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Introduction



Markov Decision Processes

• Infinite-horizon MDPs with time-independent dynamics
M = (X ,A, γ,P,R).

• Bellman Optimality Equation:

Q⋆(x,a) = R(x,a) + γEx′∼P(·|x,a)
[
max
a′∈A

Q⋆(x′,a′)
]
, ∀(x,a) ∈ X ×A.

• Bellman operator T :

T (Q)(x,a) = R(x,a) + γEx′∼P(·|x,a)
[
max
a′

Q(x′,a′)
]
.

However, in practice, we do not know P so that T is not
applicable.

• γ-contractility (0 < γ < 1):

max
(x,a)

|T (Q1)(x,a)− T (Q2)(x,a)| ≤ γmax
(x,a)

|Q1(x,a)− Q2(x,a)| .
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Guarantee of Approximate Value Function

(Proposition 1) Worst-case Guarantee of Approximate Value
Function

Suppose a state-value function V̂ satisfies ∥V̂ − V⋆∥∞ ≤ ε for
some ε ≥ 0. If π̂ is a greedy policy based on V̂, then∥∥∥Vπ̂ − V⋆

∥∥∥
∞

≤ 2γε
1− γ

.

Remark: even though the value function V̂ is close to V⋆, the induced
greedy policy π̂ may suffer compounding errors in the worst-case.
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Proof of Proposition 1

We use the Bellman operator T and Tπ̂ defined as

(T V)(x) = max
a

∑
x′
P(x′|x,a) (r(x,a) + γV(x′)) .

(T π̂V)(x) =
∑
x′
P(x′|x, π̂(x)) (r(x, π̂(x)) + γV(x′)) .

Then, we have∥∥∥Vπ̂ − V⋆
∥∥∥
∞

=
∥∥∥T π̂Vπ̂ − T V⋆

∥∥∥
∞

≤
∥∥∥T π̂Vπ̂ − T π̂V̂

∥∥∥
∞

+
∥∥∥T π̂V̂− T V⋆

∥∥∥
∞

≤ γ
∥∥∥Vπ̂ − V̂

∥∥∥
∞

+
∥∥∥T π̂V̂− T V⋆

∥∥∥
∞

= γ
∥∥∥Vπ̂ − V̂

∥∥∥
∞

+
∥∥∥T V̂− T V⋆

∥∥∥
∞

≤ γ
∥∥∥Vπ̂ − V̂

∥∥∥
∞

+ γ
∥∥∥V̂− V⋆

∥∥∥
∞

≤
[
γ
∥∥∥Vπ̂ − V⋆

∥∥∥
∞

+ γ
∥∥∥V⋆ − V̂

∥∥∥
∞

]
+ γ

∥∥∥V̂− V⋆
∥∥∥
∞

≤ γ
∥∥∥Vπ̂ − V⋆

∥∥∥
∞

+ 2γ
∥∥∥V̂− V⋆

∥∥∥
∞

.

Rearranging yields the desired result. 4



Worst-case for Proposition 1

33

Further Direction

1 2
2ε

ε
2ε

We have

V⋆(1) = 2ε
1− γ

and V⋆(2) = 2ε
1− γ

V̂(1) = 2ε
1− γ

+ ε and V̂(2) = 2ε
1− γ

− ε

The agent always picks the sub-optimal action on state 1 because

r(1,aε) + γV̂(1) = 2
1− γ

ε

r(1,a2ε) + γV̂(2) = 2− γ(1− γ)

1− γ
ε.
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Worst-case for Proposition 1
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2ε

ε
2ε

• Summary of intuition: in the worst-case, the greedy policy fail to
identify the optimal action due to a small gap between two
actions.

• However, this worst-case is ε-dependent. Real applications have
fixed (and potentially large) action gaps.
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Action-gap Theory



Action-gap Theory

Define the action gap function gQ⋆ : X → R as

gQ⋆(x) ≜ |Q⋆(x, 1)− Q⋆(x, 2)| .

(Assumption 1)

For a fixed MDP (X ,A,P,R, γ) with |A| = 2, there exist con-
stants cg > 0 and ζ ≥ 0 such that for all t > 0, we have

Pρ⋆ (0 < gQ⋆(X) ≤ t) =
∫
X
1 {0 < gQ⋆(x) ≤ t}dρ

⋆(x) ≤ cgtζ .
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Action-gap Theory

(Definition 1) Concentrability of the Future-State Distribution

Given ρ, ρ⋆ ∈ M(X ), a policy π, and an integer m ≥ 0, let
ρ(Pπ)m ∈ M(X ) denote the future-state distribution obtained
when the first state is distributed according to ρ and we follow
the policy π for m steps. Denote the supremum of the Radon-
Nikodym derivative of ρ(Pπ)m w.r.t. ρ⋆ by c(m, π), i.e.,

c(m;π) ≜
∥∥∥∥d(ρ(Pπ)m)dρ⋆

∥∥∥∥
∞

.

If ρ(Pπ)m is not absolutely continuous w.r.t. ρ⋆, we set c(m;π) =

∞. The concentrability of the future-state distribution coeffi-
cient is defined as

C(ρ, ρ⋆) ≜ sup
π

∑
m≥0

γmc(m;π).
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Action-gap Theory

(Theorem 1) Action-gap dependent bound

Consider an MDP (X ,A,P,R, γ) with |A| = 2 and an estimate
Q̂ of the optimal action-value function. Let Assumption 1 hold
and C(ρ, ρ⋆) < ∞. Denote π̂ as the greedy policy w.r.t. Q̂. We
then have

∥V⋆ − V(π̂)∥ρ ≤


21+ζcgC(ρ, ρ⋆)

∥∥∥Q̂− Q⋆
∥∥∥1+ζ

∞

21+
p(1+ζ)
p+ζ c

p−1
p+ζ

g C(ρ, ρ⋆)
∥∥∥Q̂− Q⋆

∥∥∥ p(1+ζ)
p+ζ

p,ρ⋆
(1 ≤ p < ∞)
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Proof of Theorem 1

Let function F : X → R be defined as

F(x) = V⋆(x)− Vπ̂(x) = Qπ⋆

(x, π⋆(x))− Qπ̂(x, π̂(x)).

Note that ∥V⋆ − V(π̂)∥ρ = ρF (i.e., the inner production between two
vectors). Decompose F(x) as

F(x) =
(
Qπ⋆

(x, π⋆(x))− Qπ⋆

(x, π̂(x))
)

︸ ︷︷ ︸
F1(x)

+
(
Qπ⋆

(x, π̂(x))− Qπ̂(x, π̂(x))
)

︸ ︷︷ ︸
F2(x)

.

For F2(x), we further have

F2(x) =
[
r(x, π̂(x)) + γ

∫
X
P(dy|x, π̂(x))Qπ⋆

(y, π⋆(y))
]

−
[
r(x, π̂(x)) + γ

∫
X
P(dy|x, π̂(x))Qπ̂(y, π⋆(y))

]
= γPπ̂(·|x)F(·).
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Proof of Theorem 1

Therefore, we obtain

F = (I− γPπ̂)−1F1 =
∑
m≥0

(γPπ̂)mF1.

Thus,

ρF =
∑
m≥0

ρ(γPπ̂)mF1 =
∑
m≥0

γm
∫
X

(
ρ(Pπ̂)m

)
(dy)F1(y)

=
∑
m≥0

γm
∫
X

d(ρ(Pπ̂)m)
dρ⋆ (y)dρ⋆(y)F1(y)

≤
∑
m≥0

γmc(m; π̂)ρ⋆F1 ≤ C(ρ, ρ⋆)ρ⋆F1.
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Proof of Theorem 1

Claim: Note that for any given x ∈ X , if for some value ε > 0, we have
π̂(x) ̸= π⋆(x) and |Qπ⋆

(x,a)− Q̂(x,a)| ≤ ε (for both a = 1, 2), then it
holds that gQ⋆(x) = |Qπ⋆

(x, 1)− Qπ⋆

(x, 2)| ≤ 2ε.

Proof of Claim: suppose that instead
gQ⋆(x) = |Qπ⋆

(x, 1)− Qπ⋆

(x, 2)| > 2ε. Then because of the assumption
π̂(x) ̸= π⋆(x) and |Qπ⋆

(x,a)− Q̂(x,a)| ≤ ε (for both a = 1, 2), the
ordering of Q̂(x, 1) and Q̂(x, 2) is the same as the ordering of Q⋆(x, 1)
and Q⋆(x, 2), which contradicts the assumption that π̂(x) = π⋆(x).
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Proof of Theorem 1

Denote ε0 = ∥Qπ⋆ − Q̂∥∞. Whenever π̂ = π⋆(x), the value of F1(x) is
zero, so we get

F1(x) =
[
Qπ⋆

(x, π⋆(x))− Qπ⋆

(x, π̂(x))
]
[1 {π̂(x) = π⋆(x)}+ 1 {π̂(x) ̸= π⋆(x)}]

=
[
Qπ⋆

(x, π⋆(x))− Qπ⋆

(x, 1− π⋆(x))
]
1 {π̂(x) ̸= π⋆(x)}

× [1 {gQ⋆(x) = 0}+ 1 {0 < gQ⋆(x) ≤ 2ε0}+ 1 {gQ⋆(x) > 2ε0}]
≤ 0+ 2ε01 {0 < gQ⋆(x) ≤ 2ε0}+ 0. (1)

This result together with Assumption 1 shows that
ρ⋆F1 ≤ 2ε0Pρ⋆(0 < gQ⋆(x) ≤ 2ε0) ≤ 2ε0cg(2ε0)ξ .
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