Action-gap in Reinforcement Learning

Ziniu Li

October 11, 2022

The Chinese University of Hong Kong, Shenzhen

Table of contents

1. Introduction
2. Action-gap Theory

Introduction

Markov Decision Processes

- Infinite-horizon MDPs with time-independent dynamics

$$
\mathcal{M}=(\mathcal{X}, \mathcal{A}, \gamma, P, R)
$$

- Bellman Optimality Equation:

$$
Q^{\star}(x, a)=R(x, a)+\gamma \mathbb{E}_{x^{\prime} \sim P(\cdot \mid x, a)}\left[\max _{a^{\prime} \in \mathcal{A}} Q^{\star}\left(x^{\prime}, a^{\prime}\right)\right], \quad \forall(x, a) \in \mathcal{X} \times \mathcal{A} .
$$

- Bellman operator \mathcal{T} :

$$
\mathcal{T}(Q)(x, a)=R(x, a)+\gamma \mathbb{E}_{x^{\prime} \sim P(\cdot \mid x, a)}\left[\max _{a^{\prime}} Q\left(x^{\prime}, a^{\prime}\right)\right] .
$$

However, in practice, we do not know P so that \mathcal{T} is not applicable.

- γ-contractility $(0<\gamma<1)$:

$$
\max _{(x, a)}\left|\mathcal{T}\left(Q_{1}\right)(x, a)-\mathcal{T}\left(Q_{2}\right)(x, a)\right| \leq \gamma \max _{(x, a)}\left|Q_{1}(x, a)-Q_{2}(x, a)\right| .
$$

Guarantee of Approximate Value Function

(Proposition 1) Worst-case Guarantee of Approximate Value

 FunctionSuppose a state-value function \widehat{V} satisfies $\left\|\widehat{V}-V^{\star}\right\|_{\infty} \leq \varepsilon$ for some $\varepsilon \geq 0$. If $\widehat{\pi}$ is a greedy policy based on \widehat{V}, then

$$
\left\|V^{\widehat{\pi}}-V^{\star}\right\|_{\infty} \leq \frac{2 \gamma \varepsilon}{1-\gamma}
$$

Remark: even though the value function \widehat{V} is close to V^{\star}, the induced greedy policy $\widehat{\pi}$ may suffer compounding errors in the worst-case.

Proof of Proposition 1

We use the Bellman operator \mathcal{T} and $\mathcal{T}_{\widehat{\pi}}$ defined as

$$
\begin{aligned}
(\mathcal{T} V)(x) & =\max _{a} \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a\right)\left(r(x, a)+\gamma V\left(x^{\prime}\right)\right) . \\
\left(\mathcal{T}^{\widehat{\pi}} V\right)(x) & =\sum_{x^{\prime}} P\left(x^{\prime} \mid x, \widehat{\pi}(x)\right)\left(r(x, \widehat{\pi}(x))+\gamma V\left(x^{\prime}\right)\right) .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\left\|V^{\widehat{\pi}}-V^{\star}\right\|_{\infty} & =\left\|\mathcal{T}^{\widehat{\pi}} V^{\widehat{\pi}}-\mathcal{T} V^{\star}\right\|_{\infty} \leq\left\|\mathcal{T}^{\widehat{\pi}} V^{\widehat{\pi}}-\mathcal{T}^{\widehat{\pi}} \widehat{V}\right\|_{\infty}+\left\|\mathcal{T}^{\hat{\pi}} \widehat{V}-\mathcal{T} V^{\star}\right\|_{\infty} \\
& \leq \gamma\left\|V^{\widehat{\pi}}-\widehat{V}\right\|_{\infty}+\left\|\mathcal{T} \mathcal{\pi}^{\widehat{\pi}} \widehat{V}-\mathcal{T} V^{\star}\right\|_{\infty} \\
& =\gamma\left\|V^{\widehat{\pi}}-\widehat{V}\right\|_{\infty}+\left\|\mathcal{T} \widehat{V}-\mathcal{T} V^{\star}\right\|_{\infty} \\
& \leq \gamma\left\|V^{\widehat{\pi}}-\widehat{V}\right\|_{\infty}+\gamma\left\|\widehat{V}-V^{\star}\right\|_{\infty} \\
& \leq\left[\gamma\left\|V^{\widehat{\pi}}-V^{\star}\right\|_{\infty}+\gamma\left\|V^{\star}-\widehat{V}\right\|_{\infty}\right]+\gamma\left\|\widehat{V}-V^{\star}\right\|_{\infty} \\
& \leq \gamma\left\|V^{\hat{\pi}}-V^{\star}\right\|_{\infty}+2 \gamma\left\|\widehat{V}-V^{\star}\right\|_{\infty}
\end{aligned}
$$

Rearranging yields the desired result.

Worst-case for Proposition 1

We have

$$
\begin{gathered}
V^{\star}(1)=\frac{2 \varepsilon}{1-\gamma} \quad \text { and } \quad V^{\star}(2)=\frac{2 \varepsilon}{1-\gamma} \\
\widehat{V}(1)=\frac{2 \varepsilon}{1-\gamma}+\varepsilon \quad \text { and } \quad \widehat{V}(2)=\frac{2 \varepsilon}{1-\gamma}-\varepsilon
\end{gathered}
$$

The agent always picks the sub-optimal action on state 1 because

$$
\begin{aligned}
r\left(1, a_{\varepsilon}\right)+\gamma \widehat{V}(1) & =\frac{2}{1-\gamma} \varepsilon \\
r\left(1, a_{2 \varepsilon}\right)+\gamma \widehat{V}(2) & =\frac{2-\gamma(1-\gamma)}{1-\gamma} \varepsilon
\end{aligned}
$$

Worst-case for Proposition 1

- Summary of intuition: in the worst-case, the greedy policy fail to identify the optimal action due to a small gap between two actions.
- However, this worst-case is ε-dependent. Real applications have fixed (and potentially large) action gaps.

Action-gap Theory

Action-gap Theory

Define the action gap function $g_{Q^{*}}: \mathcal{X} \rightarrow \mathbb{R}$ as

$$
g_{Q^{\star}}(x) \triangleq\left|Q^{\star}(x, 1)-Q^{\star}(x, 2)\right| .
$$

(Assumption 1)

For a fixed $\operatorname{MDP}(\mathcal{X}, \mathcal{A}, P, \mathcal{R}, \gamma)$ with $|\mathcal{A}|=2$, there exist constants $c_{g}>0$ and $\zeta \geq 0$ such that for all $t>0$, we have

$$
\mathbb{P}_{\rho^{\star}}\left(0<g_{Q^{\star}}(X) \leq t\right)=\int_{\mathcal{X}} 1\left\{0<g_{Q^{\star}}(x) \leq t\right\} d^{\rho^{\star}(x)} \leq c_{g} t^{\zeta}
$$

Action-gap Theory

(Definition 1) Concentrability of the Future-State Distribution

Given $\rho, \rho^{\star} \in \mathcal{M}(\mathcal{X})$, a policy π, and an integer $m \geq 0$, let $\rho\left(P^{\pi}\right)^{m} \in \mathcal{M}(\mathcal{X})$ denote the future-state distribution obtained when the first state is distributed according to ρ and we follow the policy π for m steps. Denote the supremum of the RadonNikodym derivative of $\rho\left(P^{\pi}\right)^{m}$ w.r.t. ρ^{\star} by $c(m, \pi)$, i.e.,

$$
c(m ; \pi) \triangleq\left\|\frac{d\left(\rho\left(P^{\pi}\right)^{m}\right)}{d \rho^{\star}}\right\|_{\infty} .
$$

If $\rho\left(P^{\pi}\right)^{m}$ is not absolutely continuous w.r.t. ρ^{\star}, we set $c(m ; \pi)=$ ∞. The concentrability of the future-state distribution coefficient is defined as

$$
C\left(\rho, \rho^{\star}\right) \triangleq \sup _{\pi} \sum_{m \geq 0} \gamma^{m} c(m ; \pi)
$$

Action-gap Theory

(Theorem 1) Action-gap dependent bound

Consider an $\operatorname{MDP}(\mathcal{X}, \mathcal{A}, P, \mathcal{R}, \gamma)$ with $|\mathcal{A}|=2$ and an estimate \widehat{Q} of the optimal action-value function. Let Assumption 1 hold and $C\left(\rho, \rho^{\star}\right)<\infty$. Denote $\widehat{\pi}$ as the greedy policy w.r.t. \widehat{Q}. We then have

$$
\left\|V^{\star}-V(\widehat{\pi})\right\|_{\rho} \leq\left\{\begin{array}{l}
2^{1+\zeta} c_{g} C\left(\rho, \rho^{\star}\right)\left\|\widehat{Q}-Q^{\star}\right\|_{\infty}^{1+\zeta} \\
2^{1+\frac{p(1+\zeta)}{\rho+\zeta}} c_{g}^{\frac{p-1}{+\rho}} C\left(\rho, \rho^{\star}\right)\left\|\widehat{Q}-Q^{\star}\right\|_{p, \rho^{\star}}^{\frac{p(1+\zeta)}{\rho+\zeta}} \quad(1 \leq p<\infty
\end{array}\right.
$$

Proof of Theorem 1

Let function $F: \mathcal{X} \rightarrow \mathbb{R}$ be defined as

$$
F(x)=V^{\star}(x)-V^{\widehat{\pi}}(x)=Q^{\pi^{\star}}\left(x, \pi^{\star}(x)\right)-Q^{\widehat{\pi}}(x, \widehat{\pi}(x)) .
$$

Note that $\left\|V^{\star}-V(\widehat{\pi})\right\|_{\rho}=\rho F$ (i.e., the inner production between two vectors). Decompose $F(x)$ as

$$
F(x)=\underbrace{\left(Q^{\pi^{\star}}\left(x, \pi^{\star}(x)\right)-Q^{\pi^{\star}}(x, \widehat{\pi}(x))\right)}_{F_{1}(x)}+\underbrace{\left(Q^{\pi^{\star}}(x, \widehat{\pi}(x))-Q^{\widehat{\pi}}(x, \widehat{\pi}(x))\right)}_{F_{2}(x)} .
$$

For $F_{2}(x)$, we further have

$$
\begin{aligned}
F_{2}(x)= & {\left[r(x, \widehat{\pi}(x))+\gamma \int_{\mathcal{X}} P(d y \mid x, \widehat{\pi}(x)) Q^{\pi^{\star}}\left(y, \pi^{\star}(y)\right)\right] } \\
& -\left[r(x, \widehat{\pi}(x))+\gamma \int_{\mathcal{X}} P(d y \mid x, \widehat{\pi}(x)) Q^{\widehat{\pi}}\left(y, \pi^{\star}(y)\right)\right] \\
= & \gamma P^{\widehat{\pi}}(\cdot \mid x) F(\cdot) .
\end{aligned}
$$

Proof of Theorem 1

Therefore, we obtain

$$
F=\left(I-\gamma P^{\hat{\pi}}\right)^{-1} F_{1}=\sum_{m \geq 0}\left(\gamma P^{\widehat{\pi}}\right)^{m} F_{1} .
$$

Thus,

$$
\begin{aligned}
\rho F & =\sum_{m \geq 0} \rho\left(\gamma P^{\widehat{\pi}}\right)^{m} F_{1}=\sum_{m \geq 0} \gamma^{m} \int_{\mathcal{X}}\left(\rho\left(P^{\widehat{\pi}}\right)^{m}\right)(d y) F_{1}(y) \\
& =\sum_{m \geq 0} \gamma^{m} \int_{\mathcal{X}} \frac{d\left(\rho\left(P^{\widehat{\pi}}\right)^{m}\right)}{d \rho^{\star}}(y) d \rho^{\star}(y) F_{1}(y) \\
& \leq \sum_{m \geq 0} \gamma^{m} c(m ; \widehat{\pi}) \rho^{\star} F_{1} \leq C\left(\rho, \rho^{\star}\right) \rho^{\star} F_{1} .
\end{aligned}
$$

Proof of Theorem 1

Claim: Note that for any given $x \in \mathcal{X}$, if for some value $\varepsilon>0$, we have $\widehat{\pi}(x) \neq \pi^{\star}(x)$ and $\left|Q^{\pi^{\star}}(x, a)-\widehat{Q}(x, a)\right| \leq \varepsilon$ (for both $a=1,2$), then it holds that $g_{Q^{*}}(x)=\left|Q^{\pi^{*}}(x, 1)-Q^{\pi^{*}}(x, 2)\right| \leq 2 \varepsilon$.
Proof of Claim: suppose that instead
$g_{Q^{\star}}(x)=\left|Q^{\pi^{\star}}(x, 1)-Q^{\pi^{\star}}(x, 2)\right|>2 \varepsilon$. Then because of the assumption $\widehat{\pi}(x) \neq \pi^{\star}(x)$ and $\left|Q^{\pi^{*}}(x, a)-\widehat{Q}(x, a)\right| \leq \varepsilon$ (for both $a=1,2$), the ordering of $\widehat{Q}(x, 1)$ and $\widehat{Q}(x, 2)$ is the same as the ordering of $Q^{\star}(x, 1)$ and $Q^{\star}(x, 2)$, which contradicts the assumption that $\widehat{\pi}(x)=\pi^{\star}(x)$.

Proof of Theorem 1

Denote $\varepsilon_{0}=\left\|Q^{\pi^{\star}}-\widehat{Q}\right\|_{\infty}$. Whenever $\widehat{\pi}=\pi^{\star}(x)$, the value of $F_{1}(x)$ is zero, so we get

$$
\begin{align*}
F_{1}(x)= & {\left[Q^{\pi^{\star}}\left(x, \pi^{\star}(x)\right)-Q^{\pi^{\star}}(x, \widehat{\pi}(x))\right]\left[1\left\{\widehat{\pi}(x)=\pi^{\star}(x)\right\}+1\left\{\widehat{\pi}(x) \neq \pi^{\star}(x)\right\}\right] } \\
= & {\left[Q^{\pi^{\star}}\left(x, \pi^{\star}(x)\right)-Q^{\pi^{\star}}\left(x, 1-\pi^{\star}(x)\right)\right] 1\left\{\widehat{\pi}(x) \neq \pi^{\star}(x)\right\} } \\
& \times\left[1\left\{g_{Q^{\star}}(x)=0\right\}+1\left\{0<g_{Q^{\star}}(x) \leq 2 \varepsilon_{0}\right\}+1\left\{g_{Q^{\star}}(x)>2 \varepsilon_{0}\right\}\right] \\
\leq & 0+2 \varepsilon_{0} 1\left\{0<g_{Q^{\star}}(x) \leq 2 \varepsilon_{0}\right\}+0 . \tag{1}
\end{align*}
$$

This result together with Assumption 1 shows that $\rho^{\star} F_{1} \leq 2 \varepsilon_{0} \mathbb{P}_{\rho^{\star}}\left(0<g_{Q^{\star}}(x) \leq 2 \varepsilon_{0}\right) \leq 2 \varepsilon_{0} C_{g}\left(2 \varepsilon_{0}\right)^{\xi}$.

Frame Title

References i

References

