
Training Larger Networks for Deep Reinforcement
Learning

Ziniu Li
ziniuli@link.cuhk.edu.cn

CUHKSZ

December 13, 2022

1 / 7



Introduction
Large neural network models have superior performance in many
domains (CV, NLP, etc).

Figure 1: Classification error and model size on the Imagenet competition.

Are large models helpful in RL?

2 / 7



Introduction

Training Larger Networks for Deep Reinforcement Learning

Kei Ota 1 2 Devesh K. Jha 3 Asako Kanezaki 2

Abstract

The success of deep learning in the computer
vision and natural language processing commu-
nities can be attributed to training of very deep
neural networks with millions or billions of pa-
rameters which can then be trained with mas-
sive amounts of data. However, similar trend
has largely eluded training of deep reinforcement
learning (RL) algorithms where larger networks
do not lead to performance improvement. Previ-
ous work has shown that this is mostly due to in-
stability during training of deep RL agents when
using larger networks. In this paper, we make
an attempt to understand and address training of
larger networks for deep RL. We first show that
naively increasing network capacity does not im-
prove performance. Then, we propose a novel
method that consists of 1) wider networks with
DenseNet connection, 2) decoupling representa-
tion learning from training of RL, 3) a distributed
training method to mitigate overfitting problems.
Using this three-fold technique, we show that we
can train very large networks that result in sig-
nificant performance gains. We present several
ablation studies to demonstrate the efficacy of the
proposed method and some intuitive understand-
ing of the reasons for performance gain. We show
that our proposed method outperforms other base-
line algorithms on several challenging locomotion
tasks.

1. Introduction
We have witnessed huge improvements in the fields of com-
puter vision (CV) and natural language processing (NLP)
in the last decade (Krizhevsky et al., 2012; He et al., 2016;
Huang et al., 2017; Devlin et al., 2019; Brown et al., 2020).
These developments could largely be attributed to training

1Mitsubishi Electric, Kanagawa, Japan 2Tokyo Insti-
tute of Technology, Tokyo, Japan 3Mitsubishi Electric Re-
search Labs, Cambridge, USA. Correspondence to: Kei Ota
<Ota.Kei@ds.MitsubishiElectric.co.jp>.

(a) Average return. (b) Loss surface.

Figure 1. Training curves of SAC agents with different number of
layers on Ant-v2 environment, and the loss function surface of the
deepest (16-layers) Q-network. The training curves suggest that
simply building a deeper MLP with fixed number of units (256)
does not improve the performance of DRL while building a larger
network is generally effective in supervised learning. Motivated by
this, we conduct an extensive study on how to train larger networks
that contribute for performance gain for RL agents.

of very large neural networks with millions (or even bil-
lions or trillions) of parameters which can be trained using
massive amounts of data and an appropriate optimization
technique to stabilize training. In general, the motivation
of training larger networks comes from the intuition that
larger networks allow better solutions as they increase the
search space of possible solutions. Having said that, neural
network training largely relies on the ability to find good
minimizers of highly non-convex loss functions. These loss
functions are also governed by the choices of network archi-
tecture, batch size, etc. This has also driven a lot of research
in these communities towards understanding the underlying
reasoning for performance gains (Lu et al., 2017; Zhang
et al., 2017; Nguyen & Hein, 2017; Li et al., 2018).

In a striking contrast, Deep Reinforcement Learning (DRL)
community has not reported similar trend with regards to
training larger networks for RL. It has been reported in some
studies that deep RL agents experience instability while
training with larger networks (Henderson et al., 2018; van
Hasselt et al., 2018; Achiam et al., 2019; Sinha et al., 2020).
As an example, in Fig. 1, we show the results of an Soft
Actor Critic (SAC) (Haarnoja et al., 2018) agent that uses
Multi-layered Perceptron (MLP) for function approximation
with increasing number of layers while fixing its unit size

ar
X

iv
:2

10
2.

07
92

0v
1 

 [
cs

.L
G

] 
 1

6 
Fe

b 
20

21

Figure 2: Results from [OJK21].

Directly increasing the number of layers (with Nunit = 256) could
even hurt the performance.

3 / 7



IntroductionTraining Larger Networks for Deep RL

we show the effect of increasing the number of units while
the number of layers is fixed to N layer = 2. Contrary to the
results when making the network deeper, we can observe
consistent improvement when making the network wider. In
order to investigate more thoroughly, we also conduct a grid
search, where we sample each parameter of the network
from N unit ∈ {128, 256, 512, 1024, 2048}, and N layer ∈
{1, 2, 4, 8, 16} and evaluate the performance in Fig. 4. We
can see the monotonic improvement in performance when
widening networks on almost all depth of the network.

This result is in line with the general belief that training
deeper networks is, in general, harder and is more suscepti-
ble to choice of hyperparameters (Bengio et al., 2007; Ram-
choun et al., 2017). This could be attributed to vanishing
gradient problem with increasing number of layers (Ben-
gio et al., 1994). However, we found that the reason that
deeper networks are harder to train than wider network
cannot be attributed to vanishing gradient, rather it results
from the sharpness of the loss surface curvatures (Li et al.,
2018). We show the loss surface of the deeper network
(N layer = 16, N unit = 256) in Fig. 1b and the wider net-
work (N layer = 2, N unit = 2048) in Fig. 3b by using the
visualization method proposed in (Li et al., 2018) with the
loss of TD error of Q-functions of SAC agents (see Ap-
pendix A.3 for more details). These figures show that wider
networks have nearly convex surface while deeper networks
have more complex loss surface which could be susceptible
to choice of hyperparameters (Li et al., 2018). Compari-
son of deeper and wider networks have also been done in
several works (Wu et al., 2019; Nguyen & Hein, 2017; Li
et al., 2018), where wider networks are prone to have more
generalization capability due to their smooth loss functions.

From these results, we observe and conclude that larger net-
works can be effective in improving deep RL performance.
In particular, we achieve consistent performance gains when
widening individual layers instead of going deeper. Conse-
quently, we fix the number of layers to N layer = 2, and only
change the number of units to learn larger networks in the
following experiments.

4.2. Architecture Comparison

In the next set of experiments, we try to investigate the
role of synergistic combination of connectivity architecture,
state-representation and distributed training in allowing us-
age of larger networks for training deep RL agents. A brief
introduction to these techniques is described in Sec. 3.

Connectivity architecture We first compare four connec-
tivity architectures: standard MLP, MLP-ResNet, MLP-
DenseNet, and MLP-D2RL, which is a recently proposed
architecture to improve RL performance. MLP-ResNet is a
modified version of Residual Networks (ResNet) (He et al.,

(a) Average return. (b) Loss surface.

Figure 3. Training curves of the SAC agent with different number
of units on Ant-v2 environment and the loss function surface of
the widest (2048-units) Q-network. This shows the performance
consistently improves when using wider MLPs.

Figure 4. Grid search results of maximum average return at one-
million training steps over different number of units and layers for
SAC agent on Ant-v2 environment. This demonstrates a deeper
MLP (see horizontally) does not consistently improve performance
while a wider MLP (see vertically) generally does.

2016; He et al., 2016), which has a skip-connection that
bypasses the non-linear transformations with an identity
function: yi = f res

i (yi−1) + yi−1, where yi is the output of
the ith layer, and f res

i is a residual module, which consists
of fully connected layer and nonlinear activation function.
An advantage of this architecture is that the gradient can
flow directly through the identity mapping from top layers
to bottom layers. MLP-D2RL is identical to (Sinha et al.,
2020), and MLP-DenseNet is our proposed architecture that
is defined in Sec. 3.3. We compare these four architectures
on both small network (N unit = 128, denoted by S) and
large networks (N unit = 2048, denoted by L).

Figure 5 shows the training curves of average return in
Fig. 5a, and the effective ranks in Fig. 5b. The results
show that our MLP-DenseNet achieves the highest return
on both small and large networks, while mitigating rank
collapse comparable to MLP-D2RL. This shows that the

Figure 3: Results from [OJK21].

Directly increase the width (with Nlayer = 2) improve the
performance by about 1.5 times.

4 / 7



Introduction

Training Larger Networks for Deep RL

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 9. Training curves on five different MuJoCo tasks with two different RL algorithms (SAC and TD3).

Table 1. The highest average returns for each environment. The bold number indicates the best performance. Our method outperforms
OFENet (Ota et al., 2020) and original algorithm in most environments.

SAC TD3

ENVIRONMENT OURS OFENET ORIGINAL OURS OFENET ORIGINAL

HOPPER-V2 3467.3 3511.6 3316.6 3206.7 3488.3 3613.0
WALKER2D-V2 8802.4 5237.0 3401.5 7645.8 4915.1 4515.6
HALFCHEETAH-V2 19209.9 16964.1 14116.1 18147.5 16259.5 13319.9
ANT-V2 14021.0 8086.2 5953.1 12811.3 8472.4 6148.6
HUMANOID-V2 14858.2 9560.5 6092.6 13282.0 120.6 340.5

Distributed RL Finally, we add distributed replay (Hor-
gan et al., 2018) to further improve performance while us-
ing larger networks. We use an implementation similar
to (Stooke & Abbeel, 2018), which collects experiences
using N core cores on which each core contains N env envi-
ronments, specifically we used N core = 2 and N env = 32.

Similar to the previous experiments, we conduct a grid
search over different number of units for SAC and OFENet
with the distributed replay in Fig. 8, and also compare the
training curves of three different network size S, M, and L
in Appendix B. Comparing Fig. 8 and Fig. 7, we can clearly
see the distributed training enables further performance gain
on all network size. Furthermore, we can observe monotonic
improvement when we increase the number of units for both
SAC and OFENet. Thus, we verified combining distributed
replay contributes further performance gain while training
larger networks.

How about generalization to different RL algorithms
and environments? To quantitatively measure the effec-
tiveness of our method across different RL algorithms and
tasks, we evaluate two popular optimization algorithms,
namely SAC and TD3 (Fujimoto et al., 2018), on five dif-
ferent locomotion tasks in MuJoCo (Todorov et al., 2012).
We denote our method as Ours, which uses the largest net-
work of N units = 2048 among the previous experiments
for both the OFENet and the RL algorithms. We compare
the proposed method against two baselines: the original RL
algorithm denoted by Original. Furthermore, we also com-
pare OFENet, which can achieve the current state-of-the-art
performance on these tasks to the best of our knowledge.

We plot the training curves in Fig. 9 and list the highest
average return in Table 1. In the figure and the table, our
method, SAC (Ours) and TD3 (Ours) achieves the best per-
formance on almost all environments. Furthermore, we can
see that our proposed method can work with both RL al-
gorithms, and thus is agnostic to the choice of the trainign

Figure 4: Results from [OJK21].

Training with large networks achieves the SOTA performance.

5 / 7



How to Train Larger Networks for Deep RL?Training Larger Networks for Deep RL

algorithm. In particular, our method notably achieves much
higher episode return in Ant-v2 and Humanoid-v2, which
are harder environments with larger state/action space and
more training examples. Interestingly, the proposed method
does not achieve reasonable solutions in Hopper-v2, which
has the smallest dimensionality among five environments.
We consider that the performance in smaller dimension prob-
lem saturates early and even additional methods are unable
to provide any significant performance gain.

4.3. Ablation study

Since our method integrates several different ideas into a
single agent, we conduct additional experiments to under-
stand what components contribute to the performance gain.
We highlight that our method consists of three elements:
feature representation learning using OFENet, DenseNet
architecture, and distributed training. In addition to this,
we compare the results without increasing the network
size to reinforce that larger network does improve perfor-
mance. Figure 10 shows the ablation study over SAC with
Ant-v2 environment. Full is our method which combines
all three elements we proposed, and uses large networks
(N unit = 2048, N layer = 2) for the SAC agent. sac is the
original SAC implementation.

w/o Ape-X removes Ape-X-like distributed training setting.
As distributed RL enables collection of more experiences
close to the current policy, we consider that the significant
performance gain can be explained by learning from more
on-policy data, which was also empirically shown by (Fedus
et al., 2020). Also, we believe that receiving more novel
experiences helps the agent generalize to state-action space.
In other words, more novel experience reduces overfitting
to limited trajectories, which becomes more important in
harder environments which has larger state/action space,
and larger neural networks.

w/o OFENet removes OFENet and trains the whole archi-
tecture by using only a scalar reward signal. The much
lower return shows that learning the large networks from
just the scalar reinforcement signal is difficult, and training
the bottom networks (close to the input layer), i.e., obtain-
ing informative features by using an auxiliary task enables
better learning of control policy.

w/o Larger NN reduces the number of units from N unit =
2048 to 256 for both OFENet and SAC. This also signif-
icantly drops the performance, and thus we can conclude
that using larger networks is essential to achieve high per-
formance.

Finally, w/o DenseNet replaces MLP-DenseNet defined in
Sec. 3.3 with standard MLP architecture. The result shows
that strengthening feature propagation does contribute to
improve performance.

Figure 10. Training curves of the derived methods of SAC on Ant-
v2. This shows that each element does contribute to performance
gain, and our combination of DenseNet architecture, distributed
training, and decoupled feature representation (shown as Full )
allows us to train larger networks that performs significantly better
compared against the baseline SAC algorithm (shown as sac ).

5. Conclusion
Deep Learning has catalyzed huge breakthroughs in the
fields of computer vision and natural language processing
making use of massive neural networks that can be trained
with huge amounts of data. While these domains have
hugely benefitted from the use of larger networks, the RL
community has not witnessed similar trend in use of larger
networks for training high performance agents. This is
mostly due to instability that occurs when using larger net-
works for training RL agents. In this paper, we studied the
problem of using larger network for training RL agents. To
achieve this, we proposed a novel method for training larger
networks for deep RL agents while reflecting on some of the
important design choices one has to make when using such
networks. In particular, the proposed method consists of
three elements. First, we decouple representation learning
from RL using an auxiliary loss of predicting the next state.
This allows to obtain more informative features to be used
to learn control policies with richer information compared
to learning entire networks from a scalar reward signal. The
learned representation is then propagated to the DenseNet
architecture that consists of very wide networks. Finally, a
distributed training framework provides huge amounts of
on-policy data whose distribution is much closer to the cur-
rent policy, and thus enables to mitigate overfitting problem
and enhance generalization to novel scenarios. Our exper-
iments demonstrate that this novel combination achieves
significantly higher performance compared against the cur-
rent state-of-the-art algorithms across different off-policy
RL algorithms and different continuous control tasks.

In the future, we would like to study the application to high-
dimensional inputs (e.g., images). We also would like to
investigate how we can make use of the proposed method
for other off-policy methods to make our method agnostic
to the choice of underlying algorithm.

Figure 5: Results from [OJK21].

OFENET: predicting the next state to learn presentation.
Wider NN: Nunit = 2048.
Dense Net: advanced architecture.
Ape-X training: parallelization for on-policy samples.

6 / 7



References I

[OJK21] Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger
networks for deep reinforcement learning. arXiv preprint
arXiv:2102.07920, 2021.

7 / 7


	References

