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Arrangements

▶ 14:00 - 17:00 in Administrative Building 603

▶ Every Thursday from 6/18 to 8/20

– One exception: the seminar will be held in Wednesday (6/24) next week due to the Dragon

boat festival.

– 10 weeks in total!

▶ Enjoy the journey!
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What to discuss and why important?

▶ From (theoretical) computer scientists perspective:

– “While traditional areas of computer science remain highly important, increasingly researchers

of the future will be involved with using computers to understand and extract usable

information from massive data arising in applications, not just how to make computers useful

on specific well-defined problems. With this in mind we have written this book to cover the

theory we expect to be useful in the next 40 years, just as an understanding of automata

theory, algorithms, and related topics gave students an advantage in the last 40 years. One of

the major changes is an increase in emphasis on probability, statistics, and numerical

methods.”

— Blum, A., Hopcroft, J., & Kannan, R. (2020). Foundations of data science. Cambridge

University Press.

– First chapter of the book is “High-Dimensional Space”.

– Early draft of this book with free access was used in undergrad-level and graduate-level

lectures by Cornell, Princeton, Stanford and many other US and Chinese Universities.
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What to discuss and why important?

▶ Fundamental tools in “High-Dimensional Statistics: A Non-Asymptotic Viewpoint” (used

for grad-level courses in UCB, MIT, Princeton, etc.)

– Basic tail and concentration bounds (week 1 and 2)

– Minimax Lower bounds (week 3)

– Uniform Law of Large Number (week 5)

– Metric Entropy and its uses (week 7)

– Random matrices (week 9)

▶ Potential Applications:

– Analysis of Randomized and Online Algorithms

– Statistical Learning Theory

– Statistical Signal Processing

– Differential Privacy, Random Graph Theory, (Big) Data Science

– Any subject where randomness plays an important role ...
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What to discuss and why important?

▶ Mathematical and Algorithmic foundations of Reinforcement Learning

– Sample complexity lower and upper bound for tabular RL with generative oracle (week 4)

– Optimality and approximation issues on policy gradient methods (week 6)

– Regret lower and upper bound for tabular RL problem (week 8)

– Model-based RL with function approximation (week 10)

– New problems and settings

▶ Decision is always a higher-level of intelligence.

▶ Understanding a general paradigm for solving (online) sequential decision problem

▶ Towards understanding the fundamental limits of Reinforcement Learning

▶ Towards designing better general decision-making agents
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Data matrix

▶ A good example to keep in mind is a dataset organized as an n by d matrix X where,

– for example, the rows correspond to patients and,

– the columns correspond to measurements on each patient (height, weight, heart rate, . . . ).

▶ Row i is a random vector X⊤
i ∈ Rd of the measurements performed on patient i.

X =


X⊤

1

X⊤
2
...

X⊤
n

 ∈ Rn×d

▶ Modern applications in science and engineering:

– large-scale problems: both d and n may be large (possibly d≫ n)

– need for high-dimensional theory that provides non-asymptotic results for (n, d)
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Asymptotic v.s. Non-Asymptotic

▶ Mean estimation problem: Here d = 1 and we observe X1, . . . , Xn
i.i.d∼ P where P is a

distribution over R with mean µ and variance σ2. We consider the sample mean:

Xn :=
1

n

n∑
i=1

Xi

▶ Asymptotic statements:

– Weak Law of Large Numbers (WLLN): Xn
P−→ µ, as n→ ∞.

– Central limit Theorem (CLT):
√
n
(
Xn − µ

) (d)−→ N
(
0, σ2

)
, as n→ ∞.

– Asymptotic confidence interval for µ: direct result of the CLT (Classical asymptotic regime)

P
(
µ ∈

[
Xn − 1.96

σ√
n
,Xn + 1.96

σ√
n

])
−→
n→∞

.95

▶ What will happen for finite fixed sample size n? (Non-asymptotic regime: fixed pair (n, d))
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Asymptotic v.s. Non-Asymptotic

▶ Asymptotic statements: Asymptotic confidence interval for µ

P
(
µ ∈

[
Xn − 1.96

σ√
n
,Xn + 1.96

σ√
n

])
−→
n→∞

.95

▶ Non-asymptotic statements:

– Quadratic risk: E
[(
Xn − µ

)2]
= σ2

n

– Tail bounds: P
(∣∣Xn − µ

∣∣ > t
)
≤ 2e−Cnt

2

, where C > 0 is a constant that depends on

further assumptions on P, such as having a bounded support (Hoeffding’s inequality)

– Non-Asymptotic confidence interval for µ: result of Hoeffding’s inequality

P
(
µ ∈

[
Xn − C

σ√
n
,Xn + C

σ√
n

])
≥ .95

where C is a constant typically larger than 1.96.
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Asymptotic v.s. Non-Asymptotic

▶ Covariance matrix estimation: assume now that we observe X1, . . . , Xn
i.i.d∼ P

– where P is a distribution over Rd with zero mean and covariance matrix

Σ = cov(X1) = E
[
X1X

⊤
1

]
. The sample covariance matrix Σ̂ is defined as

Σ̂ :=

average of d× d rank one matrices︷ ︸︸ ︷
1

n

n∑
k=1

XkX
⊤
k , with E

(
Σ̂
)
= Σ,

V
(
Σ̂i,j

)
= E

(
Σ̂i,j −Σi,j

)2

=
1

n2

n∑
k=1

E (Xk,iXk,j −Σi,j)
2 =

1

n
V (X1,iX1,j)

▶ Asymptotic statements:

– WLLN: Σ̂i,j
P−→ Σi,j , for all i, j = 1, . . . , d as n→ ∞

– CLT:
√
n
(
Σ̂i,j −Σi,j

)
(d)−→ N (0,V (X1,iX1,j)) as n→ ∞

– In this case, letting n→ ∞ implicitly assumes that n≫ d. But what if n is of the order of d

or even if n≪ d?
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Asymptotic v.s. Non-Asymptotic

▶ Can we make similar statements simultaneously for all the entries of Σ̂? In other words, can

we guarantee that the matrix Σ̂ converges to the matrix Σ?

– For example, let’s say that we are interested in understanding the random variable:

|Σ̂−Σ|∞ := max
i,j

∣∣∣Σ̂i,j −Σi,j

∣∣∣
– An attempt using a union bound with Chebyshev’s inequality assuming V (X1,iX1,j) ≤ C

P
(∣∣∣Σ̂i,j −Σi,j

∣∣∣ > t
)
≤

V
(
Σ̂i,j

)
t2

=
V (X1,iX1,j)

nt2
≤ C

nt2

P
(
|Σ̂−Σ|∞ > t

)
= P

(
∃(i, j) :

∣∣∣Σ̂i,j −Σi,j

∣∣∣ > t
)
≤

∑
1≤i,j≤d

P
(∣∣∣Σ̂i,j −Σi,j

∣∣∣ > t
)
≤ C

d2

nt2
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Asymptotic v.s. Non-Asymptotic

▶ Can we make similar statements simultaneously for all the entries of Σ̂? In other words, can

we guarantee that the matrix Σ̂ converges to the matrix Σ?

– For example, let’s say that we are interested in understanding the random variable:

|Σ̂−Σ|∞ := max
i,j

∣∣∣Σ̂i,j −Σi,j

∣∣∣
– An attempt using a union bound

P
(
|Σ̂−Σ|∞ > t

)
≤ C

d2

nt2

– This attempt fails if d grows faster than
√
n, that is, d = ω(

√
n)

– While this attempt uses loose arguments, one can show that convergence of Σ̂ to Σ fails if

d/n→ γ ∈ (0, 1] (High-dimensional asymptotic regime: asymptotically fixed aspect ratio).

– Spoiler! Jiancong will lead a detailed lecture on covariance estimation as well as random

matrices that could provide concentration bounds for all fixed pairs (n, d).
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Asymptotic v.s. Non-Asymptotic

▶ Classical asymptotic or high-dimensional asymptotic regimes:

– preferred for statistical inference tasks such as confidence intervals and hypothesis testing

▶ Non-asymptotic regime:

– preferred to produce a qualitative description of the performance of a possibly complicated

and high-dimensional method such as the ones arising in machine learning.

– E.g. double descent phenomenon in overparameterized neural networks or even linear models.

– E.g. the true shape of the regret in bandit and RL problems.
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Mills Ratio Inequality

▶ Consider a standard normal random variable Z ∼ N (0, 1) with p.d.f:

fZ(x) =
1√
2π

exp

(
−x

2

2

)
▶ Proposition (Mills Ratio Inequality): ∀t > 0

P[|Z| > t] ≤
√

2

π

e−
t2

2

t
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Proof of Mills Ratio

▶ Integral the tail distribution:

P[Z > t] =

∫ ∞

t

1√
2π
e−

x2

2 dx

▶ On the interval [t,∞), x ≥ t, i.e., xt ≥ 1,

∫ ∞

t

1√
2π
e−

x2

2 dx ≤
∫ ∞

t

(x
t

) 1√
2π
e−

x2

2 dx =
1

t
√
2π

∫ ∞

t

x exp

(
−x

2

2

)
dx =

1√
2π

e−
t2

2

t

▶ Since Z is symmetric (Z
(d)
= −Z),

P[|Z| > t] = P[Z > t] + P[Z < −t] = 2P[X > t] = 2
1√
2π

e−
t2

2

t
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Motivation

▶ Immediate results of Mills Ratio for the tail bound for sample mean Xn with

X1, . . . , Xn
i.i.d∼ N

(
µ, σ2

)
P

[
√
n

∣∣Xn − µ
∣∣

σ
> t

]
≤
√

2

π

e−
t2

2

t

▶ Set t =
√
n
σ ϵ, we rewrite the bound P

[∣∣Xn − µ
∣∣ > ϵ

]
≤
√

2σ2

πnϵ2 exp
(
− nϵ2

2σ2

)
▶ Thus, the probability that the sample average Xn deviates away from µ decays rapidly

(exponential decay on sample size n)

▶ We want to replicate this type of behavior for other random variables in a manner that

allows us to (1) obtain finite samples guarantees (i.e. for every n ), and (2) circumvent the

need for too many distributional assumptions on X1, . . . , Xn.

Basic tail and concentration bounds 19 / 83



From Markov to Chernoff

▶ Markov’s inequality: given a non-negative random variable X with finite mean, we have

P[X ≥ t] ≤ E[X]
t for all t > 0. (Proof hints: X ≥ t1X≥t always holds)

▶ Chebyshev’s inequality: for a random variable X that also has a finite variance, we

haveP[|X − µ| ≥ t] ≤ V(X)
t2 for all t > 0. (Proof hints: apply Markov’s to the new

non-negative random variable Y = (X − µ)2)

▶ If there is some constant b > 0 s.t. the moment generating function φX(λ) = E
[
eλ(X−µ)]

exists for all λ ≤ b. In this case, for any λ ∈ [0, b], we may apply Markov’s inequality to the

random variable Y = eλ(X−µ) , thereby obtaining the upper bound

P[(X − µ) ≥ t] = P
[
eλ(X−µ) ≥ eλt

]
≤

E
[
eλ(X−µ)]
eλt
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From Markov to Chernoff

▶ Markov’s inequality: given a non-negative random variable X with finite mean, we have

P[X ≥ t] ≤ E[X]
t for all t > 0. (Proof hints: X ≥ t1X≥t always holds)

▶ Define the cumulant generating function ψX(λ) := log
(
E
[
eλ(X−µ)]) .

▶ For any λ ∈ [0, b],

P[(X − µ) ≥ t] = P
[
eλ(X−µ) ≥ eλt

]
≤

E
[
eλ(X−µ)]
eλt

= exp (ψX(λ)− λt)

▶ Chernoff’s inequality: Let X be a random variable and E[X] = µ with well-defined

moment generating function φX(λ) for |λ| ≤ b, then

P(X − µ ≥ t) ≤ exp (−ψ∗
X(t)) ,

where ψ∗
X(t) := supλ∈[0,b] (λt− ψX(λ)) is the conjugate function of ψX(λ).
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Chernoff bound for Gaussian

▶ Let X ∼ N
(
µ, σ2

)
, then E

[
eλX

]
= eµλ+σ

2λ2/2 for all λ ∈ R. So, we have

sup
λ≥0

(
λt− log

(
E
[
eλ(X−µ)

]))
= sup

λ≥0

(
λt− λ2σ2

2

)
=

t2

2σ2

which yields the bound for all t > 0,

P (X − µ ≥ t) ≤ exp

(
−t2

2σ2

)
▶ This bound is sharp up to polynomial-factor corrections, compared to the Mills Ratio.

▶ Deriving a Chernoff bound does not require less knowledge about a distribution than a

Markov-based bound since we need the moment generating function of X − µ. (Assume the

existence of infinity many moments)

▶ A main advantage is that these moments do not have to be painstakingly calculated.
Basic tail and concentration bounds 22 / 83



Sub-Gaussian random variables

▶ Definition (Sub-Gaussian random variables): A random variable X is Sub-Gaussian with

parameter σ if

E
[
eλ(X−E[X])

]
≤ exp

(
λ2σ2

2

)
for all λ ∈ R. In that case, we write X ∈ SG

(
σ2
)
.

▶ First simple observation: X ∈ SG
(
σ2
)
iff −X ∈ SG

(
σ2
)
.

▶ Second observation: if X ∈ SG
(
σ2
)
, then the MGF of X can be bounded by the Gaussian

MGF which yields the same Chernoff bound, i. e.

P(|X − µ| ≥ t) ≤ 2 exp

(
−t2

2σ2

)
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Properties of Sub-Gaussian random variables

▶ Let X ∈ SG
(
σ2
)
, then V[X] ≤ σ2 with V[X] = σ2 if X is Gaussian.

▶ If there are a, b ∈ R such that a ≤ X − µ ≤ b almost everywhere, then X ∈ SG
((

b−a
2

)2)
▶ Let X ∈ SG

(
σ2
)
and Y ∈ SG

(
τ2
)
, then

– Xα ∈ SG
(
σ2α2

)
for all α ∈ R with α ̸= 0

– X + Y ∈ SG
(
(τ + σ)2

)
, and

– if X ⊥ Y,X + Y ∈ SG
(
τ2 + σ2

)
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Proof of Sub-Gaussian property 1

▶ Property 1: Let X ∈ SG
(
σ2
)
, then V[X] ≤ σ2 with V[X] = σ2 if X is Gaussian.

▶ It holds by assumption that E
[
eλ(X−E[X])

]
≤ exp

(
λ2σ2

2

)
for all λ ∈ R, and hence by

taylor expansion

1 + λE[X − µ]︸ ︷︷ ︸
=0

+λ2
E
[
(X − µ)2

]
2

+ o
(
λ2
)
≤ 1 +

λ2σ2

2
+ o

(
λ2
)

▶ We divide both sides of this inequality by λ2 (and assume λ ̸= 0 ), and let λ→ 0.
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Proof of Sub-Gaussian property 2

▶ Property 2: If there are a, b ∈ R such that a ≤ X − µ ≤ b almost everywhere, then

X ∈ SG
((

b−a
2

)2)
▶ W.L.O.G, let µ = 0. We need to show that log

(
E
[
eλX

])
≤ (b−a)2λ2

8 for all λ ∈ R.
▶ First, notice that for any distribution supported on [a, b], the variance

V[X] = E(X − E(X))2 ≤ E(X − (a+ b)/2)2︸ ︷︷ ︸
E(X)=argmins g(s):=E(X−s)2

= 1
4E((X − a)︸ ︷︷ ︸

≥0

+(X − b)︸ ︷︷ ︸
≤0

)2 ≤
(
b−a
2

)2
.

▶ Remind the CGF ψX(λ) = logE
[
eλX

]
, and ψX(0) = 0. Define a new prob. measure:

P̃(A) =
∫
A
eλxP(dx)∫
eλyP(dy)

▶ We have the derivatives: ψ′
X(λ) =

E[XeλX ]
E[eλX ]

= EP̃(X). Note that ψ′
X(0) = EP̃(0) = 0.
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Proof of Sub-Gaussian property 2

▶ Remind the CGF ψX(λ) = logE
[
eλX

]
, define a new prob. measure

P̃(A) =
∫
A
eλxP(dx)∫
eλyP(dy)

,

▶ We also have the second-order derivatives:

ψ′′
X(λ) =

E
[
X2eλX

]
E
[
eλX

]
− E

[
XeλX

]
E
[
XeλX

]
E [eλX ]

2

=
E
[
X2eλX

]
E [eλX ]

−

(
E
[
XeλX

]
E [eλX ]

)2

= EP̃
[
X2
]
− EP̃[X]2

= VP̃(X) ≤ (b− a)2/4
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Proof of Sub-Gaussian property 2

▶ Property 2: If there are a, b ∈ R such that a ≤ X − µ ≤ b almost everywhere, then

X ∈ SG
((

b−a
2

)2)
▶ ψX(0) = ψ′

X(0) = 0 and ψ′′
X(λ) ≤ (b− a)2/4 for all λ.

▶ The fundamental theorem of calculus:

ψX(λ) =

∫ λ

0

ψ′
X(u)du =

∫ λ

0

∫ u

0

ψ′′
X(w)dwdu ≤

∫ λ

0

∫ u

0

(b− a)2

4
dwdu = λ2

(b− a)2

8

▶ This result can be used to prove Hoeffding’s bound.
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▶ Property 3: Let X ∈ SG
(
σ2
)
and Y ∈ SG

(
τ2
)
, then

i Xα ∈ SG
(
σ2α2

)
for all α ∈ R with α ̸= 0

ii X + Y ∈ SG
(
(τ + σ)2

)
, and

iii if X ⊥ Y,X + Y ∈ SG
(
τ2 + σ2

)
▶ We prove (ii) and (iii) and assume that E[X] = E[Y ]. If X ⊥ Y , the proof is immediate. If

not, it holds for every λ ∈ R that E
[
eλ(X+Y )

]
= E

[
eλXeλY

]
. By Hölder’s inequality,

E
[
eλ(X+Y )

]
= E

[
eλXeλY

]
≤
(
E
[
eλpX

])1/p (E [eλqY ])1/q
SG
≤ exp

(
λ2p2σ2

2

1

p
+
λ2q2τ2

2

1

q

)
= exp

(
λ2

2

(
pσ2 + qτ2

))
= exp

(
λ2

2
(σ + τ)2

)
where we set p = (τ + σ)/σ in the last step.
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Hölder’s inequality

▶ If p, q > 0 with 1
p +

1
q = 1, it holds that

E [|X1X2|] ≤ (E [|X1|p])
1/p

(E [|X2|q])
1/q

▶ The special case with p = q = 2 is referred to as Cauchy-Schwartz inequality. The

Cauchy-Schwartz inequality can, for example, be used to show that∣∣∣∣∣ Cov [X1, X2]√
V [X1]

√
V [X2]

∣∣∣∣∣ ≤ 1
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Hoeffding inequality

▶ Theorem (Hoeffding inequality): LetX1, . . . , Xn be independent random variables such

that Xi ∈ SG
(
σ2
i

)
for all i, then

P

(∣∣∣∣∣
n∑
i=1

Xi − E [Xi]

n

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−n2t2

2
∑n
i=1 σ

2
i

)

▶ Usually, we have σ2
i = σ2 for all i. In this case, it holds that

2 exp

(
−n2t2

2
∑n
i=1 σ

2
i

)
= 2 exp

(
−nt2

2σ2

)
▶ The proof is trivial using the properties of Sub-Gaussian.
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▶ Example (Hoeffding for Bernoulli R.V. ): LetX1, . . . , Xn be independent R.V. with

Xi ∼ Bernoulli(pi) for some pi ∈ (0, 1). Then, Xi ∈ SG(1/4) and thus

P
(∣∣Xn − pn

∣∣ ≥ t
)
≤ 2 exp

(
−2nt2

)
where Xn := 1

n

∑n
i=1Xi and pn := 1

n

∑n
i=1 pi. Thus, we have that

∣∣Xn − pn
∣∣ ≤√ 1

2n
log

(
1

δ

)
with probability at least 1− δ.

▶ In the case X1, . . . , Xn
iid∼ Bernoulli (p). Set δ = 1

nc for some c > 0. For example, we have

that with probability at least 1− 1
n ,

∣∣Xn − p
∣∣ ≤√ 1

2n
log(2n) = O

(√
log n

n

)
= Õ

(
1√
n

)
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Comparing Hoeffding and Chernoff Bounds

▶ Hoeffding’s inequality is not the sharpest concentration inequality in general. Note that the

above calculations would similarly hold for any bounded random variable.

▶ Chernoff’s multiplicative inequality yields an improvement on Hoeffding’s inequality ’

whenever p is small. Generally for Xi ∼ Bernoulli (pi) for some pi ∈ (0, 1),

P

{
n∑
i=1

Xi ≥ (1 + ϵ)

n∑
i=1

pi

}
≤

 exp
{
− ϵ2

∑n
i=1 pi
3

}
, ϵ ∈ (0, 1]

exp
{
− ϵ2

∑n
i=1 pi

2+ϵ

}
, ϵ > 1

,

and

P

{
n∑
i=1

Xi ≤ (1− ϵ)

n∑
i=1

pi

}
≤ exp

{
−
ϵ2
∑n
i=1 pi
2

}
, ∀ϵ ∈ (0, 1)
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Comparing Hoeffding and Chernoff Bounds

▶ Let X1, . . . , Xn
iid∼ Bernoulli(p). Hoeffding’s inequality gave, w. p. at least 1− δ.

p−Xn ≤
√

1
2n log(1/δ)

▶ On the other hand, Chernoff’s multiplicative inequality yields

P
{
p−Xn ≥ ϵp

}
≤ exp

(
−npϵ

2

2

)
, ∀ϵ ∈ (0, 1)

▶ Provided p ≥ 2
n log(1/δ), we have p−Xn ≤

√
2p
n log(1/δ) w.p. 1− δ

▶ If we let p ≡ pn so that pn → 0, then Chernoff’s provides a significant improvement upon

Hoeffding’s.

– Because the variance is upper bounded by p(1− p), which is shrinking as the sample size

grows. Chernoff’s multiplicative inequality incorporates this information.

Basic tail and concentration bounds 34 / 83



Equivalent Definitions of Sub-Gaussian Random Variables

▶ Proposition. Let Γ(x) =
∫∞
0
tx−1e−tdt be the Gamma function. If X ∈ SG

(
σ2
)
,

E [|X|p] ≤ p2p/2σpΓ(p/2), ∀p > 0

In particular, there exists C > 0 not depending on p such that

(E [|X|p])
1
p ≤ Cσ

√
p.

▶ Remark. For example, if X ∼ N
(
0, σ2

)
, we have

E [|X|p] =
σp2

p
2Γ
(
p+1
2

)
√
π
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Proof of the equivalent definition

▶ If x ≥ 0 then x =
∫ x
0
dt =

∫∞
0

1[t ≤ x]dt. Using Fubini’s theorem, (p-th order moment

exists due to Sub-Gaussianess)

E [|X|p] =
∫ ∞

0

P (|X|p ≥ u) du =

∫ ∞

0

P
(
|X| ≥ u

1
p

)
du ≤ 2

∫ ∞

0

exp

{
−u

2/p

2σ2

}
du

≤ 2
(
2σ2
) p

2
p

2

∫ ∞

0

e−tt
p
2−1dt︸ ︷︷ ︸

Γ( p
2 )

(
where t =

u
2
p

2σ2

)

=
(
2σ2
) p

2 pΓ
(p
2

)
≤
(
2σ2
) p

2 p
(p
2

)p/2
▶ ∥X∥p := (E [|X|p])

1
p ≤ p1/pσ

√
p ≤ Cσ

√
p, since we can optimize fn. p1/p over p.
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Laplace distribution

▶ Example Let X ∼ Laplace (0, b) for b > 0. Then it can be shown that

P(|X| ≥ t) ≤ exp(−tb), ∀t > 0

▶ The Laplace distribution has fatter tails than the normal distribution

Basic tail and concentration bounds 37 / 83



Laplace Distribution

▶ Example. Let X ∼ Laplace (b) for b > 0. Then it can be shown that

P(|X| ≥ t) ≤ exp(−tb), ∀t > 0

▶ The Laplace distribution has fatter tails than the normal distribution

▶ X /∈ SG
(
σ2
)
since its MGF is only defined on a subset of the real line:

E
[
eλX

]
=

1

1− b2λ2
, ∀|λ| < 1

b

▶ The notion of Sub-Gaussianess is fairly restrictive, consider relaxations.

▶ Now turn to the class of sub-exponential variables, which are defined by a slightly milder

condition on the moment generating function:
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Sub-Exponential Random Variable

▶ Definition (Sub-Exponential Random Variable). We say that a random variable X is

Sub-Exponential with parameters ν, α > 0, and we write X ∈ SE
(
ν2, α

)
, if

E
[
eλ(X−E(X))

]
≤ e

λ2ν2

2 , ∀|λ| < 1

α

▶ Remark. An immediate consequence of the definition is that SG
(
σ2
)
⊆ SE

(
σ2, 0

)
. Thus,

all Sub-Gaussian random variables are also Sub-Exponential.
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Chi-square distribution

▶ Example. Let Z ∼ N (0, 1), and X = Z2 ∼ χ2
(1),E(X) = 1. Let λ < 1

2 . Then

E
[
eλ(X−1)

]
=

1√
2π
e−λ

∫ ∞

−∞
e−

z2

2 (1−2λ)dz

= e−λ
1√

1− 2λ

1√
2π

∫ ∞

−∞
e−

y2

2 dy
(
y = z

√
1− 2λ

)
=

e−λ√
1− 2λ

(a)

≤ exp

{
λ2

1− 2λ

}
(b)

≤ exp

{
4λ2

2

} (
λ <

1

4

)
▶ Thus, X ∈ SE(4, 4). The inequality (a) follows from the following elementary inequality

− log(1− u)− u ≤ u2

2(1−u) ,∀u ∈ (0, 1) with u = 2λ. And (b) is due to the chosen λ < 1/4.

▶ Also, it is possible to show that P(X − 1 > 2t+ 2
√
t) ≤ e−t,∀t > 0
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Tail Bounds for Sub-Exponential Random Variables

▶ Theorem. Let X ∈ SE
(
ν2, α

)
, and t > 0. Then

P{X − E(X) ≥ t} ≤

{
exp

{
− t2

2ν2

}
, t ≤ ν2

α (Sub-Gaussian behavior)

exp
{
− t

2α

}
, t > ν2

α

Equivalently,

P{X − E(X) ≥ t} ≤ exp

{
−1

2
min

(
t2

ν2
,
t

α

)}
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Proof of tail bounds for Sub-Exponential R.V.

▶ Assume µ = 0. Then repeating Chernoff argument, one obtains:

P(X ≥ t) ≤ e−λt+
λ2ν2

2 = eg(λ,t), ∀λ ∈ [0, 1/α)

▶ To obtain the tightest bound one needs to find: g∗(t) = infλ∈[0,1/α) g(λ, t)

▶ To do so, notice, firstly, that unconstrained infimum occurs at λ∗ = t/ν2 > 0. Consider two

cases:

1 If λ∗ < 1/α⇔ t ≤ ν2

α
, then sub-Gaussian behavior

2 If λ∗ > 1/α⇔ t > ν2/α, then notice that the function g(λ, t) is decreasing in λ in the

interval λ ∈ [0, 1/α) . Thus, the constrained infimum occurs at the boundary:

λ∗
constrained =

1

α
and g (λ∗

constrained, t) = − t

α
+

1

2α

ν2

α
≤ − t

2α
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Bernstein condition

▶ Recall that sufficient conditions for a random variable to be a Sub-Gaussian include:

– Boundedness of a random variable

– Condition on the moments
(
E|X|k

)1/k
▶ Bernstein condition is one similar condition allowing unbounded random variables to behave

sub-exponentially.

▶ Definition (Bernstein condition). Let X be a random variable with mean µ and variance

σ2. Assume that ∃b > 0,

E|X − µ|k ≤ 1

2
k!σ2bk−2, k = 3, 4, . . .

Then one says that X satisfies Bernstein condition.
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Bernstein lemma

▶ Lemma. If random variable X satisfies Bernstein condition with parameter b, then:

Eeλ(X−µ) ≤ e
λ2σ2

2
1

1−b|λ| , ∀|λ| < 1

b

Additionally, from the bound on the moment generating function one can obtain the

following tail bound (also known as Bernstein inequality):

P(|X − µ| ≥ t) ≤ 2 exp

(
− t2

2 (σ2 + bt)

)
,∀t > 0
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Proof of Bernstein lemma

▶ Pick λ : |λ| < 1
b (allowing interchanging summation and taking expectation) and expand

the MGF in a Taylor series:

Eeλ(X−µ) = 1 +
λ2σ2

2
+

∞∑
k=3

E|X − µ|k

k!
λk ≤ 1 +

λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(|λ|b)k−2

= 1 +
λ2σ2

2

1

1− b|λ|
≤ e

λ2σ2

2
1

1−b|λ| , (1 + x ≤ ex)

▶ To show the final bound, take λ : |λ| < 1
2b . Then the bound becomes:

e
λ2σ2

2
1

1−b|λ| ≤ eλ
2σ2

= e
λ2(2σ2)

2 =⇒ X ∈ SE
(
2σ2, 2b

)
.

▶ The concentration result follows by taking λ = t
bt+σ2 ∈ [0, 1b ) in the Chernoff bound.
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Proof of the Bernstein lemma

▶ The concentration result follows by taking λ = t
bt+σ2 ∈ [0, 1b ) in the Chernoff bound.

P[X − µ ≥ t] ≤ exp

(
λ2σ2

2(1− b|λ|)
− λt

)

= exp


(

t
bt+σ2

)2
σ2

2σ2

bt+σ2

− t2

bt+ σ2


= exp

(
− t2

2(bt+ σ2)

)
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Composition property of Sub-Exponential random variables

▶ Property. Let X1, . . . , Xn be independent random variables such that EXi = µi and

Xi ∈ SE
(
ν2i , αi

)
. Then

∑n
i=1 (Xi − µi) ∈ SE

(∑n
i=1 ν

2
i ,maxi αi

)
▶ In particular, denote ν2∗ =

∑n
i=1 ν

2
i , α∗ = maxi αi. Then:

P

(
1

n

∣∣∣∣∣
n∑
i=1

(Xi − µi)

∣∣∣∣∣ ≥ t

)
≤

 2 exp
(
− nt2

2ν2
∗/n

)
, 0 < t ≤ ν2

∗/n
α∗

2 exp
(
− nt

2α∗

)
, otherwise

or, equivalently, P
(
1
n |
∑n
i=1 (Xi − µi)| ≥ t

)
≤ exp

(
−n

2 min
{

t2

ν2
∗/n

, t
α∗

})
▶ Remark: Notice that that the range over which one obtains sub-Gaussian tail behavior gets

smaller after composition.
(
0,

ν2
∗/n
α∗

)
.
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Orlicz norm

▶ Definition (ψ-Orlicz norm). Let function ψ : R+ → R+ satisfy the following properties:

– ψ(x) is strictly increasing function

– ψ(x) is a convex function

– ψ(0) = 0

Then the ψ-Orlicz norm of a random variable X is defined as

∥X∥ψ = inf

{
t > 0 : Eψ

(
|X|
t

)
≤ 1

}
▶ Example 1. Let ψ(x) = xp, p ≥ 1. Then:

∥X∥ψ = ∥X∥p = (E|X|p)
1
p
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Orlicz norm

▶ Example 2. Let ψp(x) = ex
p − 1, p ≥ 1. The corresponding Orlicz has two properties:

(a) p = 1 : then ∥X∥ψ1 <∞ is equivalent to X belonging to the class of Sub-Exponential

random variables

(b) p = 2 : then ∥X∥ψ2 <∞ is equivalent to X belonging to the class of Sub-Gaussian random

variables

▶ It is easy to show that (by definition):∥∥X2
∥∥
ψ1

= (∥X∥ψ2)
2
, ∥XY ∥ψ1 ≤ ∥X∥ψ2∥Y ∥ψ2

▶ Using Orlicz norms allows to straightforwardly implies the following facts:

1 Squared Sub-Gaussian random variable is Sub-Exponential.

2 Product of two Sub-Gaussian random variables is Sub-Exponential.
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Concentraiton of a sub-gaussian random vector

▶ Lemma (Concentration of a sub-gaussian random vector) Let

X = (X1, . . . , Xd)
⊤ ∈ Rd be such that: EXi = 0,V (Xi) = 1 and assume that

Xi ∈ SG (1) . Then we can show that ∥X∥2 concentrates around
√
d.

▶ Proof:

– Consider ∥X∥22 =
∑n
i=1X

2
i . Then X

2
i − 1 ∈ SE

(
ν2, α

)
Thus, we have

P
(∣∣∣ ∥X∥2

d
− 1

∣∣∣ ≥ t
)
≤ 2 exp

(
− d

2
min

{
t2

ν2
, t
α

})
, ∀t > 0

– We will need to use the following fact: fix c > 0. Then for any numbers z > 0,

|z − 1| ≥ c
implies
=⇒ z2 − 1 ≥ max

{
c, c2

}
.

P
(∣∣∣∣∥X∥√

d
− 1

∣∣∣∣ ≥ u

)
≤ P

(∣∣∣∣∥X∥2

d
− 1

∣∣∣∣ ≥ max
{
u, u2}) ≤ 2 exp

(
−du

2

2C

)
▶ See more modern discussions on concentration of random vector in [Jin, Netrapalli, Ge,

Kakade, and Jordan, 2019].
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Hoeffding vs. Bernstein

▶ One would like to compare two type of bounds/inequalities: Hoeffding’s and Bernstein’s.

Denote µ = EX andσ2 = V(X). Assume that |X − µ| ≤ b a.e. Then:

P(|X − µ| ≥ t) ≤

 2 exp
(
− t2

2b2

)
, Hoeffding

2 exp
(
− t2

2(σ2+bt)

)
, Bernstein

▶ For small t (meaning bt≪ σ2 ) Bernstein’s inequality gives rise to a bound of the order:

P(|X − µ| ≥ t) ≤ 2e−
t2

cσ2 while Hoeffding’s gives: P(|X − µ| ≥ t) ≤ 2e−
t2

cb2

▶ But σ2 ≤ b2 and, thus, Bernstein’s bound is tighter. Substantially tighter when σ2 ≪ b2.

– The case for a random variable that occasionally takes on large values.

– (Further strengthen) For bounded R.V., Bennett’s inequality is sharper then Bernstein’s.
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Classic Bernstein inequality

▶ Theorem (Classic Bernstein inequality). LetX1, . . . , Xn be independent random

variables such that |Xi − EXi| ≤ b a.e. and maxiV (Xi) ≤ σ2. Then:

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− nt2

2
(
σ2 + bt

3

))

Basic tail and concentration bounds 52 / 83



Laurent-Massart bounds

▶ Theorem (Laurent-Massart bounds for χ2). Let Z1, . . . , Zn ∼ N (0, 1) and

a = (a1, . . . , an) with ai ≥ 0,∀i ∈ {1, . . . , n}. Let X =
∑n
i=1 ai

(
Z2
i − 1

)
. Then for

right-tail behavior is described by:

P
(
X ≥ 2∥a∥2

√
t+ 2∥a∥∞t

)
≤ e−t,∀t > 0

and for left-tail behavior:

P(X ≤ −2∥a∥2
√
t) ≤ e−t,∀t > 0

Reduce to classic χ2 bound when a1 = a2 = · · · = an = 1.

Basic tail and concentration bounds 53 / 83



Johnson–Lindenstrauss embedding

▶ Suppose that we are given N ≥ 2 distinct vectors
{
u1, . . . , uN

}
, with each vector in Rd.

▶ The data dimension d is large. Expensive to store and manipulate the data set.

▶ The idea of dimensionality reduction is to construct a mapping F : Rd → Rm

▶ Want mapping F satisfies

(1) the projected dimension

m≪ d

(2) mapping F preserves pairwise distances, or equivalently norms and inner products.

▶ Many ML algorithms are based on such pairwise quantities, including (1) linear regression,

(2) methods for principal components, (3) the k -means algorithm for clustering, and (4)

nearest-neighbor algorithms for density estimation.
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Johnson–Lindenstrauss embedding

▶ Suppose that we are given N ≥ 2 distinct vectors
{
u1, . . . , uN

}
, with each vector in Rd.

▶ The data dimension d is large. Expensive to store and manipulate the data set.

▶ The idea of dimensionality reduction is to construct a mapping F : Rd → Rm

▶ more precisely, given some tolerance δ ∈ (0, 1), we might be interested in a mapping F

with the guarantee that

(1− δ) ≤
∥∥F (ui)− F

(
uj
)∥∥2

2

∥ui − uj∥22
≤ (1 + δ) for all pairs ui ̸= uj (1)
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Johnson–Lindenstrauss embedding

▶ An interesting and simple construction of the mapping that satisfies the condition 1 is

probabilistic (known as Johnson–Lindenstrauss embedding or Random Projection):

– Form a random matrix X ∈ Rm×d filled with independent N (0, 1) entries

– and use it to define a linear mapping

F : Rd → Rm via u 7→ Xu/
√
m

▶ Random projection satisfies the condition 1 with high probability as long as the projected

dimension is lower bounded as

m ≿
1

δ2
logN.

– The projected dimension m is independent of the ambient dimension d, and scales only

logarithmically with the number of data points N .
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Johnson–Lindenstrauss embedding

▶ Now verify that F satisfies condition 1 with high probability.

▶ Let xi ∈ Rd denote the i th row of X, and consider some fixed u ̸= 0.

▶ Since xi is a standard normal vector, the variable ⟨xi, u/∥u∥2⟩ follows a N (0, 1)

distribution, and hence the quantity

Y :=
∥Xu∥22
∥u∥22

=

m∑
i=1

⟨xi, u/∥u∥2⟩2

follows a χ2 distribution with m degrees of freedom, using the independence of the rows.

▶ Specifically Y ∈ SE(4m, 4), applying the sub-exponential tail bound, we find that

P
[∣∣∣∣ ||Xu∥22m∥u∥22

− 1

∣∣∣∣ ≥ δ

]
≤ 2e−mδ

2/8 for all δ ∈ (0, 1)
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Johnson–Lindenstrauss embedding

▶ Rearranging and recalling the definition of F yields the bound

P
[
∥F (u)∥22
∥u∥22

/∈ [(1− δ), (1 + δ)]

]
≤ 2e−mδ

2/8, for any fixed 0 ̸= u ∈ Rd

▶ Noting that there are
(
N
2

)
distinct pairs of data points, then applying the union bound:

P

[∥∥F (ui − uj
)∥∥2

2

∥ui − uj∥22
/∈ [(1− δ), (1 + δ)] for some ui ̸= uj

]
≤ 2

(
N

2

)
e−mδ

2/8

▶ For any ϵ ∈ (0, 1), this probability can be driven below ϵ by choosing m > 16
δ2 log(N/ϵ).
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Application on Maxima

▶ Theorem. LetX1, . . . , Xn be centered random variables that are not necessarily

independent such that for all λ ∈ [0, b), b ≤ ∞,E
[
eλXi

]
≤ ψ(λ), where ψ(·) is convex on

[0, b). Then,

E
[
max
i
Xi

]
≤ inf
λ∈[0,b)

{
log(n) + ψ(λ)

λ

}
▶ By Jensen’s inequality, for any λ ∈ [0, b),

exp
{
λE
[
max
i
Xi

]}
≤ E

[
eλmaxiXi

]
= E

[
max
i
eλXi

]
≤

n∑
i=1

E
[
eλXi

]
≤ neψ(λ)

▶ Furthermore, if ψ is convex, continuously differentiable on [0, b), and ψ(0) = ψ′(0) = 0,

then ∀µ > 0, infλ∈[0,b)

{
µ+ψ(λ)

λ

}
= inf {t ≥ 0 : ψ∗(t) ≥ µ} where

ψ∗(t) = supλ∈[0,b) λt− ψ(λ). (Hint: let w = infλ∈[0,b)

{
µ+ψ(λ)

λ

}
and use definition.)
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Application on Maxima

E
[
max
i
Xi

]
≤ inf
λ∈[0,b)

{
log(n) + ψ(λ)

λ

}

▶ Example (Expectation for maxima of n Sub-Gaussian R.V.). Given all Xi ∈ SG
(
σ2
)
,

then ψ(λ) = λ2σ2

2 . The bound is infλ>0
log(n)
λ + λ2σ2

2λ . The infimum is achieved at

λ =
√

2 log(n)
σ2 and we obtain

E
[
max
i
Xi

]
≤
√
2σ2 log(n).

▶ This yields an important result: the expected value of the maximum of sub-Gaussian

random variables with the same parameter grows at a rate of
√

log(n).
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Application on Maxima

▶ Example (Sub-Exponential). If ψ(λ) = λ2ν2

2(1−λb) for λ ∈
(
0, 1b

)
, then we have

E
[
max
i
Xi

]
≤
√
2ν2 log(n) + b log(n).

▶ Note that this bound looks similar to the one for sub-Gaussian random variables, except

that it includes an additional b log(n) term.

▶ Special case: if Xi ∼ χ2
p,E [maxXi] ≤ 2

√
p log(n) + 2 log(n)

▶ More detailed discussions in Sec. 2.4 and 2.5 in [Boucheron, Lugosi, and Massart, 2013].
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Motivation

▶ Up until this point, these techniques have provided various types of bounds on sums of

independent random variables. Many problems require bounds on more general functions of

random variables.

▶ Picture an arbitrary function of independent random variables. Can we create a

concentration inequality for this arbitrary function?

▶ One classical approach is based on martingale decompositions. In this section, we describe

some of the results in this area along with some examples.
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Background

▶ E(Y |X) is a random variable because it is a function of the random variable, X .

▶ E(Y |X = x) is not a random variable because it is a function of the fixed x.

▶ Let Z = f (X1, . . . , Xn) with f : Rn → R.
▶ We are interested in the concentration inequality for Z − E(Z)
▶ How to bound it?
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Filtration and adaptation

▶ Filtration. Let {Fk}∞k=1 be a sequence of σ -fields that are nested, meaning that

Fk ⊆ Fk+1

for all k ≥ 1 such a sequence is known as a filtration.

▶ Adapted sequence. Let {Yk}∞k=1 be a sequence of random variables such that Yk is

measurable with respect to the σ-field Fk. In this case, we say that {Yk}∞k=1 is adapted to

the filtration {Fk}∞k=1 .
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Martingales

▶ Definition (martingale). Given a sequence {Yk}∞k=1 of random variables adapted to a

filtration {Fk}∞k=1 , the pair {(Yk,Fk)}∞k=1 is a martingale if, for all k ≥ 1,

E [|Yk|] <∞ and E [Yk+1|Fk] = Yk

▶ Doob construction. Given a sequence of random variables {Xk}nk=1 , and consider the

random variable f(X) = f (X1 . . . , Xn). Define the sequence

Yk = E [f(X)|X1, . . . , Xk] , with Yn = f(X), Y0 = E(f(X))

and suppose that E[|f(X)|] <∞.
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Justification of Doob construction

▶ Doob construction.

Yk = E [f(X)|X1, . . . , Xk] , with Yn = f(X), Y0 = E(f(X))

▶ We claim that {Yk}nk=0 is a martingale with respect to {Xk}nk=1 . Indeed, in terms of the

shorthand Xk
1 = (X1, X2, . . . , Xk) , we have

1 follows from Jensen’s inequality,

E [|Yk|] = E
[∣∣∣E [

f(X)|Xk
1

]∣∣∣] ≤ E[|f(X)|] <∞

2 the tower property of conditional expectation in step (i),

E
[
Yk+1|Xk

1

]
= E

[
E
[
f(X)|Xk+1

1

]
|Xk

1

]
(i)
= E

[
f(X)|Xk

1

]
= Yk
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Likelihood ratio construction

▶ Likelihood ratio. Let f and g be two mutually absolutely continuous densities, and let

{Xk}∞k=1 be a sequence of random variables drawn i.i.d. according to f. For each k ≥ 1,

let Yk :=
∏k
ℓ=1

g(Xt)
f(Xℓ)

be the likelihood ratio based on the first k samples. Then the

sequence {Yk}∞k=1 is a martingale with respect to {Xk}∞k=1 . Indeed, we have

E [Yn+1|X1, . . . , Xn] = E
[
g (Xn+1)

f (Xn+1)

] n∏
k=1

g (Xk)

f (Xk)
= Yn

using the fact that E
[
g(Xn+1)
f(Xn+1)

]
= 1.

▶ Important in analyzing stopping rules for sequential hypothesis tests.
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Martingale difference sequence

▶ Definition (martingale difference sequence). A closely related notion is that of

martingale difference sequence, meaning an adapted sequence {(Dk,Fk)}∞k=1 such that, for

all k ≥ 1,

E [|Dk|] <∞ and E [Dk+1|Fk] = 0

▶ As suggested by their name, such difference sequences arise in a natural way from

martingales. In particular, given a martingale {(Yk,Fk)}∞k=0 , let us define for k ≥ 1

Dk = Yk − Yk−1

▶ We then have

E [Dk+1|Fk] = E [Yk+1|Fk]− E [Yk|Fk] = E [Yk+1|Fk]− Yk = 0
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Telescoping decomposition

▶ Using the martingale property and the fact that Yk is measurable with respect to Fk Thus,

for any martingale sequence {Yk}∞k=0 , we have the telescoping decomposition

f(X)− E(f(X)) = Yn − Y0 =

n∑
k=1

(Yk − Yk−1) =

n∑
k=1

Dk

where {Dk}∞k=1 is a martingale difference sequence.

▶ This decomposition plays an important role in our development of concentration

inequalities to follow.
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Concentration bounds for martingale difference sequences

▶ Theorem (Bernstein-Freedman). Let {(Dk,Fk)}∞k=1 be a martingale difference sequence,

and suppose that E
[
eλDk |Fk−1

]
≤ eλ

2v2k/2 almost surely for any |λ| < 1/αk. Then the

following hold:

(a)
∑n
k=1Dk ∈ SE

(∑n
k=1 v

2
k, α∗

)
where α∗ := maxk αk. (same as if they were independent)

(b) The sum satisfies the concentration inequality

P

[∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t

]
≤

 2e
− t2

2
∑n

k=1
v2
k if 0 ≤ t ≤

∑n
k=1 v

2
k

α∗

2e
− t

2α∗ if t >
∑n

k=1 v
2
k

α∗
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Proof of Bernstein-Freedman

▶ For any scalar λ such that |λ| < 1
α∗
, conditioning on Fn−1 and applying iterated

expectation yields

E
[
eλ(

∑n
k=1Dk)

]
= E

eλ(∑n−1
k=1 Dk) E

[
eλDn |Fn−1

]︸ ︷︷ ︸
see condition

 ≤ E
[
eλ

∑n−1
k=1 Dk

]
eλ

2v2n/2

▶ Iterating this procedure yields the bound E
[
eλ

∑n
k=1Dk

]
≤ eλ

2 ∑n
k=1 v

2
k/2, valid for all

|λ| < 1
α∗
. The tail bound follows by applying sub-exponential tail bound.

▶ Need sufficient and easily checkable conditions for the differences Dk.
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Azuma-Hoeffding

▶ Corollary (Azuma-Hoeffding). Let ({(Dk,Fk)}∞k=1) be a martingale difference sequence

for which there are constants {(ak, bk)}nk=1 such that Dk ∈ [ak, bk] almost surely for all

k = 1, . . . , n. Then, for all t ≥ 0

P

[∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t

]
≤ 2e

− 2t2

Σn
k−1(bk−ak)

2

▶ Proof Hint.

– Since Dk ∈ [ak, bk] almost surely,

– the conditioned variable (Dk|Fk−1) ∈ [ak, bk] almost surely,

– and hence applying the result of property of sub-Gaussian R.V. (Hoeffding’s lemma).
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Application: bounded difference function

▶ Given vectors x, x′ ∈ Rn and an index k ∈ {1, 2, . . . , n}, define a new vector x\k ∈ Rn via

x
\k
j :=

{
xj if j ̸= k

x′k if j = k

▶ With this notation, we say that f : Rn → R satisfies the bounded difference inequality with

parameters (L1, . . . , Ln) if, for each index k = 1, 2, . . . , n∣∣∣f(x)− f
(
x\k
)∣∣∣ ≤ Lk for all x, x′ ∈ Rn (2)

▶ For instance, if the function f is L-Lipschitz with respect to the Hamming norm

dH(x, y) =
∑n
i=1 1 [xi ̸= yi] , then the bounded difference inequality holds with parameter

L uniformly across all coordinates. (Recall the definition of L-Lipschitz)
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Bounded difference inequality

▶ Corollary (Bounded differences inequality). Suppose that f satisfies the bounded

difference property 2 with parameters (L1, . . . , Ln) and that the random vector

X = (X1, X2, . . . , Xn) has independent components. Then

P[|f(X)− E[f(X)]| ≥ t] ≤ 2e
− 2t2∑n

k=1
L2
k for all t ≥ 0

▶ Recalling the Doob martingale and constructing two corresponding auxiliary R.V.

Dk = E [f(X) | X1, . . . , Xk]− E [f(X) | X1, . . . , Xk−1]

Ak := inf
x

E [f(X) | X1, . . . , Xk−1, x]− E [f(X) | X1, . . . , Xk−1]

Bk := sup
x

E [f(X) | X1, . . . , Xk−1, x]− E [f(X) | X1, . . . , Xk−1]

Find something? Dk ≤ Bk −Ak a.s. and recall the definition Bk −Ak ≤ Lk a.s.
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Application of Bounded difference inequality

▶ Example 2.22 (Classical Hoeffding from bounded differences)

▶ Example 2.23 (U-statistics)

▶ Example 2.24 (Clique number in random graphs)

▶ Example 2.25 (Rademacher complexity)
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Lipschitz functions of Gaussian variables

▶ A function f : Rn → R is L -Lipschitz with respect to the Euclidean norm ∥ · ∥2 if

|f(x)− f(y)| ≤ L∥x− y∥2 for all x, y ∈ Rn

▶ Theorem. Let (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables, and let

f : Rn → R be L-Lipschitz with respect to the Euclidean norm. Then the variable

f(X)− E(f(X)) ∈ SG(L2) and hence

P[|f(X)− E[f(X)]| ≥ t] ≤ 2e−
t2

2L2 for all t ≥ 0

▶ Remark. Guarantees that any L-Lipschitz function of a standard Gaussian random vector,

regardless of the dimension, exhibits concentration like a scalar Gaussian variable with

variance L2.
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Proof

▶ Assume f is also differentiable, we prove a slightly weak version with loose constant.

▶ Lemma. Suppose that f : Rn → R is differentiable. Then for any convex function

ϕ : R → R, we have

E[ϕ(f(X)− E[f(X)])] ≤ E
[
ϕ
(π
2
⟨∇f(X), Y ⟩

)]
where X,Y ∼ N (0, In) are standard multivariate Gaussian, and independent
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Proof

▶ Using this lemma with convex fn. ϕ(x) = exp(λx) for any fixed λ ∈ R,

EX [exp(λ{f(X)− E[f(X)]})] ≤ EX,Y

exp
N (0,λ

2π2

4 ∥∇f(X)∥2
2)︷ ︸︸ ︷(

λπ

2
⟨Y,∇f(X)⟩

)
| X


= EX

[
exp

(
λ2π2

8
∥∇f(X)∥22

)]
using the fact if Z ∼ N (0, σ2), then E(exp(Z)) = exp(σ2/2)
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Proof

▶ Using this lemma with convex fn. ϕ(x) = exp(λx) for any fixed λ ∈ R,

EX [exp(λ{f(X)− E[f(X)]})] ≤ EX

exp
λ2π2

8
∥∇f(X)∥22︸ ︷︷ ︸

≤L2


 ≤ exp (

1

8
λ2π2L2)

▶ f(X)− E[f(X)] ∈ SG((πL2 )2)

▶ See proof of the lemma in the book.
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Applications

▶ Example 2.28 (χ2 concentration )

▶ Example 2.29 (Order statistics)

▶ Example 2.30 (Gaussian complexity)

▶ Example 2.31 (Gaussian chaos variables)

▶ Example 2.32 (singular values of Gaussian random matrices)
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