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Motivations

▶ The Neural Testbed: Evaluating Joint Predictions [Osband et al., 2021]

▶ From Predictions to Decisions: The Importance of Joint Predictive Distributions [Wen et al.,
2021]
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Data sequence

▶ Consider a sequence of pairs ((Xt, Yt+1) : t = 0, 1, 2, . . .); Xt︸︷︷︸
feature vector i.i.d∼ PX

, Yt+1︸︷︷︸
target label


▶ The conditional distribution E is referred to as the environment.
▶ The environment E is random; and this reflects the agent’s uncertainty about how labels are

generated given features.
▶ Each target label Yt+1 ⊥⊥ all other data | Xt and

P (Yt+1 ∈ · | E , Xt) = E(· | Xt)

And we have P (Yt+1 ∈ · | Xt) = E [E (· | Xt) | Xt].
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Supervised learning

▶ Supervised learning: an agent that learns about the environment E from a training dataset

DT ≡ ((Xt, Yt+1) : t = 0, 1, . . . , T − 1) ,

and aims to predict the target labels

YT+1:T+τ ≡ (YT+1, . . . , YT+τ)

at τ feature vectors XT:T+τ−1 ≡ (XT , . . . , XT+τ−1).
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Predictive distribution

▶ Conditioned on the environment E , a predictive distribution over the target labels is given by

P∗
T+1:T+τ ≡ P (YT+1:T+τ ∈ · | E , XT:T+τ−1) .

▶ Conditioned instead on the training data, the predictive distribution becomes

P̄T+1:T+τ ≡ P (YT+1:T+τ ∈ · | DT , XT:T+τ−1)

= E [E(YT+1:T+τ ∈ · | XT:T+τ−1) | DT , XT:T+τ−1]

= E

[
T+τ−1

∏
t=T

E(Yt+1 ∈ · | Xt) | DT , XT:T+τ−1

]

▶ Since E is random, the conditional expectation E [E(·) | DT ] denotes the true posterior of
E given DT.

▶ P̄T+1:T+τ represents the result of perfect (Bayesian posterior) inference.
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Problems of perfect inference for predictive distribution

▶ Problem 1 (Computational tractability):
– Perfect inference is computationally tractable if conjugate property exists for the environment

E , e.g. linear Gaussian, Beta-Bernoulli, and some GPs.
– Perfect inference is usually computationally intractable for the environments of interest (e.g.

Nonlinear models or Neural networks).

▶ Problem 2 (Computational efficiency):
– For linear Gaussian model, posterior update (perfect inference) can be computed using

rank-one update rule.
– For GPs, the computational complexity of posterior update (perfect inference) is dominated by

O(N3) where N is the number of data.

▶ To tackle these issues, consider agents that perform approximate inference.
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Approximate predictive distribution

▶ Consider agents that represent the approximation in terms of a generative model.
▶ The agent’s predictions are parameterized by a vector θT that the agent (only) learns from

the training data DT.
▶ The vector θT is conditionally independent of E conditioned on DT.

θT ⊥⊥ E | DT

▶ For any inputs XT:T+τ−1, θT determines a predictive distribution, which could be used to
sample imagined outcomes ŶT+1:T+τ.

▶ Hence, the agent’s τth -order predictive distribution is given by

P̂T+1:T+τ ≡ P
(
ŶT+1:T+τ ∈ · | θT , XT:T+τ−1

)
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Marginal vs. joint predictive distributions

▶ When τ = 1, we alternatively use P̂T+1, P̄T+1, and P∗
T+1 to denote P̂T+1:T+τ , P̄T+1:T+τ,

and P∗
T+1:T+τ, respectively.

▶ Marginal prediction: τ = 1, P̂T+1 predicts the label YT+1 for a single input XT.

▶ Joint prediction: τ > 1, P̂T+1:T+τ represents a joint prediction over labels at τ input
features.
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Marginal vs. joint predictive distributions: Coin flipping example

▶ (Yt+1 : t = 0, 1, . . .): repeated tosses of a possibly biased coin with unknown probability p
of heads, with Yt+1 = 1 and Yt+1 = 0 indicating heads and tails, respectively.

▶ Consider two agents with different beliefs:
– Agent 1 assumes p = 2/3 and models the outcome of each coin toss as independent

conditioned on p.
– Agent 2 assumes that p = 1 with probability 2/3 and p = 0 with probability 1/3; that is, the

coin either produces only heads or only tails.

▶ Let Ŷ1
t+1 and Ŷ2

t+1 denote the outcomes imagined by the two agents.

▶ Despite their differing assumptions, the two agents generate identical marginal predictive
distributions:

P
(

Ŷ1
t+1 = 0

)
= P

(
Ŷ2

t+1 = 0
)
= 1/3
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Marginal vs. joint predictive distributions: Coin flipping example

▶ Identical marginal predictive distributions:

P
(

Ŷ1
t+1 = 0

)
= P

(
Ŷ2

t+1 = 0
)
= 1/3

▶ Joint predictions of these two agents differ for τ > 1:

P
(

Ŷ1
1 , . . . , Ŷ1

τ = 0
)
= 1/3τ < 1/3 = P

(
Ŷ2

1 , . . . , Ŷ2
τ = 0

)
▶ Evaluating marginal predictions cannot distinguish between the two agents, though for a

specific prior distribution over p, one agent could be right and the other wrong.

▶ Conclusion: One must evaluate joint predictions to make this distinction.
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Cross-entropy loss for evaluating marginal and joint predictions

▶ Cross-entropy loss to evaluate marginal predictive distributions.

d1
CE ≡ −E

[
log P̂T+1 (YT+1)

]
where the expectation is over both P̂T+1 and YT+1.

▶ the superscript " 1 " in d1
CE indicates that this evaluates marginal predictions.

▶ Note that the marginal distribution P̂T+1 is random because it depends on θT and XT.
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Cross-entropy loss for evaluating marginal and joint predictions

▶ Straightforward to extend the cross-entropy loss to assess joint predictive distributions.

▶ For any τ = 1, 2, . . ., we define the τth -order crossentropy loss:

dτ
CE ≡ −E

[
log P̂T+1:T+τ (YT+1:T+τ)

]
where the expectation is over P̂T+1:T+τ and YT+1:T+τ.

▶ Note that the τth -order joint distribution P̂T+1:T+τ is also random, since it depends on θT

and XT:T+τ−1.
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Kullbeck-Leibler divergence

▶ For a more elegant mathematical analysis, it can be helpful to offset the metric by a
baseline to convert it into the Kullback-Leibler (KL) divergence.

▶ The τth-order expected KL-divergence with respect to P̄ is defined by

dτ
KL ≡ E

[
dKL

(
P̄T+1:T+τ∥P̂T+1:T+τ

)]
where the expectation is over the distributions P̄T+1:T+τ and P̂T+1:T+τ, which depend in
turn on the data DT, the agent parameters θT, and the τ inputs XT:T+τ−1.

▶ Note that KL-divergence is minimized when P̂T+1:T+τ = P̄T+1:T+τ, with the minimum
being zero.
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Relation between Cross-Entropy and Kullbeck-Leibler divergence

▶ Further, the two metrics are related according to

dτ
KL = dτ

CE + E [log P̄T+1:T+τ (YT+1:T+τ)] .

▶ Since P̄T+1:T+τ does not depend on the agent, our measure of KL-divergence and the
cross-entropy loss are effectively equivalent in the sense that they only differ by a constant
that does not depend on the agent.

▶ Since P̄T+1:T+τ (YT+1:T+τ) does not depend on the agent, our two metrics rank agents
identically.
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Evaluation on Cross-Entropy and Kullbeck-Leibler divergence

▶ An unbiased estimate of cross-entropy loss can be computed based on a test data sample,
according to

dτ
CE ≈ − log P̂T+1:T+τ (YT+1:T+τ)

▶ The same is not true for dτ
KL, which can only be estimated if also given an estimate of

E [log P̄T+1:T+τ (YT+1:T+τ)].
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Conclusion on the Metrics

▶ Hence, dτ
KL serves only as conceptual tools in our analysis and not an evaluation metric

that can be applied with empirical data.

▶ While it ranks agents identically with dτ
CE, dτ

KL is more natural as a metric since its
minimum is zero and it accommodates more elegant analysis.
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Error in predictions versus environment

▶ Our dτ
KL metric assesses error incurred by the predictive distribution P̂T+1:T+τ.

▶ A common approach to generating such a predictive distribution:
1 estimating a posterior distribution over environments
2 using that posterior distribution to generate the predictive distribution.

▶ In such a context, θT parameterizes the estimated posterior distribution.

▶ Let Ê be an imaginary environment sampled from this posterior distribution.
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Error in predictions versus environment

▶ To offer some intuition for dτ
KL, we consider in this section its relation to the KL-divergence

between the distributions of the true and imaginary environments.

▶ Let ŶT+1:T+τ denote a sequence of imaginary outcomes, with each Ŷt+1 sampled
independently from Ê (· | Xt).

▶ If the support of the input distribution PX is exhaustive, the support of the imaginary
environment distribution P

(
Ê ∈ · | θT

)
contains that of the true environment distribution

P(E ∈ · | DT), and the environment distributions satisfy suitable regularity conditions, then

lim
τ→∞

dτ
KL = E

[
dKL

(
P (E ∈ · | DT) ∥P

(
Ê ∈ · | θT

))]
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Why use dτ
KL instead of KL between the true and imaginary envs?

E
[
dKL

(
P (E ∈ · | DT) ∥P

(
Ê ∈ · | θT

))]
(1)

▶ Practical agent design often do not satisfy the requisite regularity conditions and hence
eq. (1) becomes infinite

– For example, it is common to approximate the posterior distribution E using an ensemble of
environment models (see, e.g., Lu & Van Roy (2017)). Such an ensemble represents a
distribution with finite support though the posterior may have infinite support.

– On the other hand, for any finite τ, dτ
KL is finite.

▶ Second, dτ
CE, which is equivalent to dτ

KL up to a constant, can be computed based on data,
whereas computing eq. (1) requires access to the posterior distribution of E .

▶ Finally, as we will establish later, dτ
KL with finite τ is sufficient to support effective decisions

in downstream tasks such as multi-armed bandits.
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Universality of dτ
KL

▶ For any τ, accuracy in terms of dτ
KL is sufficient to guarantee an effective decision if the

decision is judged in relation only to YT+1:T+τ.

▶ In particular, suppose an action a selected from a set A results in an expected reward

E [r (a, YT+1:T+τ) | DT , XT:T+τ−1]

= ∑
yT+1:T+τ

P̄T+1:T+τ (yT+1:T+τ) r (a, yT+1:T+τ) ,

where r is a reward function with range [0, 1].
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Universality of dτ
KL

The following result bounds the loss in expected reward of a decision that is based on the
estimate P̂T+1:T+τ instead of the posterior P̄T+1:T+τ

Proposition 1.
If an action â ∈ A maximizes

∑
yT+1:T+τ

P̂T+1:T+τ (yT+1:T+τ) r (a, yT+1:T+τ)

then
E [r (â, YT+1:T+τ)] ⩾ max

a∈A
E [r (a, YT+1:T+τ)]−

√
2dτ

KL

In this sense, dτ
KL is a universal evaluation metric: its value ensures a level of performance in any

decision problem.
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Problem setup

▶ Consider the problem of a customer interacting with a recommendation system that
proposes a selection of K > 1 movies from an inventory of N movies X1, . . . , XN.

▶ Each Xi ∈ Rd describes the features of movie i, and d is the feature dimension.

▶ We model the probability that a user will enjoy movie i by a logistic model
Yi ∼ logit

(
ϕT
∗ Xi

)
, where logit is the standard logistic function.

▶ Note that ϕ∗ ∈ Rd describes the preferences of the user, which is not fully known to the
recommendation system and can be viewed as a random variable.

▶ Goal: maximize the probability that the user enjoys at least one of the K > 1 recommended
movies.

Part I: Importance of Joint prediction for Decision making | Combinatorial decision problems in recommendation
systems 24 / 56



Concrete example

▶ The user ϕ∗ is drawn from two possible user types {ϕ1, ϕ2}
▶ Recommendation propose K = 2 movies from an inventory {X1, X2, X3, X4}
▶ These values are chosen to set up a tension between optimization over marginal (each Xi

individually) and joint (pairs of Xi, Xj ) predictions.

X1 = (10,−10) X2 = (−10, 10) X3 = (1, 0) X4 = (0, 1)
ϕ1 = (1, 0) 1 0 0.73 0.5
ϕ2 = (0, 1) 0 1 0.5 0.73

ϕ ∼ Unif (ϕ1, ϕ2) 0.5 0.5 0.62 0.62

Table: Expected probability to watch a movie under different user features, correct to two decimal places.
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ϕ1 = (1, 0) 1 0 0.73 0.5
ϕ2 = (0, 1) 0 1 0.5 0.73

ϕ ∼ Unif (ϕ1, ϕ2) 0.5 0.5 0.62 0.62

Table: Expected probability to watch a movie under different user features, correct to two decimal places.

▶ An agent that optimizes the expected probability for each movie individually will end up
recommending the pair (X3, X4) to an unknown ϕ ∼ Unif (ϕ1, ϕ2).

▶ An agent considers the joint predictive distribution for τ ⩾ K = 2 can see that instead
selecting the pair (X1, X2).
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Problem setup

▶ Data pair (Xt, Yt+1) arrives sequentially, one at a time.

▶ At each time t, the agent needs to compute parameters θt based on previously observed
data pairs Dt = (X0, Y1, X1, . . . , Xt−1, Yt).

▶ Then, a new data pair (Xt, Yt+1) arrives. We assume that the feature vector Xt ’s are
unconditionally independent, but not necessarily identically distributed.

▶ The target label Yt+1 is conditionally independently sampled from the distribution
E (· | Xt), where E is the environment.
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Problem setup

▶ The agent’s objective is to minimize the expected cumulative KL-divergence in the first T
time steps:

T−1

∑
t=0

E
[
dKL

(
P̄t+1∥P̂t+1

)]
,

where
P̄t+1 = P (Yt+1 ∈ · | Dt, Xt)

P̂t+1 = P
(
Ŷt+1 ∈ · | θt, Xt

)
for all time t. Note that this cumulative KL-divergence (5) only depends on the marginal
distributions P̄t+1 and P̂t+1.

▶ Also note that this performance metric is 0 if the agent predicts the exact posterior at each
time t.
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Incremental update

▶ We consider a setting where an agent needs to incrementally update its parameters as data
arrive.

▶ Specifically, at time t = 0, the agent chooses its parameters θ0 based on its prior knowledge;
and then at each time t = 0, 1, . . ., the agent updates its parameters incrementally by
sampling from a distribution that only depends on θt, (Xt, Yt+1), and t:

θt+1 ∼ P (θt+1 ∈ · | θt, Xt, Yt+1, t) . (2)

▶ In other words, conditioning on (θt, Xt, Yt+1) , θt+1 is independent of the dataset Dt and
the environment E .
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Remark on the incremental update

▶ Note that the incremental update rule in eq. (2) is general: in particular, Dt could itself be
recorded in θt. This would allow θt+1 to depend on Dt in an arbitrary manner. However,
such an approach can be impractical when there is a high volume of data.

▶ In particular, one may want to avoid sifting through a growing Dt at each time step.

▶ In many practical applications, it is desirable for the agent to update θt+1 with fixed
memory space and fixed per-step computational complexity, such as the standard SGD
(Goodfellow et al., 2016) and Adam (Kingma & Ba, 2015) algorithms do.
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Theorem for sequenctial prediction problem

Theorem 1.
For an agent with incremental update eq. (2), for any time t = 0, 1, . . . , T − 1 and any ϵ ⩾ 0, if

T−1

∑
t′=t

E
[
dKL

(
P̄t′+1∥P̂t′+1

)]
⩽ ϵ,

then we have
I (Yt+1:T ; θt | Xt:T−1) ⩾ I (Yt+1:T ;Dt | Xt:T−1)− ϵ.
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Remark on the theorem

▶ Notice that ϵ measures the performance loss of the agent; I (Yt+1:T ;Dt | Xt:T−1) is the
conditional information in Dt about the joint distribution of Yt+1:T; and similarly
I (Yt+1:T ; θt | Xt:T−1) is the conditional information about Yt+1:T retained in θt.

▶ Also notice that
I (Yt+1:T ;Dt | Xt:T−1) ⩾ I (Yt+1:T ; θt | Xt:T−1)

always holds due to data processing inequality.

▶ In other words, Theorem 4.1 states that to be ϵ-near-optimal, an agent with incremental
update must retain in θt all information in Dt about the joint distribution of Yt+1:T, except
ϵ nats

▶ We conjecture that results similar to Theorem 4.1 also hold in broader classes of sequential
decision problems, such as multi-armed bandit problems discussed in Section 5, but we leave
the formal analysis to future work.
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Proof of Theorem

Step 1: Chain rule of KL divergence

KL(p((A, B) ∈ ·)∥q((A, B) ∈ ·)) = KL(p(A)∥q(A))KL(p(B ∈ · | A)∥q(B ∈ · | A))

E [dKL (P (Yt+1:T ∈ · | Dt, Xt:T−1) ∥P (Yt+1:T ∈ · | θt, Xt:T−1))]

=E [dKL (P (Yt+1 ∈ · | Dt, Xt:T−1) ∥P (Yt+1 ∈ · | θt, Xt:T−1))]

+ E [dKL (P (Yt+2:T ∈ · | Dt, Xt, Yt+1, Xt+1:T−1) ∥P (Yt+2:T ∈ · | θt, Xt, Yt+1, Xt+1:T−1))]

=E [dKL (P (Yt+1 ∈ · | Dt, Xt) ∥P (Yt+1 ∈ · | θt, Xt))]

+ E [dKL (P (Yt+2:T ∈ · | Dt+1, Xt+1:T−1) ∥P (Yt+2:T ∈ · | θt, Xt, Yt+1, Xt+1:T−1))]
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Proof of Theroem

Step 2: by lemma

E [dKL (P (Yt+2:T ∈ · | Dt+1, Xt+1:T−1) ∥P (Yt+2:T ∈ · | θt, Xt, Yt+1, Xt+1:T−1))]

⩽ E [dKL (P (Yt+2:T ∈ · | Dt+1, Xt+1:T−1) ∥P (Yt+2:T ∈ · | θt+1, Xt+1:T−1))]
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Proof of Theorem

Then, we have recursive computation,

E [dKL (P (Yt+1:T ∈ · | Dt, Xt:T−1) ∥P (Yt+1:T ∈ · | θt, Xt:T−1))]

(b)
⩽ E [dKL (P (Yt+1 ∈ · | Dt, Xt) ∥P (Yt+1 ∈ · | θt, Xt))]

+ E [dKL (P (Yt+2:T ∈ · | Dt+1, Xt+1:T−1) ∥P (Yt+2:T ∈ · | θt+1, Xt+1:T−1))]

⩽ . . .

⩽ E

[
T−1

∑
t′=t

dKL (P (Yt′+1 ∈ · | Dt′ , Xt′) ∥P (Yt′+1 ∈ · | θt′ , Xt′))

]
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Proof of Theorem

Step 3: by lemma

dKL (P (Yt′+1 ∈ · | Dt′ , Xt′) ∥P (Yt′+1 ∈ · | θt′ , Xt′))

⩽ dKL
(
P (Yt′+1 ∈ · | Dt′ , Xt′) ∥P

(
Ŷt′+1 ∈ · | θt′ , Xt′

))
Finally,

E [dKL (P (Yt+1:T ∈ · | Dt, Xt:T−1) ∥P (Yt+1:T ∈ · | θt, Xt:T−1))]

(c)
⩽ E

[
T−1

∑
t′=t

dKL
(
P (Yt′+1 ∈ · | Dt′ , Xt′) ∥P

(
Ŷt′+1 ∈ · | θt′ , Xt′

))]
(d)
= E

[
T−1

∑
t′=t

dKL
(

P̄t′+1∥P̂t′+1
)]

⩽ ϵ,
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Problem Setup

▶ Each time t = 0, 1, . . ., the agent select action At and observes an outcome Yt produced by
the environments.

▶ Conditioned on environment E and action At, the next observation

Yt+1 ∼ E(· | At)

▶ Real-valued reward function r encodes the preference of the agent over the observations,

▶ Objective:

E

[
T−1

∑
t=0

r(Yt+1)

]

Part I: Importance of Joint prediction for Decision making | Multi-armed bandits 39 / 56



Marginal predictions is not sufficient

▶ At any time step t, the rewards and observations at future time steps t′ > t are coupled
through an unknown environment E .

▶ Informative structure
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Concrete example

▶ Bernoulli bandit with K independent action where

r(Yt+1) = Yt+1

▶ First K − 1 actions, the agent knows the reward is distributed as Bernoulli(0.5)

▶ While the final action produces the the deterministic outcome of 0 or 1, but it is equally
likely to be of either kind.

▶ Best policy:
– First select the final action to see if it is the optimal
– and based on the first outcome, choose the arm that maximize expected reward given full

knowledge of E for all future steps.
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Relating joint predictions to regret

▶ To simplify exposition, we consider predictions for a vector of outcomes, Y ∈ RK, with each
entry corresponding to the outcome of an action.

▶ Relate the quality of future predictions about Y to agent performance on a Bernoulli bandit
with correlated arms.

▶ K-armed Bernoulli bandit: E = {p = (p1, . . . , pK)}, where pk ∈ [0, 1] is the expected
reward of k-th action.

▶ No assumptions on the prior P(p ∈ ·).
▶ Define the history by time t as Ht = (A0, Y1, . . . , At−1, Yt).
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Sequence of reward vectors from environment and from agent

▶ Ỹ1:τ denote a sequence of τ vectors sampled from the environment E . These τ vectors are
conditionally independent given E .

▶ Each vector has dimension K and the k-th component of each vector is conditionally
independently sampled from Bernoulli(pk). On the other hand, consider an agent that can
also generate a sequence of K-dimensional binary vectors at each time t.

▶ Consider and agent that can also generate a sequence of K-dimensional binary vectors at
each time t.

▶ Let θt denote its parameters and Ŷt
1:τ denote a sequence of τ binary vectors sampled from it.
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Approximate Thompson sampling

▶ min arg maxk p̂t
k is well defined. Specifically, arg maxk p̂t

k ⊆ {1, . . . , K} is a set.
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Approximate Thompson sampling

▶ Note that Algorithm 1 is general in the sense that it does not depend on the agent’s
uncertainty representation.

▶ Instead, it only requires that the agent can simulate hypothetical observations, sampled
from a joint predictive distribution.

▶ Also note that Algorithm 1 reduces to the standard (exact) Thompson sampling algorithm
when P

(
Ŷ1:τ ∈ · | θt

)
= P

(
Ỹ1:τ ∈ · | Ht

)
and τ → ∞.

▶ We use this algorithm to establish that an agent that performs well based on a particular
loss function retains enough information to enable efficient exploration.
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Regret bound

▶ (Bayes) cumulative regret: Regret(T) = ∑T−1
t=0 E [pA∗ − r (Yt+1)] , where

A∗ = min arg maxk pk is one optimal action. Similarly, the expectation is over random
outcomes, algorithmic randomness, and prior over E .

Theorem 2.
For any integer τ ⩾ 1 and any ϵ ∈ ℜ+, if at each time t, the agent with parameters θt can
generate samples Ŷt

1:τ such that

E
[
dKL

(
P
(
Ỹ1:τ ∈ · | Ht

)
∥P

(
Ŷt

1:τ ∈ · | θt
))]

⩽ ϵ,

then under Algorithm 1, we have

Regret(T) ⩽

√
1
2

KT log K +

(
K√
2τ

+
√

2ϵ

)
T
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Remark on the theorem

Regret(T) ⩽

√
1
2

KT log K +

(
K√
2τ

+
√

2ϵ

)
T

▶ First, note that if an agent can make good predictions τ ⩾ K/ϵ steps into the future, then
this regret bound reduces to O(

√
KT log(K) +

√
KϵT), which is sufficient to ensure

efficient exploration.

▶ Second, notice that this regret bound consists of three terms. The linear regret term
√

2ϵT
is due to the expected KL-divergence loss of the agent.

▶ Specifically, if the agent makes a perfect prediction in the sense that
P
(
Ŷt

1:τ ∈ · | θt
)
= P

(
Ỹ1:τ ∈ · | Ht

)
for all t, then this linear regret term will reduce to

zero.
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Remark on the theorem

Regret(T) ⩽

√
1
2

KT log K +

(
K√
2τ

+
√

2ϵ

)
T

▶ On the other hand, another linear regret term KT/
√

2τ is due to the fact that we choose
Ã as the learning target, which can Ã be a sub-optimal action.

▶ It is obvious that as τ → ∞, Ã will converge to A∗ and this linear regret term will reduce to
zero.

▶ Finally, the sublinear regret term
√

1
2 KT log K is exactly the regret bound for the exact

Thompson sampling algorithm (Russo & Van Roy, 2016).

▶ This is not surprising since when ϵ = 0 (i.e. P
(
Ŷt

1:τ ∈ · | θt
)
= P

(
Ỹ1:τ ∈ · | Ht

)
) and

τ → ∞, Algorithm 1 reduces to the exact Thompson sampling algorithm.
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Conjecture for more practical algorithm

▶ Note that in Algorithm 1, sampling p̂t from P(p ∈ · | Ỹ1:τ = Ŷt
1:τ

)
can be computationally

expensive.

▶ Instead, a computationally more efficient approach is to choose p̂t as the sample mean of
Ŷ1:τ, i.e. p̂t = 1

τ ∑τ
i=1 Ŷt

i , where Ŷt
i is the i-th vector in Ŷ1:τ.

▶ Conjecture: that one can derive a similar regret bound with this practical modification, but
leave the analysis to future work.
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Proof sketch of Theorem

▶ We provide a proof sketch for Theorem 5.1 in this subsection. First, notice that the
expected per-step regret at time t is E [pA∗ − pAt ], which can be decomposed as

E [pA∗ − pAt ] = E [pA∗ − pÃ] + E [pÃ − pAt ]

▶ Recall that action Ã is the learning target. We bound the two terms in the righthand side
of equation (9) separately. First, based on the fact that p and p̃ are conditionally i.i.d given
the environment proxy Ỹ1:τ, we can show that

E [pA∗ − pÃ] ⩽ K/
√

2τ
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Proof of the Theorem

▶ To bound the second term E [pÃ − pAt ], we consider its conditional version Et [pÃ − pAt ],
where the subscript t denotes conditioning on the history Ht. Using information-ratio
analysis, we can prove that

Et [pÃ − pAt ] ⩽

√
K
2

It
(

Ã; At, YAt

)
+

∥∥Pt(Ã ∈ ·)− Pt (At ∈ ·)
∥∥

1

▶ Using Pinsker’s inequality, the data processing inequality, and the assumption on the
expected KL-divergence in Theorem, we can bound that

E
[∥∥Pt(Ã ∈ ·)− Pt (At ∈ ·)

∥∥
1

]
⩽

√
2ϵ.
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Proof of the Theorem

▶ On the other hand, based on Cauchy-Schwartz inequality and the chain rule for mutual
information, we have

T−1

∑
t=0

E

[√
It
(

Ã; At, YAt

)]
⩽

√
TI

(
Ã; HT

)
Finally, note that I

(
Ã; HT

)
⩽ H(Ã) ⩽ log K. Combining the above inequalities, we have

proved Theorem.
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What is still missing?

▶
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