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Introduction

» Classical MAB problem requires striking a balance between exploring poorly understood

actions and exploiting previously acquired knowledge to attain high rewards.

» There has been significant interest in addressing problems with more complex information
structures, in which sampling one action can provide information about other actions.

— e.g. linear bandit
» UCB and TS can achieve strong performance in the linear bandit problem

» However, these approaches can perform very poorly when faced with more complex
information structures.

» Information-directed sampling (IDS) is proposed to deal with online decision making with
complex information structures.
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Setting

> Bayesian formulation: uncertain quantities are modeled as random variables.

» The decision maker (DM) sequentially chooses actions (A;),.y from a finite action set ./
and observes the corresponding outcomes (Y3 4,),c-
> A random outcome Y; , € % associated with each action a € &/ and time ¢t € N.
> YV, = (Y}ya)aed the vector of outcomes at time ¢ € N.
» There is a random variable # such that conditioned on 6, (Y;),. is an iid sequence.
— MAB with independent arms: Y; = 6 + n, 1 iid zero-mean noise
» Randomness in 0 captures the DM's prior uncertainty about the environment, and the

remaining randomness in Y; captures intrinsic randomness in observed outcomes.
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Policy

» A, is chosen based on the history of observations .%; = (Al,YLAl, e Ay, Y;ffl,At_l)
up to time ¢.

» A randomized policy 7 = (7)) is a sequence of deterministic functions, where m; (%)
specifies a probability distribution over the action set &7

> Let (/) denote the set of probability distributions over 7.
> At ~ T (g}) S .@(Q{)
» With some abuse of notation, write m; = m:(-%#;), where m:(a) =P (4; = a | F#).
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Regret

» The agent associates a reward R(y) with each outcome y € % via a fixed and known
function R() : & — R.

» Let R, , = R(Y;,,) denote the realized reward of action a at time ¢.
» Uncertainty about 6 induces uncertainty about A* € argmax,eo E [R1 4 | 6]

» The expected Bayesian regret

T
= E[E[Z(Rt,A* - Rt,At)|9H7

t=1

T
Z (Rt.ax — Ry a,)

t=1

E[Regret(T,7)] = E

where the expectation is taken over the randomness in the actions A; and the outcomes
Y:, and over the prior distribution over 6.
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Further notations

> Setay(a) =P (A* =a | F) to be the posterior distribution of A*.
> KL divergence between P and Q is Dk, (P||Q) = [ log (%) dP

» Shannon entropy H(P) = =) 4 P(x)log(P(x))
>

The mutual information under the posterior distribution between X; and X,
It (Xl,XQ) = DKL [P((X17X2) c - | yt) H]P(Xl c - | yt)IP(XQ c - | «%&)]

» I, (X;;X5) is a random variable because of its dependence on P (- | .%).
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Further notations (Cont’)

» Information gain from an action a is
gi(a) :=I; (A% Yia) = E[H (o) — H (qu41) | F¢, Ae = d

Expected instantaneous regret of action a is Ay(a) :==E[R; 4+ — Ry,o | Z4]

>
> gu(7) = X ey m(@)ge(a) and Au(r) = 3,y w(a)Ar(a)
>
>

2
Information ratio Wy (rr) := 2

g¢(m)
Ef]=E[|#] and Py () =P (- | F)
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Motivation

In principle Bayes-optimal policy can be computed via dynamic programming.

>
» Computing or even storing this Bayes-optimal policy is generally infeasible.
» How to develop computationally efficient heuristics?

» IDS is motivated by accounting for kinds of information that alternatives fail to address:

— Indirect information
— Cumulating information
— lrrelevant information
» Refer to IDS as a design principle rather than an algorithm.

— Does not specify basic computational steps but only an abstract objective.
— Need to design tractable algorithms for specific problem classes.
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Information-Directed Sampling

» Information ratio (IR) ¥y(7) = A;t((:); measures the squared regret incurred per-bit of

information acquired about the optimum.

» IDS balances between exploration and exploitation via minimizing IR at each round

miPS € arg minW, ()

T€ED(H)
» IDS myopically minimizes this notion of cost-per-bit of information in each period.
» DS is stationary randomized policy

— Each action is randomly sampled
— This action distribution is determined by the posterior distribution of # and otherwise
independent of the time period
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The role of randomization in policy

> Two actions & = {ay,as}
Ber(2 wW.p.
> Ry, is known to be distributed Ber(3), Ry, ~ (‘11) P o
Ber(z) w.p. 1—po
» Consider a stationary deterministic policy where each action A; is a deterministic function
of the posterior probability p;_1

» Suppose that for some py > 0, the policy selects A, = a,
» p; = po and A; = a; for all ¢t and expected regret grows linearly with time.

» If Ay = ao for all pg > 0 then A; = as for all ¢

Algorithm Design Principles 10 /36



The role of randomization in policy (Cont’)

» For any deterministic stationary policy, there exists a prior probability py such that

expected regret grows linearly with time.
» A sublinear bound on (worst case) expected regret of IDS can be established.

» The expected regret of IDS does not grow linearly as does that of any stationary
deterministic policy for the preceding example.

» Increasing complexity? An important property simplifies solutions.
g Yy Yy

» There exists a distribution with support of at most two actions that attains the minimum.
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Alternative design principles

> UCB: A; € argmax e Bi(a) with maximal upper confidence bound
> TS 7l =a; =P(A* = | %)
— also called probability matching: matching action distribution to posterior distribution of

optimal action

» Specific UCB and TS algorithms are known to be asymptotically efficient for MAB with
independent arms and satisfy strong regret bounds for problems with dependent arms.

» UCB and TS do not pursue indirect information and thus can perform very poorly relative

to IDS for some natural problem classes.

» They restrict attention to sampling actions that have some chance of being optimal.

Algorithm Design Principles 12/36



Example 2: A Revealing Action

» o/ ={0,1,...,K} and 0 is drawn uniformly at random from a finite set © = {1,..., K}

1 0 =a,
» Yiq = R:iqo. Under 0, the reward of action a is Ry, = 1/20 a =0,
0 otherwise.

» Action 0 never yields the maximal reward, and is therefore never selected by TS or UCB.

» They will select among actions {1, ..., K}, ruling out only a single action at a time until a

reward 1 is earned and the optimal action is identified.

» Their expected regret therefore grows linearly in K.
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Regret bounds

» Establishes regret bounds for IDS for several classes of online optimization problems

— Uncorrelated arms
— Linear bandit

— Full information

» These regret bounds follow from the information theoretic analysis of TS (Russo and Van
Roy 2016), where regret bound for any policy is bounded in terms of its IR.

» Because the IR of IDS is always smaller than that of TS, the bounds on regret of TS
immediately yield regret bounds for IDS.
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General bound
Proposition 1.
For any policy m = (w1, m2, s, ...) and time T € N,

E[Regret(T, 7)] < \/Vr(m)H (a1) T,

where Uy (m) = 7 ZtI:1 E, [¥; (7¢)] is the average expected information ratio under .
Corollary 0.1.

For any m = (w1, ma,...) such that U, (m;) < X almost surely for each t € [T]. Then,

E[Regret(T,7)] < \/AH (an) T

» H(ay) captures the magnitude of the decision-maker's prior uncertainty about which

action is optimal.
Regret Bounds
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Specialized Bounds on the Minimal Information Ratio

» The bounds on the IR roughly captures the extent to which sampling some actions allows
the DM to make inferences about other actions.

— Worst case/independent arms: Uy (’TF%DS> <|e1/2
— Best case/full information: W, (m;°%) < 1/2
— Intermediate case/linear bandit: W; (7;°%) < d/2

» The proofs of these bounds follow from the analysis of TS and the fact that
Wi (1) < W (m)
> Some work by Bubeck et al. (2015) and Bubeck and Eldan (2016) bounds the IR when

the reward function is convex.

> Assumption 1: supyeq R(Y) — infyer R(y) <1
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Worst case

Proposition 2.
For any t € N, ¥, (7[PS) < |&/|/2 almost surely.

» Combining Proposition 2 with Corollary 0.1 shows that
E [Regret (T, 7'P5)] < /3| |H (1) T.
» This bound holds for general MAB problems with arbitrary information structure. Can be

much smaller under specific information structures.
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Full information

» The outcome Y; , is perfectly revealed by observing Y; ; for some a # a.

Proposition 3.
Suppose for each t € N there is a random variable 7, : Q — % such that for each

a €Yy q="(a,2). Then forallt € N, ¥, (7{P%) < 1 almost surely.

» Combining this result with Corollary 0.1 shows that E [Regret (T, ﬂIDS)] < %H (1) T.
> A worst-case bound on H(a) yields E [Regret (T, 7™5)] < /3 log(|«/|)T.

» Dani et al. (2007) show this bound is order optimal:

inf, E[Regret(T, 7)] > co+/log(|<Z|)T
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Linear bandit

» Observations from taking one action allow the DM to make inferences about other actions.
Proposition 4.

If o CRY© CR? and B[Ry, | 6] = a”6 for each action a € <, then W, (m;°%) < d/2
almost surely for all t € N.

> This result shows the inequalities E [Regret (7', 7'P%)]
< \/%H (o) dT < \/% log(|.<7|)dT for linear bandit problems.

» Dani et al. (2007) again show this bound is order optimal in the sense that, when the
action set is 7 = {0,1}¢ such that inf, E[Regret(T, 7)] > co+/log(|.</|)dT.
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Computational methods

» Provide guidance and examples of designing efficient computational methods that

implement IDS for specific problem classes.

» Assume posterior distributions can be efficiently computed and stored, e.g., tractable finite

uncertainty sets or conjugate priors.
» Focus in the problem of generating an action A; given the posterior distribution over 6.

» Two of the algorithms approximate IDS using samples from the posterior distribution.
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Evaluating the Information Ratio

> Given a finite action set &/ = {1,..., K}, view action distribution 7 as a K-dimensional

vector of problem probabilities.

» No general efficient procedure for computing A and g given a posterior distribution,
require computing integrals over possibly high-dimensional spaces.

» Such computation can often be carried out efficiently by leveraging the functional form of
the specific posterior distribution and often requires numerical integration.
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Finite Sets

» 0={1,...,L}, &« ={1,...,K},  ={1,...,N}.
» The reward function R : y — R is arbitrary.

» Let p; be the prior probability mass function of 6 and let gy o(y) be the probability,
conditioned on 6, of observing y when action a is selected.

» p, can be computed recursively via Bayes' rule:

pt(0)g0.4, (Yi.a,)
0) « ’ ’
thrl( ) 29’69 Dy (9’) qo’, A, (}/t,Af,)
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Finite Sets (Cont’)

Algorithm 1 (finitelR (L, K, N, R,p,q))

10, + {0 | a = argmaxy Eyge,a (y)R(y)}, VO
p(a®) < Xyce,. P(0), Va~

Pa(y) < Zop(0)qo.a(y), Va,y,0

* Pa (a*7y) — ﬁ ZOE@Q* q@,a(y)a Va,y,a*

t R* Za Zee@a Eyp(0)a6,q(y)R(y)

 Ga 4 v yPa (0%, y) log Pl g

Ry = R =3 p(0)Syg0.0(y)R(y), Va
return A, g
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Optimizing the Information Ratio

» |DS selects an action by solving

N2
ﬂ'TA>
71'%1;11{ 7TT
where S = {7r S Rf YT = 1} is the K-dimensional unit simplex.
Proposition 5.
. N2
For all A, € RE such that g # 0, the function m (WTA) /71§ is convex on

{77 ERE :7Tg> O}. Moreover, this function is minimized over %k by some ©* for which
HEk:mp >0} <2
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Optimizing the Information Ratio (Cont’)

» While IDS is a randomized policy, it suffices to randomize over two actions.

» ¢ can be computed by solving for the first-order necessary condition or approximated by a
bisection method.

» The compute time of this algorithm scales with K?2.
Algorithm 3(IDSAction(K, A, 7))

= N 2
1:qq,a 4 argmingepo 1 [Q’Aa +(1-q) Aa'} /d'Ga+(1-¢)Gu], Va<K,d >a

[\

N N 2
: (a*’ a**) <~ arg mina<K,a'>a |:qa,a’Aa + (1 - Qa,a’) Aa’i| / [Qa,a’ga + (1 - Qa,a’) ga’]
3: Sample b ~ Bernoulli (¢g+,q+)
return ba* + (1 — b)a™*

»
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Approximating the Information Ratio

» The dominant source of complexity in computing A and g is in the calculation of requisite
integrals, which can require integration over high-dimensional spaces.

» Replace integrals with sample-based estimates.
» Takes as input M representative samples of 6

Algorithm 2 ( SampleIR (K, ¢, R, M0, ... 7GM))

1:0, « {m | a = argmaxy Y, gom o/ (y)R(y)}

s pa*) ‘éa’/M, Va*

D Pa(y) < Bmda,om (y)/M, Yy

D Pa (a”,y) ¢ Zmeo,da,om (y) /M, Va*,y

LR Y, Pala, y)R(y)

t Ga ¢ g yDa (a*,y)log %7 Va

A, — R — M, %,q0m o(y)R(y), Va

8: return A, g
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Variance-based information ratio
gt(a) =I (A*§ Y;S,a)
=Y P (A" =a") Dxp (P (Yia =" | A" =a") [P (Vi =)

a*€A
>3 P4 =a") Dt (B (Rua = | A" = 0) [IPy (Reya =)
a*€eA
=2 Z Py (A" =a") (B [Ria | A" =a"] - K, [Rt7a])2
a*eof

2B, (B [Roa | A~ E¢ [Rr.a))?
=2 Vart (Et [Rt,a | A*])
> Let vy(a) := Vary (E; [Rq | A*])
> Implication: Actions with high variance v;(a) must yield substantial information about
which action is optimal.
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Variance-based information ratio

» Variance-based IDS

Proposition 6.

Suppose sup,, R(y) — inf, R(y) < 1 and

At (71')2

m; € arg min
resx ve(T)

Then W, (m;) < |/|/2. Moreover, if o/ C R, © C R and E[R;, | 0] = a*0 for each action
a < d, then \Ift (TI't) < d/2
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Variance-based IDS: linear bandit

o ={1,....,K},y =R, and R(y) = y. § € R ~ N(pu1,%1).
A known feature matrix ® = [0y, -+, Ox] € R*K Y, 4,10, Ay ~ N (©},0,7%).
S = (57 4+ q’At‘I’L/ﬁz)_l, frir1 = Ser1 (57 e + Y, @4, /%)
Let uf =E; [0 | A* =a] and L, = E, [(u?* — pue) (3 — //"t)T}
ve(a) = Vary (Ey [Req | A])
= Var, (E; [®, 0 | A*])
= Vary (2, [0 | A"])

= O, E {(#24* - ﬂt) (/44* - /Lt) T] ®,

=0 L,®,

vV v vy
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Variance-based IDS: linear bandit (Cont’)

Algorithm 3 (linearSampleVIR (K, d, M, 0%, ...,6M))

1: i Sp0™ /M

2:0, {m: (<I>T9m)a = max, (P6™),}, Va
3: p*(a) « ‘(:)a
L Tyce, 0/ |6
5
6
7
8
9

/M, Va
, Va
L 2up*(a) (h* — o) (4" —

)T

D p* = Bep*(a)®] e
T, — O] LOT, Va

: Ea —pt =@, Va
. return &,’D’

Computational methods
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Beta-Bernoulli Bandit

» The mean reward of each arm is drawn from Beta(1,1)/2/(0,1)

(a) Binary rewards

60 [ KG
— Approximate KG*
soll~ IDS
[| — Thompson sampling
5 Bayes UCB
5 40 H — UCB-Tuned
o — MOSS
[}
Z 380
©
E
S 20t
o
10 |
0 . . L L )
0 200 400 600 800 1,000

Time period

Figure: 1,000 independent trials of an experiment with 10 arms and a time horizon of 1,000
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Beta-Bernoulli Bandit (Cont’)

Time horizon agnostic

Optimized for time horizon

Algorithm DS V-IDS TS Bayes UCB UCB1 UCB-Tuned MOSS KG KG
Mean regret 18.0 18.1 28.1 22.8 130.7 36.3 46.7 51.0 18.4
Standard error 0.4 0.4 0.3 0.3 0.4 0.3 0.2 1.5 0.6
Quantile 0.10 3.6 5.2 13.6 8.5 104.2 24.0 36.2 0.7 29
Quantile 0.25 7.4 8.1 18.0 12,5 117.6 29.2 40.0 2.9 5.4
Quantile 0.50 133 13.5 253 20.1 131.6 35.2 452 11.9 8.7
Quantile 0.75 225 223 35.0 30.6 1448 419 51.0 82.3 16.3
Quantile 0.90 35.6 36.5 46.4 40.5 154.9 49.5 57.9 159.0 46.9
Quantile 0.95 51.9 48.8 53.9 47.0 160.4 54.9 64.3 204.2 76.6
Figure: Realized Regret Over 2,000 Trials in Bernoulli Experiment
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32/36



Independent Gaussian Bandit

Table 2. Realized Regret Over 2,000 Trials in Independent Gaussian Experiment

Time horizon a: gnostic

Optimized for time horizon

Algorithm V-IDS TS Bayes UCB GPUCB Tuned GPUCB KG KG

Mean regret 58.4 69.1 63.8 157.6 53.8 65.5 50.3
Standard error 1.7 0.8 0.7 0.9 1.4 29 1.9
Quantile 0.10 24.0 39.2 347 108.2 242 16.7 194
Quantile 0.25 30.3 47.6 432 130.0 30.1 20.8 24.0
Quantile 0.50 39.2 61.8 57.5 156.5 41.0 259 29.9
Quantile 0.75 56.3 80.6 76.5 184.2 58.9 36.4 40.3
Quantile 0.90 104.6 104.5 97.5 207.2 86.1 155.3 74.7
Quantile 0.95 158.1 126.5 116.7 222.7 112.2 283.9 155.6
Table 3. Competitive Performance Without Knowing the Time Horizon

Time horizon T 10 25 50 75 100 250 500 750 1,000 2,000
Regret of V-1DS 9.8 16.1 21.1 24.5 27.3 36.7 482 52.8 58.3 68.4
Regret of KG(T) 9.2 15.3 20.5 229 254 352 453 523 62.9 80.0

Computational Results

Figure: Ry ~ N (04,1), 0, ~ N(0,1)
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Asymptotic Optimality

» The seminal work of Lai and Robbins (1985) provides the asymptotic lower bound

- E t
liminfr_, o [chfcg

(T,m)|6]
ogT

ED>

Oax—04

a#A* Drp(0a0a) " c(8).

» when applied with an independent uniform prior, both Bayes UCB and TS are known to

attain this lower bound (Kaufmann et al. 2012a, b).

60

Figure: 6 = (0.3,0.2,0.1). 10,000 time periods. 200 independent trials

Computational Results
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Linear Bandit

» 0 € R® R, =a”0+ ¢ where  ~ N(0,10) and ¢; ~ N(0,1)
> o/ contains 30 actions, each with features ~ U([—1/v/5,1/+/5])

60
Bayes UCB
= Thompson sampling

50 f|= GPUCB
— — Tuned GPUCB
] ||— IDS
E; 40 KG
° — KG
= 30t
«
=
E 20 |+
(@]

10

0 \ L \ \ )
0 50 100 150 200 250

Time period

Figure: Regret in Linear-Gaussian Model
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Computational Results

Runtime Comparison

Table 6. Bernoulli Experiment: Compute Time per Decision in Seconds

Arms DS V-IDS TS Bayes UCB UCB1 KG Approx KG*
10 0.011013 0.01059 0.000025 0.000126 0.000008 0.000036 0.074618
30 0.047021 0.047529 0.000023 0.000147 0.000005 0.000017 0.215145
50 0.104328 0.10203 0.000024 0.000176 0.000005 0.000017 0.358505
70 0.18556 0.178689 0.000028 0.000167 0.000005 0.000017 0.494455

Table 7. Independent Gaussian Experiment: Compute Time per Decision in Seconds

Arms V-IDS TS Bayes UCB GPUCB KG KG*
10 0.00298 0.000008 0.00002 0.00001 0.000146 0.001188
30 0.012597 0.000005 0.000009 0.000005 0.000097 0.003157
50 0.023084 0.000006 0.000009 0.000005 0.000094 0.005146
70 0.03913 0.000006 0.000009 0.000005 0.000098 0.006364
Table 8. Linear Gaussian Experiment: Compute Time per Decision in Seconds

Arms Dimension V-IDS TS Bayes UCB GPUCB KG KG

15 3 0.004305 0.000178 0.000139 0.000048 0.002709 0.311935
30 5 0.008635 0.000064 0.000048 0.000038 0.004789 0.589998
50 20 0.026222 0.000077 0.000083 0.000068 0.008356 1.051552
100 30 0.079659 0.000115 0.000148 0.00013 0.017034 2.067123

Figure

36/36



	Problem Formulation
	Algorithm Design Principles
	Regret Bounds
	Computational methods
	Computational Results

