Group Study and Seminar Series (Summer 20) Minimax Lower Bounds

Presenter: Hao Liang

The Chinese University of Hong Kong, Shenzhen, China

July 2, 2020

Mainly based on:

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (Vol. 48). Cambridge University Press. John, Duchi (2019). Lecture Notes for Statistics 311/Electrical Engineering 377.

Outline

Introduction

Why study lower bounds? Preliminaries

Minimax lower bounds

Le Cam's method Fano's method

Outline

Introduction

Why study lower bounds? Preliminaries

Minimax lower bounds

Le Cam's method Fano's method

Example 0: Gaussian location family

- $▶ \{ \mathcal{N}(\theta, \sigma^2), \theta \in \mathbb{R} \}$: a normal distribution family with fixed variance σ^2
- ▶ Data: a collection $Z = (Y_1, \ldots, Y_n)$ with Y_i i.i.d. $\sim \mathcal{N}(\theta, \sigma^2)$
- ▶ Method: estimate unknown θ^* via an estimator $\theta(Z)$
- ▶ Performance measure: risk $R(\theta, \theta^*)$
- \blacktriangleright How does $\widetilde{\theta}_n := \frac{1}{n} \sum_{i=1}^n Y_i$ perform?
- ▶ Upper bound provides worst-case performance guarantee

$$
\sup_{\theta \in \mathbb{R}} R(\widetilde{\theta}_n, \theta) \le \frac{\sigma^2}{n}
$$

Example 0: Gaussian location family

- ▶ But how to answer the following questions?
	- Can this analysis be improved? Or does $\widetilde{\theta}_n$ actually satisfy better bounds?
	- Can any estimator improve upon the bound?
- ▶ Both questions ask about some form of optimality(switch orders?)
	- Optimality of an estimator
	- Optimality of a bound
- ▶ A positive answer consists in
	- $-$ Finding a better proof for $\widetilde{\theta}_n$
	- Finding a better estimator, together with a proof that it performs better

Example 0: Gaussian location family

▶ Lower bound may provide negative answer to both questions

$$
\inf_{\widehat{\theta}} \sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta} \left[(\widehat{\theta} - \theta)^2 \right] \geq \Theta(\frac{\sigma^2}{n})
$$

- **►** Any estimator suffers risk at least $Θ(\frac{\sigma^2}{n})$ $\frac{\sigma^2}{n}$) in the worst case
- ▶ Recall that $\widetilde{\theta}_n$ suffers risk at most $\Theta(\frac{\sigma^2}{n})$ $\frac{\sigma^2}{n}$) in the worst case
- **►** Both the upper bound $\Theta(\frac{\sigma^2}{n})$ $\frac{\sigma^2}{n}$) and the estimator θ_n are not improvable!

Outline

Introduction Why study lower bounds? Preliminaries

Minimax lower bounds

Le Cam's method Fano's method

Statistical decision theory

- \blacktriangleright $\mathcal{P} = {\mathbb{P}_\theta | \theta \in \Omega}$ *∈* A parametric family with parameter θ
- ▶ Data/samples: Y_i i.i.d. $\sim \mathbb{P}_{\theta}$ or $Y^n = (Y_1, \ldots, Y_n) \sim \mathbb{P}_{\theta}^n$
- ▶ Decision rule
	- $-$ (Point) Estimation: estimate θ^* via an estimator $\widehat{\theta}(Y^n)$, $\widehat{\theta}: \mathcal{X}^n \to \Omega$
	- (Hypothesis) Test: nature randomly choose index *J* = *j*, decide *j ∈ {*1*,* 2*, ..., M}* via an test ${\mathcal W}(\overline{Y}^n)$, where $Y^n \sim \mathbb{P}^n_{\theta^j}$
- ▶ Loss function $\rho\left(\widehat{\theta},\theta^*\right)$
	- $-$ Absolute loss $\rho\left(\widehat{\theta}, \theta^*\right) = |\widehat{\theta} \theta^*|$

- Squared loss
$$
\rho\left(\widehat{\theta}, \theta^*\right) = (\widehat{\theta} - \theta^*)^2
$$

▶ Risk $R(\widehat{\theta}, \theta^*) = \mathbb{E}_{\mathbb{P}}\left[\rho\left(\widehat{\theta}(Y^n), \theta^*\right)\right]$

Information theory

- \blacktriangleright Entropy $H(X) := \int_{\mathcal{X}} p_X(u) \log \frac{1}{p_X(u)} du$
- ▶ Relative entropy/KL divergence $D(\mathbb{P}_X \| \mathbb{P}_Y) := \int_{\mathcal{X}} p_X(u) \log \frac{p_X(u)}{p_Y(u)} du$

$$
- D(\mathcal{N}(\theta_1, \sigma_1^2), \mathcal{N}(\theta_2, \sigma_2^2)) = \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}
$$

- ▶ Mutual information $I(X;Y) := D(\mathbb{P}_{X,Y} | \mathbb{P}_X \mathbb{P}_Y)$
	- − KL divergence form: $I(X;Y) = \mathbb{E}_X D(\mathbb{P}_{Y|X} | \mathbb{P}_Y) = \sum_x \mathbb{P}(x) D(\mathbb{P}_{Y|X=x} | \mathbb{P}_Y)$
- \blacktriangleright Fano's inequality provides a lower bound on the error in a M -ary testing problem

$$
\mathbb{P}[\psi(Z) \neq J] \ge 1 - \frac{I(Z; J) + \log 2}{\log M} \tag{1}
$$

Outline

Introduction

Why study lower bounds? Preliminaries

Minimax lower bounds

Le Cam's method Fano's method

Basic framework

- ▶ Given a class of distributions *P* and *θ* : *P →* Ω is a functional mapping distributions to a parameter *θ*(P)
- \blacktriangleright For parametric classes, $\theta(\mathbb{P})$ uniquely determines the underlying distribution \mathbb{P} , write $\mathcal{P} = \{\mathbb{P}_{\theta} | \theta \in \Omega\}$ (e.g. Gaussian location family)
- ▶ The viewpoint of estimating functionals here is more general than a parametric family (e.g. estimating the mode of the density $\theta(\mathbb{P}) = \arg \max_{x \in [0,1]} f(x)$

Minimax risk

- ▶ Given a sample *X ∼* P*^θ [∗]* , *θ [∗]* fixed but unknown
- ▶ The goal of an estimator $θ$ is to estimate $θ^*$ based on *X*, write also $θ \equiv θ(X)$
- ▶ Let $\rho : Ω × Ω → [0, ∞)$ be a semi-metric, consider r.v. $\rho\left(\widehat{\theta}, \theta^*\right)$
- ▶ Taking expectations over X yields the deterministic quantity $R(\widehat{\theta},\theta^*):=\mathbb{E}_{\mathbb{P}}\left[\rho\left(\widehat{\theta},\theta^*\right)\right]$
- \blacktriangleright Typically referred to as the risk function associated with $\widehat{\theta}$

Minimax risk

- ▶ Goal: $\min_{\widehat{\theta}} R(\theta, \theta^*), \forall \theta^*$?
- ▶ Multi-objective optimization problem
- ▶ Two ways to deal with this issue: Bayesian approach and minimax approach
	- Bayesian approach: taking average over parameters

$$
\inf_{\widehat{\theta}} \mathbb{E}_{\theta^* \sim \pi}[R(\widehat{\theta}, \theta^*)]
$$

– Minimax approach: adversarial perspective

$$
\inf_{\widehat{\theta}} \sup_{\theta^*} \theta^* R(\widehat{\theta}, \theta^*)
$$

Minimax risk

▶ More generally

$$
\inf_{\widehat{\theta}}\sup_{\mathbb{P}\in\mathcal{P}}\mathbb{E}_{\mathbb{P}}[\rho(\widehat{\theta},\theta(\mathbb{P}))]
$$

 \blacktriangleright The ρ -minimax risk

$$
\mathfrak{M}(\theta(\mathcal{P}); \rho) := \inf_{\widehat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[\rho(\widehat{\theta}, \theta(\mathbb{P}))]
$$
(2)

▶ Introduce a non-decreasing function $\Phi : [0, \infty) \to [0, \infty)$,

$$
\mathfrak{M}(\theta(\mathcal{P}); \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[\Phi(\rho(\widehat{\theta}, \theta(\mathbb{P})))]
$$
(3)

From estimation to testing

- ▶ Developing methods for lower bounding the minimax risk
- ▶ Reduction to the problem of obtaining lower bounds for certain testing problems
- ▶ Start with constructing such testing problems as follows:
- $▶$ Suppose that $\{\theta^1,\ldots,\theta^M\} ⊆ \theta(P)$ is a 2*δ*-separated set, i.e., $\rho(\theta^j,\theta^k) ≥ 2\delta$ for all $j ≠ k$
- \blacktriangleright For each θ^j , choose some representative distribution \mathbb{P}_{θ^j} for which $\theta(\mathbb{P}_{\theta^j})=\theta^j$

From estimation to testing

- \blacktriangleright Generate a random variable Z by the following procedure:
	- Sample a random integer *J* from the uniform distribution over the index set $[M] := \{1, \ldots, M\}$
	- $-$ Given *J* = *j*, sample $Z \sim \mathbb{P}_{\theta}$ *j*
- \blacktriangleright let $\mathbb Q$ denote the joint distribution of the pair (Z,J) , then the marginal distribution over Z is $\overline{\mathbb{Q}} := \frac{1}{M}\sum_{j=1}^M \mathbb{P}_{\theta^j}$
- ▶ Consider the *M*-ary hypothesis testing problem of determining *J* based on a sample *Z*
- ▶ A testing function for this problem is a mapping *ψ* : *Z →* [*M*]

From estimation to testing

▶ The probability of error of ψ is $\mathbb{Q}[\psi(Z) \neq J]$, can be used to obtain lower bound

Proposition 1.

(From estimation to testing) For any non-decreasing function Φ *and choice of* 2*δ-separated set, the minimax risk is lower bounded as*

$$
\mathfrak{M}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\psi} \mathbb{Q}[\psi(Z) \ne J],\tag{4}
$$

where the infimum ranges over all test functions.

Remarks

- \blacktriangleright The r.h.s. of the bound involves two terms, and both of them depends δ
	- The function Φ is decreasing in *δ*
	- As *δ* increases, *M* decreases
	- The underlying testing problem becomes easier, $\mathbb{Q}[\psi(Z) \neq J]$ decreases
- ▶ Choose a sufficiently small *δ ∗* to ensure that this testing error is at least 0.5,

$$
\mathfrak{M}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \frac{1}{2} \Phi(\delta^*)
$$
 (5)

Proof

▶ For any $\mathbb{P} \in \mathcal{P}$ with parameter $\theta = \theta(\mathbb{P}),$

$$
\mathbb{E}_{\mathbb{P}}[\Phi(\rho(\widehat{\theta},\theta))] \stackrel{\text{(i)}}{\geq} \Phi(\delta)\mathbb{P}[\Phi(\rho(\widehat{\theta},\theta)) \geq \Phi(\delta)] \stackrel{\text{(ii)}}{\geq} \Phi(\delta)\mathbb{P}[\rho(\widehat{\theta},\theta) \geq \delta]. \tag{6}
$$

- ▶ It suffices to lower bound $\sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}[\rho(\widehat{\theta}, \theta(\mathbb{P})) \ge \delta]$
- \blacktriangleright Recall that $\mathbb Q$ denotes the joint distribution over the pair (Z,J) ,

$$
\sup_{\mathbb{P}\in\mathcal{P}}\mathbb{P}[\rho(\widehat{\theta},\theta(\mathbb{P}))\geq\delta]\geq\frac{1}{M}\sum_{j=1}^{M}\mathbb{P}_{\theta^{j}}\left[\rho\left(\widehat{\theta},\theta^{j}\right)\geq\delta\right]=\mathbb{Q}[\rho\left(\widehat{\theta},\theta^{J}\right)\geq\delta].
$$
 (7)

▶ Reduced to lower bounding $\mathbb{Q}\left[\rho\left(\widehat{\theta},\theta^J\right)\geq\delta\right]$

Minimax lower bounds 19/40

Proof

 \blacktriangleright Construct a test based on the estimator $\widehat{\theta}$ via

$$
\psi(Z):=\arg\min_{\ell\in[M]}\rho\left(\theta^{\ell},\widehat{\theta}\right)
$$

▶ Suppose that the true parameter is θ^j , then the event $\left\{\rho\left(\theta^j,\widehat{\theta}\right)<\delta\right\}$ ensures that the test is correct

Proof

 \blacktriangleright Conditioned on $J = j$, $\left\{ \rho \left(\theta^j, \widehat{\theta} \right) < \delta \right\} \subseteq \{ \psi(Z) = j \},$ implying

$$
\mathbb{P}_{\theta j}\left[\rho\left(\widehat{\theta},\theta^{j}\right)\geq\delta\right]\geq\mathbb{P}_{\theta j}[\psi(Z)\neq j]
$$
\n(8)

 \blacktriangleright Taking averages over index j ,

$$
\mathbb{Q}\left[\rho\left(\widehat{\theta},\theta^{J}\right)\ge\delta\right]=\frac{1}{M}\sum_{j=1}^{M}\mathbb{P}_{\theta^{j}}\left[\rho\left(\widehat{\theta},\theta^{j}\right)\ge\delta\right]\ge\mathbb{Q}[\psi(Z)\ne J]
$$
\n(9)

- ▶ Combined with the earlier argument, $\sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}_{\mathbb{P}}[\Phi(\rho(\widehat{\theta},\theta))] \geq \Phi(\delta)\mathbb{Q}[\psi(Z) \neq J]$
- **► Take the infimum over all estimators** $\hat{\theta}$ **on the l.h.s., and the the infimum over the induced** set of tests on the r.h.s.
- ▶ Finally notice that the full infimum over all tests can only be smaller, from which the claim follows

Minimax lower bounds 21/40

Some divergence measures

- ▶ Three important measures
	- Total variation (TV) distance *∥*P *−* Q*∥*TV := sup*^A⊆^X |*P(*A*) *−* Q(*A*)*|* = 1 2 R *|p*(*x*) *− q*(*x*)*|dx*
	- $\overline{P}(X|X) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} dx$
	- *−* Squared Hellinger distance $H^2(\mathbb{P}||\mathbb{Q}) := \int_{\mathcal{X}} (\sqrt{p(x)} \sqrt{q(x)})^2 dx = 2 2 \int_{\mathcal{X}} \sqrt{p(x)q(x)} dx$
- ▶ The second and third distance can be used to upper bound TV distance
	- Pinsker's inequality *∥*P *−* Q*∥*TV *≤* q¹ ²*D*(Q*∥*P)
	- $-$ Le Cam's inequality $\Vert \mathbb{P} \mathbb{Q} \Vert_{\text{TV}} \leq H(\mathbb{P} \Vert \mathbb{Q}) \sqrt{1 \frac{H^2(\mathbb{P} \Vert \mathbb{Q})}{4}}$
- ▶ These inequalities are useful when dealing with product distributions

Some divergence measures

- \blacktriangleright Let $\mathbb{P}^{1:n}=\bigotimes_{i=1}^n \mathbb{P}_i$ be the product distribution of $(\mathbb{P}_1,\ldots,\mathbb{P}_n)$ defined on \mathcal{X}^n
- ▶ What's the expression of Div(Q1:*ⁿ∥*P 1:*ⁿ*) in terms of Div(Q*i∥*P*i*)?
- ▶ The TV distance behaves badly: difficult to decouple
- ▶ The KL divergence exhibits a very attractive decoupling property,

$$
D\left(\mathbb{P}^{1:n} \|\mathbb{Q}^{1:n}\right) = \sum_{i=1}^{n} D\left(\mathbb{P}_{i} \|\mathbb{Q}_{i}\right)
$$
 (10)

▶ The squared Hellinger distance does not decouple in a simple way, but

$$
\frac{1}{2}H^2\left(\mathbb{P}^{1:n}\|\mathbb{Q}^{1:n}\right) = 1 - \prod_{i=1}^n \left(1 - \frac{1}{2}H^2\left(\mathbb{P}_i\|\mathbb{Q}_i\right)\right)
$$
(11)

Minimax lower bounds 23 / 40

Some divergence measures

 \blacktriangleright In the i.i.d. case where $\mathbb{P}_i = \mathbb{P}_1$ and $\mathbb{Q}_i = \mathbb{Q}_1$ for all *i*

$$
D\left(\mathbb{P}^{1:n}\|\mathbb{Q}^{1:n}\right) = nD\left(\mathbb{P}_1\|\mathbb{Q}_1\right) \tag{12}
$$

$$
\frac{1}{2}H^2\left(\mathbb{P}^{1:n} \| \mathbb{Q}^{1:n}\right) = 1 - \left(1 - \frac{1}{2}H^2\left(\mathbb{P}_1 \| \mathbb{Q}_1\right)\right)^n \le \frac{1}{2}nH^2\left(\mathbb{P}_1 \| \mathbb{Q}_1\right) \tag{13}
$$

 \blacktriangleright Combined with the previous inequalities,

– Pinsker's inequality in the i.i.d. case

$$
\|\mathbb{P}^{1:n} - \mathbb{Q}^{1:n}\|_{\text{TV}} \le \sqrt{\frac{n}{2}D(\mathbb{P}_1 \|\mathbb{Q}_1)}
$$
(14)

– Le Cam's inequality in the i.i.d. case

$$
\|\mathbb{P}^{1:n} - \mathbb{Q}^{1:n}\|_{\text{TV}} \le H(\mathbb{P}^{1:n} \|\mathbb{Q}^{1:n}) \sqrt{1 - \frac{H^2(\mathbb{P}^{1:n} \|\mathbb{Q}^{1:n})}{4}} \le H(\mathbb{P}^{1:n} \|\mathbb{Q}^{1:n}) \le \sqrt{n}H(\mathbb{P}_1 \|\mathbb{Q}_1)
$$

Minimax lower bounds (15) 40

Outline

Introduction

Why study lower bounds? Preliminaries

Minimax lower bounds

Le Cam's method Fano's method

Binary test and Le Cam's method

▶ Recall the reduction from estimation to testing

$$
\mathfrak{M}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\psi} \mathbb{Q}[\psi(Z) \neq J]
$$

- ▶ Le Cam's method is to consider the simplest type of testing problem binary hypothesis test, which involves only two distributions
- ▶ In a binary testing problem with equally weighted hypotheses, $Z\sim \bar{Q}:=\frac{1}{2}\mathbb{P}_0+\frac{1}{2}\mathbb{P}_1$
- **►** For a given decision rule $\psi : \mathcal{Z} \to \{0,1\}$, the associated probability of error is

$$
\mathbb{Q}[\psi(Z) \neq J] = \frac{1}{2} \mathbb{P}_0[\psi(Z) \neq 0] + \frac{1}{2} \mathbb{P}_1[\psi(Z) \neq 1]
$$
 (16)

Bayes error and TV distance

- ▶ Take the infimum over all decision rules yields Bayes error
- ▶ Recall the definition of TV distance *[∥]*^P *[−]* ^Q*∥*TV := sup*^A⊆^X [|]*P(*A*) *[−]* ^Q(*A*)*[|]*
- ▶ There is a one-to-one correspondence between ψ and partitions (A, A^c) of the space $\mathcal X$ $A = \{x \in X \mid \psi(x) = 1\}$
- ▶ The Bayes risk can be expressed in terms of $\|\mathbb{P}_1 \mathbb{P}_0\|_{TV}$

$$
\inf_{\psi} \mathbb{Q}[\psi(Z) \neq J] = \frac{1}{2} \inf_{\psi} (\mathbb{P}_0[\psi(Z) \neq 0] + \mathbb{P}_1[\psi(Z) \neq 1])
$$

$$
= \frac{1}{2} \inf_{A \subseteq \mathcal{X}} (\mathbb{P}_0[A] + \mathbb{P}_1[A^c])
$$

$$
= \frac{1}{2} \{ 1 - ||\mathbb{P}_1 - \mathbb{P}_0||_{\text{TV}} \}
$$

Minimax lower bounds 27 / 40

Le Cam's method

Proposition 2.

(Le Cam's bound) For any pair of distributions \mathbb{P}_0 , $\mathbb{P}_1 \in \mathcal{P}$ *s.t.* ρ $(\theta(\mathbb{P}_0), \theta(\mathbb{P}_1)) \geq 2\delta$,

$$
\mathfrak{M}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \frac{\Phi(\delta)}{2} \left\{ 1 - \|\mathbb{P}_1 - \mathbb{P}_0\|_{\text{TV}} \right\} \tag{17}
$$

▶ Two extremes

- Worst case: $\mathbb{P}_1 = \mathbb{P}_0$, hypotheses are completely indistinguishable
- Best case: *∥*P¹ *−* P0*∥*TV = 1, P⁰ and P¹ have disjoint supports

Example 1: Gaussian location family

- ► $\{N(\theta, \sigma^2), \theta \in \mathbb{R}\}$: a normal distribution family with fixed variance σ^2
- ▶ Goal: Estimate *θ*
	- Metric: either *|θ*b*− θ|* or (*θ*b*− θ*) 2
	- P Data: a collection $Z = (Y_1, \ldots, Y_n) ∼ \mathcal{N}(\theta, \sigma^2)^{1:n} = P_{\theta}^n$
- \blacktriangleright Apply the two-point Le Cam bound with the distributions \mathbb{P}^n_0 and \mathbb{P}^n_θ
	- Set *θ* = 2*δ* s.t. the two means are 2*δ*-separated
	- $-$ Bound $\|\mathbb{P}_{\theta}^n \mathbb{P}_0^n\|_{TV}$

$$
\|\mathbb{P}_{\theta}^{n} - \mathbb{P}_{0}^{n}\|_{\text{TV}}^{2} \le \frac{n}{2} D\left(\mathbb{P}_{\theta} \|\mathbb{P}_{0}\right) = \frac{n}{2} \frac{\theta^{2}}{2\sigma^{2}} \le \frac{1}{4} \left\{ e^{n\theta^{2}/\sigma^{2}} - 1 \right\} = \frac{1}{4} \left\{ e^{4n\delta^{2}/\sigma^{2}} - 1 \right\}
$$

Example 1: Gaussian location family

 \blacktriangleright Apply the two-point Le Cam bound with the distributions \mathbb{P}^n_0 and \mathbb{P}^n_θ $-$ Setting $\delta = \frac{1}{2} \frac{\sigma}{\sqrt{n}}$ thus yields

$$
\inf_{\widehat{\theta}} \sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta} [|\widehat{\theta} - \theta|] \ge \frac{\delta}{2} \left\{ 1 - \frac{1}{2} \sqrt{e - 1} \right\} \ge \frac{\delta}{6} = \frac{1}{12} \frac{\sigma}{\sqrt{n}}
$$

$$
\inf_{\widehat{\theta}} \sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta} \left[(\widehat{\theta} - \theta)^2 \right] \ge \frac{\delta^2}{2} \left\{ 1 - \frac{1}{2} \sqrt{e - 1} \right\} \ge \frac{\delta^2}{6} = \frac{1}{24} \frac{\sigma^2}{n}
$$

- $▶$ Although the pre-factors 1/12 and 1/24 are not optimal, the scalings $σ/\sqrt{n}$ and $σ²/n$ are sharp/order optimal
- \blacktriangleright Matching upper bound: the sample mean $\widetilde{\theta}_n := \frac{1}{n} \sum_{i=1}^n Y_i$ satisfies the bounds

$$
\sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta}\left[|\widetilde{\theta}_n - \theta|\right] = \sqrt{\frac{2}{\pi}} \frac{\sigma}{\sqrt{n}} \quad \text{ and } \quad \sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta}\left[\left(\widetilde{\theta}_n - \theta\right)^2\right] = \frac{\sigma^2}{n}
$$

Minimax lower bounds 30 / 40

Example 2: Uniform location family

- ▶ Mean-squared error decaying as n^{-1} is typical for parametric problems, but faster rates is possible for some other problems
- **►** $\{\mathbb{U}_{\theta}, \theta \in \mathbb{R}\}$: \mathbb{U}_{θ} is uniform over the interval $[\theta, \theta + 1]$
- ▶ Impossible to use Pinsker's inequality to control the TV norm!
- ▶ Consider *H*² (U*θ∥*U*^θ ′*), recall that

$$
H^{2}(\mathbb{P} \| \mathbb{Q}) = 2 - 2 \int_{\mathcal{X}} \sqrt{p(x)q(x)} dx
$$

- $-$ It suffices to consider the case $\theta'>\theta$
- $-$ If $\theta' > \theta + 1$, then $H^2(\mathbb{U}_{\theta}|\mathbb{U}_{\theta'}) = 2$
- $-$ Otherwise, $H^2 (\mathbb{U}_{\theta} || \mathbb{U}_{\theta'}) = 2 2 \int_{\theta'}^{\theta+1} dt = 2 |\theta' \theta|$

Example 2: Uniform location family

- ▶ Apply the Le Cam bound with the distributions \mathbb{U}_{θ}^n and $\mathbb{U}_{\theta'}^n$ *θ*
	-
	- Take a pair θ , θ' s.t. $|\theta' \theta| = 2\delta := \frac{1}{4n}$
- $||\mathbb{U}^n_{\theta} \mathbb{U}^n_{\theta'}||^2_{\text{TV}} \leq H^2 (\mathbb{U}^n_{\theta} || \mathbb{U}^n_{\theta'}) \leq nH^2 (\mathbb{U}_{\theta} || \mathbb{U}_{\theta'}) = n2 |\theta' \theta| = \frac{1}{2}$
	- $\inf_{\widehat{\theta}} \sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta} \left[(\widehat{\theta} \theta)^2 \right] \geq \frac{\delta^2}{2}$ $\frac{5^2}{2} \left\{ 1 - \sqrt{\frac{1}{2}} \right\} = \frac{\left(1 - \frac{1}{\sqrt{2}}\right)}{128}$ $\frac{\sqrt{2}}{128}$ $\frac{1}{n^2}$
- ▶ Contrasted with the n^{-1} rate, this lower bound has faster n^{-2} rate!
- ▶ Matching upper bound: the estimator $\widetilde{\theta} = \min \{Y_1, \ldots, Y_n\}$ satisfies the bound $\sup_{\theta \in \mathbb{R}} \mathbb{E}\left[(\tilde{\theta} - \theta)^2 \right] \leq \frac{2}{n^2}$
- ▶ Estimating the location parameter of uniform location family is easier.

Outline

Introduction

Why study lower bounds? Preliminaries

Minimax lower bounds

Le Cam's method Fano's method

Fano's method

- ▶ Le Cam's method reduces the estimation problem to binary test, how about *M*-ary hypothesis testing problem?
- ▶ In information theory, Fano's inequality lower bounds the error probability in such problems

$$
\mathbb{P}[\psi(Z) \neq J] \ge 1 - \frac{I(Z; J) + \log 2}{\log M}
$$

▶ Combined with the reduction in Proposition 1

Proposition 3.

 (Fano's bound) $\text{Let}\{\theta^1,\ldots,\theta^M\}$ be a 2δ -separated set in the ρ semi-metric on $\Theta(\mathcal{P})$ *,*

$$
\mathfrak{M}(\theta(\mathcal{P}); \Phi \circ \rho) \ge \Phi(\delta) \left\{ 1 - \frac{I(Z; J) + \log 2}{\log M} \right\} \tag{18}
$$

Minimax lower bounds 34 / 40

Remarks on Fano's method

- ▶ Consider the behavior of the different terms of r.h.s. as $\delta \to 0^+$
	- The 2*δ*-separation criterion becomes milder, *M ≡ M*(2*δ*) increases
	- *J ∈* [*M*(2*δ*)] can take on a larger number of potential values, *I*(*Z*; *J*) decreases
	- Decreasing *δ* sufficiently may ensure that

$$
\frac{I(Z;J) + \log 2}{\log M} \le \frac{1}{2} \tag{19}
$$

 $- \mathfrak{M}(\theta(\mathcal{P}); \Phi \circ \rho) \geq \frac{1}{2}\Phi(\delta)$

- ▶ Two technical and possibly challenging steps
	- Specify 2*δ*-separated sets with large cardinality *M*(2*δ*), metric entropy theory
	- $-$ Compute or upper bound $I(Z; J)$, non-trivial
- ▶ Using convexity of KL divergence and the mixture representation

M

$$
I(Z;J) = \frac{1}{M} \sum_{j=1}^{M} D(\mathbb{P}_{\theta^j} \| \overline{\mathbb{Q}}) \le \frac{1}{M^2} \sum_{j,k=1}^{M} D(\mathbb{P}_{\theta^j} \| \mathbb{P}_{\theta^k})
$$
(20)
Minimax lower bounds 35/40

Example 3: Gaussian location model via Fano's method

- ▶ Consider the 2δ-separated set $\{\theta^1, \theta^2, \theta^3\} = \{0, 2\delta, -2\delta\}$
- $\blacktriangleright D\left(\mathbb{P}_{\theta^j}^{1:n} \| \mathbb{P}_{\theta^k}^{1:n}\right) = \frac{n}{2\sigma^2} \left(\theta^j \theta^k\right)^2 \leq \frac{8n\delta^2}{\sigma^2}$ for all $j,k = 1,2,3$
- \blacktriangleright *I*(*Z*; *J*) ≤ $\frac{8n\delta^2}{\sigma^2}$
- ► Choosing $δ^2 = \frac{σ^2}{802}$ $\frac{\sigma^2}{80n}$ ensures that $\frac{8n\delta^2/\sigma^2 + \log 2}{\log 3} = \frac{0.1 + \log 2}{\log 3} < 0.75$
- ▶ The Fano's bound with $\Phi(t) = t^2$ implies

$$
\sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta} \left[(\widehat{\theta} - \theta)^2 \right] \ge \frac{\delta^2}{4} = \frac{1}{320} \frac{\sigma^2}{n}
$$

Bounds based on local packings

▶ Construct a 2*δ*-separated set contained within Ω s.t. for some *c >* 0

$$
\sqrt{D(\mathbb{P}_{\theta^j}||\mathbb{P}_{\theta^k})} \le c\sqrt{n}\delta \quad \text{ for all } j \ne k \tag{21}
$$

▶ The bound (20) then implies that $I(Z; J) \leq c^2 n \delta^2$, and hence the bound (19) will hold if

$$
\log M(2\delta) \ge 2\left\{c^2n\delta^2 + \log 2\right\} \tag{22}
$$

▶ The minimax risk is lower bounded as $\mathfrak{M}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \frac{1}{2}\Phi(\delta)$

Example 4: Minimax risks for linear regression

- ▶ Standard linear regression model: $y = \mathbf{X}\theta^* + w$
- ▶ **X** *∈* R *n×d* : fixed design matrix, *w ∼ N* 0*, σ*² **I***n* : observation noise
- $▶$ Metric: prediction norm $\rho_{\bf X}\left(\widehat{\theta},\theta^*\right):=\frac{\|{\bf X}(\widehat{\theta}-\theta^*)\|_2}{\sqrt{n}},\ \theta^*$: vary over \mathbb{R}^d
- ▶ Consider the set $\{\gamma \in \text{range}(\mathbf{X}) \mid ||\gamma||_2 \leq 4\sqrt{n}\delta\}$
- \blacktriangleright let $\{\gamma^1, \ldots, \gamma^M\}$ be a $2\sqrt{n}\delta$ -packing in the ℓ_2 -norm, $r = \text{rank}(\mathbf{X})$
- ▶ Lemma 5.7 in HDS book implies such a packing with log *M ≥ r* log 2 elements

Example 4: Minimax risks for linear regression

▶ A collection of vectors of the form $\gamma^j = \mathbf{X} \theta^j$ for some $\theta^j \in \mathbb{R}^d$ s.t.

$$
\frac{\left\|\mathbf{X}\theta^{j}\right\|_{2}}{\sqrt{n}} \le 4\delta, \quad \text{for each } j \in [M] \tag{23}
$$

$$
2\delta \le \frac{\|\mathbf{X}\left(\theta^j - \theta^k\right)\|_2}{\sqrt{n}} \le 8\delta, \text{ for each } j \ne k \in [M] \times [M] \tag{24}
$$

► Let \mathbb{P}_{θ^j} denote the distribution of *y* when $\theta^* = \theta^j$, then $\mathbb{P}_{\theta^j} = \mathcal{N}(\mathbf{X}\theta^j, \sigma^2 \mathbf{I}_n)$

►
$$
D(\mathbb{P}_{\theta^j} \| \mathbb{P}_{\theta^k}) = \frac{1}{2\sigma^2} \left\| \mathbf{X} \left(\theta^j - \theta^k \right) \right\|_2^2 \leq \frac{32n\delta^2}{\sigma^2}
$$

\n► Condition (21) holds with $c = \frac{\sqrt{32}}{\sigma}$

Example 4: Minimax risks for linear regression

- ▶ Need to lower bound $\log M \ge r \log 2 \ge 2(c^2 n \delta^2 + \log 2)$
- **•** Choose $\delta^2 = \frac{\sigma^2}{64}$ $\frac{\sigma^2}{64}\frac{r}{n}$, then condition (22) holds for sufficiently large r since $- D (P_{\theta j} || P_{\theta k}) ≤ \frac{r}{2}$
 $- 2(c^2 nδ^2 + log 2) = 2(\frac{r}{2} + log 2) = r + log 2$
	-
- \blacktriangleright Set $\Phi(t) = t^2$

$$
\inf_{\widehat{\theta}}\sup_{\theta\in\mathbb{R}^d}\mathbb{E}\left[\frac{1}{n}\|\mathbf{X}(\widehat{\theta}-\theta)\|_2^2\right]\geq \frac{1}{128}\frac{\mathrm{rank}(\mathbf{X})\sigma^2}{n}
$$

▶ This lower bound is sharp up to constant pre-factors