Reinforcement Learning with Linear Function Approximation

Lizhang Miao

August 20, 2020

Review of " Zanette A, Lazaric A, Kochenderfer M, et al. Learning Near Optimal Policies with Low
Inherent Bellman Error, 2020."”

40



Outline

Linear Bandits
ucB

Techniques from Linear Bandits

Episodic RL with Linear approximation
Settings
Proofs

/40



Linear Bandits

3/40



Formulation

» Bandits: K-arms; — Linear bandits: action vector a; € R, observed reward
re = (ag, 0%) + n¢, 1 is zero-mean noise
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Formulation

» Bandits: K-arms; — Linear bandits: action vector a; € R, observed reward
re = (ag, 0%) + n¢, 1 is zero-mean noise

» Contextual bandits: contextual information ¢; and action a; € [K], reward
re = T(ct,ar) +n: — Contextual linear bandits: feature map 1 : C x [K] — RY,
reward ri(ct, ar) = (U(ce, ar), 0%) + n:

> Regret: R, =E[D_;_;rf —ri

» Regret bound: linear bandits O(d+/n); contextual linear bandits O(v/dn)
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Formulation

» Bandits: K-arms; — Linear bandits: action vector a; € R, observed reward
re = (ag, 0%) + n¢, 1 is zero-mean noise

» Contextual bandits: contextual information ¢; and action a; € [K], reward
re = T(ct,ar) +n: — Contextual linear bandits: feature map 1 : C x [K] — RY,
reward re(ct, at) = (Y(ce, at), 0%) + e

> Regret: R, =E[D_;_;rf —ri

» Regret bound: linear bandits O(d+/n); contextual linear bandits O(v/dn)

» Linear approximation and exploration in RL? Transition model?
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Exploration

Machine Learning

Best fit using average distribution

.. Prediction error OK

Reinforcement Learning

v,

Best fit using distribution of
‘qollecred samples

Prediction error can be large
on unseen actions

on average distril

Distribution of
collected samples

» Core problem: Exploration-Exploitation trade-off, especially model misspecification
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Exploration

Machine Learning Reinforcement Learning

v,

Best fit using distribution of

Best fit using average distribution 4 A T collected samples
>e€ Prediction error can be large
i [ on unseen actions
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on average distributi

Distribution of
collected samples

» Core problem: Exploration-Exploitation trade-off, especially model misspecification
» Exploitation: fit collected data

» Explore with a confidence ball: Upper Confidence Bound algorithm which is
near-minmax optimal in bandits
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LinUCB

» Construct confidence set C; based on collected data (a1, r1, -+, a1, ft—1) that
contains unknown parameter 6* with high probability
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» Construct confidence set C; based on collected data (a1, r1, -+, a1, ft—1) that
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LinUCB

» Construct confidence set C; based on collected data (a1, r1, -+, a1, ft—1) that
contains unknown parameter 6* with high probability

> For a fixed f, the set can be constructed as C; = {6 € RY|||6 — 0H2 < B} where V
is positive definite and ||x||y = VxT Vx

» With a unit ball By = {x € RY|||x|>» < 1}, C: = 8 + g/2v—1/2B,

> Fi(a) = (a¢, 0) + BY/2||al|y-1 > rf(a) with selection of
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LinUCB

» Construct confidence set C; based on collected data (a1, r1, -+, a1, ft—1) that
contains unknown parameter 6* with high probability

> For a fixed f, the set can be constructed as C; = {6 € RY|||6 — éH%/ < B} where V
is positive definite and ||x|y = V/xT Vx

» With a unit ball By = {x € RY|||x|>» < 1}, C: = 8 + g/2v—1/2B,

» 7(a) = (ar, 0) + BY?||a||y-1 > rf(a) with selection of /3

» Exploitation: least square value iteration for 0

» Exploration: parameter space confidence ball — adding exploration bonus

> Regret <E[Y i {7 — re]
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Technical lemmas
Lemma (Self-normalized bound for vector-valued martingales)
Let {F:}2, be a filtration. Let {x;}32; be a real-valued stochastic process such that
x¢|Fe—1 is o-subGaussian. Assume Vy is a d x d positive definite matrix, and let
Vi=W + 22:1 psd] . Then with probability at least 1 — &, we have

< 202 log[det(V;)Y/2 det (Vo) Y2 /).

2
v!

t
Z OsXs
s=1
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Technical lemmas

Lemma (Self-normalized bound for vector-valued martingales)

Let {F:}2, be a filtration. Let {x;}32; be a real-valued stochastic process such that
x¢|Fe—1 is o-subGaussian. Assume Vy is a d x d positive definite matrix, and let
Vi=W + Z -1 psd] . Then with probability at least 1 — &, we have

¢ 2
Z OsXs
s=1

v!

< 202 log[det(V;)Y/2 det (Vo) Y2 /).

Lemma (Determinant-Trace Inequality)

Suppose X1, Xa, - , Xy € RY
Ve =M+ 3E_ Xo X[ for some A\ > 0. Then,

< L. Let

det(Vy) < (A + tL?/d)?
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Episodic RL with Linear approximation
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Episodic RL Notations

» Undiscounted finite-horizon MDP: M = (S, A, p, r, H) with state space S, action
space A, transition kernel p;, reward function r and horizon length H.

» V-value: VJ : & — R is the expected value of cumulative rewards received under
policy ™ when starting from an arbitrary state at the hth step

H
> ro(se, mo(se))|xe = x] ,  VseS,telH]
t'=t
Optimal value V{(s) = sup, V[ (s) for all s € S and t € [H].
> Q-value: QF : S x A — R gives the expected value of cumulative rewards when

the agent starts from an arbitrary state-action pair at the tth step and follows
policy m afterwards

Vi(x)=E

H
QF (x,a) = ri(x,a)+E

I=t+1

Z ri(s, mi(s)))|sy = s, a1 = a] ,V(s,a) e Sx A, t € [H].
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Notations (Cont.)

» Bellman equation associated with a policy m becomes:

Vi(s) = Qf (s, me(s)),
Qf (s,a) = (rt + PV 1)(s, a).
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Notations (Cont.)

» Bellman equation associated with a policy m becomes:

VI (s) = QF (s, me(s)),

Qi (s,a) = (rt + PV 4)(s,a).

» Bellman optimality equation

Vi(s) = Tea}l( Qi (s, a),

Q:(s,a) = (re + Pa Vi) (x, a)-
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Notations (Cont.)

» Bellman equation associated with a policy m becomes:

Vi(s) = Qf (s, me(s)),
Qf (s,a) = (rt + PV 1)(s, a).

» Bellman optimality equation
Vi (s) = max Q* S, a
t( ) e t( ) )7

Q:(s,a) = (re + Pa Vi) (x, a)-

» Bellman operator 7 applied to Q1 is defined as

ﬂ(QH-l)(Sa a) = I’t(S, a) + IEs’wpt(s,a) max Qi11(s’,a’)
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Linear Value Function

» Feature map: ¢;: S x A — R%
> Qi(s,a) = ¢e(s,a)76;
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Linear Value Function

» Feature map: ¢;: S x A — R%
> Qi(s,a) = ¢e(s,a)76;

> Define space of parameters inducing uniformly bounded action-value functions
Bt = {91- S RdtH¢t(5, a)Tﬁt] S D,V(S, a)}
» Each parameter 6 identifies an (action) value function

Qt(Qt)(s, a) = ¢t(57 a)THt, Vt(gt) = m;ax (Zst(s7 a)TQt
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Linear Value Function

v

Feature map: ¢; : S x A — R%
Qe(s,a) = ¢:(s,a)0;

Define space of parameters inducing uniformly bounded action-value functions

v

v

Bt = {91- S RdtH¢t(5, a)Tﬁt] S D,V(S, a)}

v

Each parameter 6§ identifies an (action) value function

Qt(Qt)(s, a) = ¢t(57 a)THt, Vt(9t) = mgx (Zst(s7 a)TQt

So consider function classes

v

Qr = {Qe(0:)|0r € Be}, Ve = {V1(0:)[0: € By}
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Inherent Bellman Error

» Inherent Bellman error of an MDP with a linear feature representation ¢ is

I= sup inf sup |¢u(s,8)"0: — (TeQer1(0e11))(s, a)l
0r11€B:11 0t€B: (5. 2)eSx A
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Inherent Bellman Error

» Inherent Bellman error of an MDP with a linear feature representation ¢ is
I= sup inf sup |¢u(s,8)"0: — (TeQer1(0e11))(s, a)l
0r+1€Br+1 0¢€B (s,2)eSx A
> VQ+1 € Qer1 (Tt Qey1) € Qt

v

If VQiy1 € Qi1 (T Qr41) & Qs (NT:Q¢41) € QO

Projection is done by least square; inherent Bellman error is the projection error.

v
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Inherent Bellman Error

v

Inherent Bellman error of an MDP with a linear feature representation ¢ is

I= sup inf sup |¢u(s,8)"0: — (TeQer1(0e11))(s, a)l
9t+1eBt+1 0:EB: (S,a)ESXA

v

VQi+1 € Qi1 (T Qr41) € Ot
If VQiy1 € Qi1 (T Qr41) & Qs (NT:Q¢41) € QO

Projection is done by least square; inherent Bellman error is the projection error.

v

v

v

MDP is low rank indicates /| = 0; the converse does not hold.
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Assumption

e |QT(s,a) <1, YV, V(s,a,t)
o |@ulsa)a=Ly=1, Yisa,t)

o For any ¢}y € Q; and any (s,a,t) € & = A =
[H] define the random variable® X = Ry(s,a) +
maxy Qry1(8.a’). Then the noisep = X — EX
is 1-subgaussian

o ¥t e [H|,¥0; € By, it holds that |8;] < R, < \/d,,
and B, is compact

27 /40



Algorithm

> Regularized least square

k-1
D (650 = rii = Vera(8e1)(se41,1))° + A6l
i—1
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Algorithm

> Regularized least square

k—1

D (50 — ri = Vepa(0e1)(se41.1))* + A013
i=1

» Global optimistics LSVI

_
max maxoi(sik,a)’ 61
§1,6n @ ( ’ )

s.tléells, < Vo

k—1

0 = Z;(l Z bri[rei + max ¢t+1(51{+1, a) Ta_] + &t
i=1 ?
Q_tGBt,fort:H,---,l

with o = Sk gupl + A
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Compare to LSVI-UCB

» Approximated with closed form by adding exploration bonus, similar to linear
bandits

k—

6= Z Geilre + max ¢t+1(5t+1a 3)T9 + \f||¢t+1 5t+1a )Hz 1)]

=1

30/40



Compare to LSVI-UCB

» Approximated with closed form by adding exploration bonus, similar to linear
bandits

k—

0= Z Geilre + max ¢t+1(5t+1a 3)T9 + \f||¢t+1 5t+1a )Hz 1)]

=1

» LSVI-UCB solve local optimism state by state
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Compare to LSVI-UCB

» Approximated with closed form by adding exploration bonus, similar to linear
bandits

k—

0= Z Geilre + max ¢t+1(5t+1a a)T9 + \f||¢t+1 5t+1a )Hz 1)]

=1

» LSVI-UCB solve local optimism state by state

» Destroys linear structure and increase complexity
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Sketch proof

» There exists a parameter 0 depending on Qt+_1, such that

Ae(Qev1)(s.a) = (TeQer1)(s, @) — de(s, @) T0:(Qer1) with [[Ae(Qer1)lloc </
» Sample noise 7t(Viy1) = rti — re(Sei; ae) + Vier1(sea1, i) — Eswpt(sﬁ,aﬁ)VtH(S')
> $¢(s,a) Ty becomes

k—1

d1(s,0) St Y i (TeQuin (s1is ani) + (Vi)

i=1

= ¢y(s,a)’ [ét(@tH)Jr
E—1

+ 35 D i (Atf + ??m') @Hl)]
i=1
“ (@, +1)<s a) + A(Qpat)(s,0)+

+ (s, a) Z o ( Avi + s ) (@Qer)-
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Sketch proof

» Inherent Bellman error
k-1
: ol o — ’ T
|b:(s,a) T B} Z ¢ Bi(Qpi)| < |de(s, a)| g1 VL.
i=1

> Recall Z;{l-norm of feature is about \/d:/k

34 /40



Sketch proof

» Inherent Bellman error
k-1 N o
|6e(s,0) "5 Y 6B @pia)| < e, )51 VL.
i=1

> Recall Z;{l-norm of feature is about \/d:/k
» Noise error

k=1
|¢)t(s,a)TEt_k1 Z ¢ti7]ti(vt+1)|
i=1
k—1 .
< Hcét(s,a)\lg;;H Z thinti(vt+1)”2;k1
i=1

def
< [ér(s,0)lg 17/ ek
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Sketch proof

Lemma 3 (Transition Noise High Probability Bound). If A = 1, with probability at least 1 — & for all Vi q € Viy 1 it holds

that
k-1
|| Z Goi (Tei — el 805, @) + Ver1(8e415) — Bwropy(on,ae Ver1(8") "E_1 = &/ Bk (41)
i=1 th
where:
B \/ d.In (1 + Lik;‘d,) + 2dypr In(1 + 4R, Lyv'E) + In (%) 1. 42)

» Using e-covering to have a uniform bound for value function class; /B = @(\/di)
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Sketch proof

Lemma 3 (Transition Noise High Probability Bound). If A = 1, with probability at least 1 — &' for all Vi & Vyy1 it holds
g ty p ) - -

that
|| k_ll Gei (rei — rel8ei, 0es) + Vir1(8e413) — Bo oy (arnang) Ver1(€')) "E&‘ < +/Buk @n
i=
where:
B \/ deln (14 IZk/d,) + 2dys1 (1 + 4R, L4vB) +1n (61) L1 @)

» Using e-covering to have a uniform bound for value function class; /By = O(v/d;)

» The function class is essentially linear, which is simpler compared to LSVI-UCB who
uses quadratic exploration bonus, therefore save a v/d factor in regret bound
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Sketch proof
> Add ¢y(s, a) Txi,

‘rt TQ::-H) )‘:
< I +Houls,a)gx

misspecification

(2 o+ o)

misspecification  exploration noise

» It remains to define ayy

> Now setting

k-1
£ =-%, Z Pri ( Ay + 4 ) (Qe+1(0711))
=
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Sketch proof

» So Q; becomes

(s, a) ' b,

= Te(Qer1(0;11))(5: @) + Ay(Qr1(0711)) (5, ).
» Thus the approximator satisfies

Vi(sik) > Vi (sik) — HI

» & is bounded by inherent Bellman error and noise error, which satisfies constraints

» Finally we are ready to have regret bound

tﬂx

Vi — Vi + Vig — Vi) (s16) < O Zdt\ﬁJrZ\/dTK/

Regret(K) =
k=1
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