Training Larger Networks for Deep Reinforcement Learning

Ziniu Li ziniuli@link.cuhk.edu.cn

CUHKSZ

December 13, 2022

Large neural network models have superior performance in many domains (CV, NLP, etc).

Figure 1: Classification error and model size on the Imagenet competition.

• Are large models helpful in RL?

Figure 2: Results from [OJK21].

• Directly increasing the number of layers (with $N_{\text{unit}} = 256$) could even hurt the performance.

Figure 3: Results from [OJK21].

• Directly increase the width (with $N_{\text{layer}} = 2$) improve the performance by about 1.5 times.

	SAC				TD3			
Environment	OURS	OFENET	ORIGINAL		OURS	OFENET	Original	
HOPPER-V2 Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2	3467.3 8802.4 19209.9 14021.0 14858.2	3511.6 5237.0 16964.1 8086.2 9560.5	3316.6 3401.5 14116.1 5953.1 6092.6	3 7 18 12 13	206.7 7645.8 8147.5 2811.3 3282.0	3488.3 4915.1 16259.5 8472.4 120.6	3613.0 4515.6 13319.9 6148.6 340.5	

Figure 4: Results from [OJK21].

• Training with large networks achieves the SOTA performance.

How to Train Larger Networks for Deep RL?

Figure 5: Results from [OJK21].

- OFENET: predicting the next state to learn presentation.
- Wider NN: $N_{\text{unit}} = 2048$.
- Dense Net: advanced architecture.
- Ape-X training: parallelization for on-policy samples.

References I

[OJK21] Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger networks for deep reinforcement learning. arXiv preprint arXiv:2102.07920, 2021.