds for IDS for several classes of online optimization problems
– Uncorrelated arms
– Linear bandit
– Full information

▶ These regret bounds follow from the information theoretic analysis of TS (Russo and Van
Roy 2016), where regret bound for any policy is bounded in terms of its IR.

▶ Because the IR of IDS is always smaller than that of TS, the bounds on regret of TS
immediately yield regret bounds for IDS.
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General bound

Proposition 1.
For any policy π = (π1, π2, π3, . . .) and time T ∈ N,

E[Regret(T, π)] ⩽
√
Ψ̄T (π)H (α1)T ,

where Ψ̄T (π) ≡ 1
T

∑I
t=1 Eπ [Ψt (πt)] is the average expected information ratio under π.

Corollary 0.1.
For any π = (π1, π2, . . .) such that Ψt (πt) ⩽ λ almost surely for each t ∈ [T ]. Then,

E[Regret(T, π)] ⩽
√

λH (α1)T

▶ H(α1) captures the magnitude of the decision-maker’s prior uncertainty about which
action is optimal.
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Specialized Bounds on the Minimal Information Ratio

▶ The bounds on the IR roughly captures the extent to which sampling some actions allows
the DM to make inferences about other actions.

– Worst case/independent arms: Ψt

(
πIDS
t

)
≤ |A |/2

– Best case/full information: Ψt

(
πIDS
t

)
≤ 1/2

– Intermediate case/linear bandit: Ψt

(
πIDS
t

)
≤ d/2

▶ The proofs of these bounds follow from the analysis of TS and the fact that
Ψt

(
πIDS
t

)
⩽ Ψt

(
πTS
t

)
▶ Some work by Bubeck et al. (2015) and Bubeck and Eldan (2016) bounds the IR when

the reward function is convex.
▶ Assumption 1: supȳ∈Y R(ȳ)− infy∈Y R(y) ⩽ 1
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Worst case

Proposition 2.
For any t ∈ N,Ψt

(
πIDS
t

)
⩽ |A |/2 almost surely.

▶ Combining Proposition 2 with Corollary 0.1 shows that
E
[
Regret

(
T, πIDS

)]
⩽

√
1
2 |A |H (α1)T .

▶ This bound holds for general MAB problems with arbitrary information structure. Can be
much smaller under specific information structures.
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Full information

▶ The outcome Yt,a is perfectly revealed by observing Yt,ã for some ã 6= a.

Proposition 3.
Suppose for each t ∈ N there is a random variable Zt : Ω→ Z such that for each
a ∈ A , Yt,a = (a,Zt). Then for all t ∈ N,Ψt

(
πIDS
t

)
⩽ 1

2 almost surely.

▶ Combining this result with Corollary 0.1 shows that E
[
Regret

(
T, πIDS

)]
⩽

√
1
2H (α1)T .

▶ A worst-case bound on H(α1) yields E
[
Regret

(
T, πIDS

)]
⩽

√
1
2 log(|A |)T .

▶ Dani et al. (2007) show this bound is order optimal:
infπ E[Regret(T, π)] ⩾ c0

√
log(|A |)T
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Linear bandit

▶ Observations from taking one action allow the DM to make inferences about other actions.

Proposition 4.
If A ⊂ Rd,Θ ⊂ Rd, and E [Rt,a | θ] = aT θ for each action a ∈ A , then Ψt

(
πIDS
t

)
⩽ d/2

almost surely for all t ∈ N.
▶ This result shows the inequalities E

[
Regret

(
T, πIDS

)]
⩽

√
1
2H (α1) dT ⩽

√
1
2 log(|A |)dT for linear bandit problems.

▶ Dani et al. (2007) again show this bound is order optimal in the sense that, when the
action set is A = {0, 1}d such that infπ E[Regret(T, π)] ⩾ c0

√
log(|A |)dT .
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Computational methods

▶ Provide guidance and examples of designing efficient computational methods that
implement IDS for specific problem classes.

▶ Assume posterior distributions can be efficiently computed and stored, e.g., tractable finite
uncertainty sets or conjugate priors.

▶ Focus in the problem of generating an action At given the posterior distribution over θ.
▶ Two of the algorithms approximate IDS using samples from the posterior distribution.
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Evaluating the Information Ratio

▶ Given a finite action set A = {1, . . . ,K}, view action distribution π as a K-dimensional
vector of problem probabilities.

▶ No general efficient procedure for computing ∆⃗ and g⃗ given a posterior distribution,
require computing integrals over possibly high-dimensional spaces.

▶ Such computation can often be carried out efficiently by leveraging the functional form of
the specific posterior distribution and often requires numerical integration.
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Finite Sets

▶ Θ = {1, . . . , L}, A = {1, . . . ,K}, Y = {1, . . . , N}.
▶ The reward function R : y 7→ R is arbitrary.
▶ Let p1 be the prior probability mass function of θ and let qθ,a(y) be the probability,

conditioned on θ, of observing y when action a is selected.
▶ pt can be computed recursively via Bayes’ rule:

pt+1(θ)←
pt(θ)qθ,At (Yt,At)∑

θ′∈Θ pt (θ′) qθ′,At
(Yt,At

)
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Finite Sets (Cont’)

Algorithm 1 (finitelR (L,K,N,R, p, q))

1 : Θa ← {θ | a = argmaxa′ Σyqθ,a′(y)R(y)} , ∀θ
2: p (a∗)←

∑
θ∈Θa∗ p(θ), ∀a∗

3: pa(y)← Σθp(θ)qθ,a(y), ∀a, y, θ
4 : pa (a

∗, y)← 1
p(a∗)

∑
θ∈Θa∗ qθ,a(y), ∀a, y, a∗

5 : R∗ ←
∑

a

∑
θ∈Θa

Σyp(θ)qθ,a(y)R(y)

6 : g⃗a ← Σa∗,ypa (a
∗, y) log pa(a

∗,y)
p(a∗)pa(y)

, ∀a
7 : ∆⃗a ← R∗ −

∑
θ p(θ)Σyqθ,a(y)R(y), ∀a

8: return ∆⃗, g⃗
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Optimizing the Information Ratio

▶ IDS selects an action by solving

min
π∈SK

(
π⊤∆⃗

)2

π⊤g⃗
(1)

where SK =
{
π ∈ RK

+ : Σkπk = 1
}

is the K-dimensional unit simplex.

Proposition 5.
For all ∆⃗, g⃗ ∈ RK

+ such that g⃗ 6= 0, the function π 7→
(
π⊤∆⃗

)2

/π⊤g⃗ is convex on{
π ∈ RK : π⊤g⃗ > 0

}
. Moreover, this function is minimized over SK by some π∗ for which

|{k : π∗
k > 0}| ⩽ 2
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Optimizing the Information Ratio (Cont’)

▶ While IDS is a randomized policy, it suffices to randomize over two actions.
▶ q can be computed by solving for the first-order necessary condition or approximated by a

bisection method.
▶ The compute time of this algorithm scales with K2.

Algorithm 3(IDSAction(K, ∆⃗, g⃗))

1 : qa,a′ ← argminq′∈[0,1]

[
q′∆⃗a + (1− q′) ∆⃗a′

]2
/ [q′g⃗a + (1− q′) g⃗a′ ] , ∀a < K, a′ > a

2 : (a∗, a∗∗)← argmina<K,a′>a

[
qa,a′∆⃗a + (1− qa,a′) ∆⃗a′

]2
/ [qa,a′ g⃗a + (1− qa,a′) g⃗a′ ]

3: Sample b ∼ Bernoulli (qa∗,a∗)

4: return ba∗ + (1− b)a∗∗
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Approximating the Information Ratio

▶ The dominant source of complexity in computing ∆⃗ and g⃗ is in the calculation of requisite
integrals, which can require integration over high-dimensional spaces.

▶ Replace integrals with sample-based estimates.
▶ Takes as input M representative samples of θ

Algorithm 2 ( Sample IR
(
K, q,R,M, θ1, . . . , θM

))
1 : Θ̂a ←

{
m | a = argmaxa′

∑
y qθm,a′(y)R(y)

}
2: p̂ (a∗)←

∣∣∣Θ̂a∗

∣∣∣ /M, ∀a∗

3: p̂a(y)← Σmqa,θm(y)/M, ∀y
4: p̂a (a

∗, y)← Σm∈Θaqa,θm(y)/M, ∀a∗, y
5 : R̂∗ ←

∑
a,y p̂a(a, y)R(y)

6 : g⃗a ← Σa∗,yp̂a (a
∗, y) log p̂a(a

∗,y)
p̂(a∗)p̂a(y)

, ∀a
7: ∆⃗a ← R∗ −M−1ΣmΣyqθm,a(y)R(y), ∀a
8: return ∆⃗, g⃗
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Variance-based information ratio

gt(a) =It (A
∗;Yt,a)

=
∑
a∗∈A

Pt (A
∗ = a∗) ·DKL (Pt (Yt,a = · | A∗ = a∗) ‖Pt (Yt,a = ·))

⩾
∑
a∗∈A

Pt (A
∗ = a∗) ·DKL (Pt (Rt,a = · | A∗ = a∗) ‖Pt (Rt,a = ·))

⩾ 2
∑

a∗∈A

Pt (A
∗ = a∗) (Et [Rt,a | A∗ = a∗]− Et [Rt,a])

2

=2Et

[
(Et [Rt,a | A∗]− Et [Rt,a])

2
]

=2Vart (Et [Rt,a | A∗])

▶ Let vt(a) := Vart (Et [Rt,a | A∗])

▶ Implication: Actions with high variance vt(a) must yield substantial information about
which action is optimal.
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Variance-based information ratio

▶ Variance-based IDS

min
π∈SK

(
π⊤∆⃗

)2

π⊤v⃗

Proposition 6.
Suppose supy R(y)− infy R(y) ⩽ 1 and

πt ∈ argmin
π∈SK

∆t(π)
2

vt(π)

Then Ψt (πt) ⩽ |A |/2. Moreover, if A ⊂ Rd,Θ ⊂ Rd, and E [Rt,a | θ] = aT θ for each action
a ∈ A , then Ψt (πt) ⩽ d/2.
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Variance-based IDS: linear bandit

▶ A = {1, . . . ,K}, y = R, and R(y) = y. θ ∈ Rd ∼ N (µ1,Σ1).
▶ A known feature matrix Φ = [Φ1, · · · ,ΦK ] ∈ Rd×K , Yt,At |θ,At ∼ N

(
Φ⊤

At
θ, η2

)
.

▶ Σt+1 =
(
Σ−1

t +ΦAt
Φ⊤

At
/η2

)−1, µt+1 = Σt+1

(
Σ−1

t µt + Yt,At
ΦAt

/η2
)
,

▶ Let µa
t = Et [θ | A∗ = a] and Lt = Et

[(
µA∗

t − µt

) (
µA∗

t − µt

)⊤]

▶

vt(a) = Vart (Et [Rt,a | A∗])

= Vart
(
Et

[
Φ⊤

a θ | A∗])
= Vart

(
Φ⊤

a Et [θ | A∗]
)

= Φ⊤
a Et

[(
µA∗

t − µt

)(
µA∗

t − µt

)⊤
]
Φa

= Φ⊤
a LtΦa
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Variance-based IDS: linear bandit (Cont’)

Algorithm 3 (linearSampleVIR
(
K, d,M, θ1, . . . , θM

))
1 : µ̂← Σmθm/M

2 : Θ̂a ←
{
m :

(
Φ⊤θm

)
a
= maxa′ (Φθm)a′

}
, ∀a

3: p̂∗(a)←
∣∣∣Θ̂a

∣∣∣ /M, ∀a

4 : µ̂a ← Σθ∈Θ̂a
θ/

∣∣∣Θ̂a

∣∣∣ , ∀a

5 : L̂← Σap̂
∗(a) (µ̂a − µ̂) (µ̂a − µ̂)

⊤

6 : ρ∗ ← Σap̂
∗(a)Φ⊤

a µ̂
a

7 : v⃗a ← Φ⊤
a L̂Φ

⊤
a , ∀a

8 : ∆⃗a ← ρ∗ − Φ⊤
a µ̂, ∀a

9: return ∆⃗, v⃗
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Beta-Bernoulli Bandit
▶ The mean reward of each arm is drawn from Beta(1,1)/U(0, 1)

Figure: 1,000 independent trials of an experiment with 10 arms and a time horizon of 1,000
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Beta-Bernoulli Bandit (Cont’)

Figure: Realized Regret Over 2,000 Trials in Bernoulli Experiment
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Independent Gaussian Bandit

Figure: Ra ∼ N (θa, 1), θa ∼ N (0, 1)
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Asymptotic Optimality

▶ The seminal work of Lai and Robbins (1985) provides the asymptotic lower bound
lim infT→∞

E[Regret(T,π)|θ]
log T ⩾

∑
a ̸=A∗

θA∗−θa
DKL(θA∗∥θa) := c(θ).

▶ when applied with an independent uniform prior, both Bayes UCB and TS are known to
attain this lower bound (Kaufmann et al. 2012a, b).

Figure: θ = (0.3, 0.2, 0.1). 10,000 time periods. 200 independent trials. Uniform prior.
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Linear Bandit
▶ a ∈ R5, Ra = aT θ + ϵt where θ ∼ N (0, 10I) and ϵt ∼ N (0, 1)

▶ A contains 30 actions, each with features ∼ U([−1/
√
5, 1/
√
5])

Figure: Regret in Linear-Gaussian Model
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Runtime Comparison

Figure
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