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Example 0: Gaussian location family

{N(6,0%),6 € R}: a normal distribution family with fixed variance o
Data: a collection Z = (Y1,...,Y,) with Y; i.i.d. N/\/(H,az)

Method: estimate unknown 6* via an estimator §(Z)

Performance measure: risk R(6,6*)

How does 6, := 2 3" | V; perform?

vV v v v VY

Upper bound provides worst-case performance guarantee

0.2

sup R(gnae) S —_
R n

Introduction 4/40



Example 0: Gaussian location family

» But how to answer the following questions?

— Can this analysis be improved? Or does 0, actually satisfy better bounds?

— Can any estimator improve upon the bound?
> Both questions ask about some form of optimality(switch orders?)

— Optimality of an estimator
— Optimality of a bound

» A positive answer consists in

— Finding a better proof for 0,
— Finding a better estimator, together with a proof that it performs better
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Example 0: Gaussian location family

» Lower bound may provide negative answer to both questions

inf sup Eq [(9 — 9)2} > 0(—
6 0cR

)

n

2
> Any estimator suffers risk at least ©(Z-) in the worst case
> Recall that 6, suffers risk at most @(%2) in the worst case

» Both the upper bound @(%2) and the estimator gn are not improvable!
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Statistical decision theory

> P = {Py|0 € Q}: A parametric family with parameter 0
» Data/samples: Y; i.i.d. ~Pyor Y = (Y1,...,Y,) ~ P}
» Decision rule

— (Point) Estimation: estimate 6" via an estimator §(Y”) 0: X" > Q

— (Hypothesis) Test: nature randomly choose index J = j, decide j € {1,2,..., M} via an test

function ¥(Y™), where Y™ ~ Py;
» Loss function p (@\, 9*)
— Absolute loss p (5, 6*) = |5— 0|
— Squared loss p (@\, 0*) =(6—0%)?

> Risk R(0,0") = Ep [P <§(Yn)’ 0*)]

Introduction
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Information theory

> Entropy H(X) := [, px(u)log du

PX(”)

> Relative entropy/KL divergence D(Px|[Py) := [, px(u)log px() gy,

Py (u)
- DWWV (01,01) N (02,02)) = log Z—? + ZIJF(;L;QTM) _1

» Mutual information I(X;Y) := D(Px,y |PxPy)
— KL divergence form: I(X;Y) = ExD(Py|x||Py) = >, P(z) D(Py|x=z|Py)

[V

» Fano's inequality provides a lower bound on the error in a M-ary testing problem

1(Z;J) + log2

PU(Z) # 7] 21— == e
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Basic framework

» Given a class of distributions P and 8 : P — € is a functional mapping distributions to a
parameter 6(P)

» For parametric classes, 8(IP) uniquely determines the underlying distribution P, write
P = {Py|0 € } (e.g. Gaussian location family)

» The viewpoint of estimating functionals here is more general than a parametric family (e.g.
estimating the mode of the density 0(P) = arg max,¢o,1] f())
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Minimax risk

» Given a sample X ~ Py-, 6* fixed but unknown

~

» The goal of an estimator 8 is to estimate 6* based on X, write also 0 = 0(X)

> Let p: Q xQ — [0,00) be a semi-metric, consider r.v. p (@ 9*)

» Taking expectations over X vyields the deterministic quantity R(@, 0*) :=Ep [p (5, 9*)}
> Typically referred to as the risk function associated with 0
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Minimax risk

> Goal: ming R(6,6*),6"?
» Multi-objective optimization problem
» Two ways to deal with this issue: Bayesian approach and minimax approach

— Bayesian approach: taking average over parameters

inf Eg- . [R(,07)]
6

— Minimax approach: adversarial perspective

inf sup ¢+ R(é\, 6")
6
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Minimax risk

» More generally

~

inf sup Ep[o(6, 6(P)
6 PeP

» The p-minimax risk

M(O(P): p) = nf sup Ez[p(6, 0(P))]

» Introduce a non-decreasing function @ : [0, 00) — [0, 00),

M(O(P); @ o p) := inf sup Ep[®(p(, 0(P)))]

Minimax lower bounds
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From estimation to testing

Developing methods for lower bounding the minimax risk

Reduction to the problem of obtaining lower bounds for certain testing problems

>

>

» Start with constructing such testing problems as follows:

> Suppose that {#',...,0M} C 0(P) is a 26-separated set, i.e., p (67,60%) > 26 for all j # k
>

For each 67, choose some representative distribution Py, for which 6 (Py;) = 67
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From estimation to testing

» Generate a random variable Z by the following procedure:

— Sample a random integer J from the uniform distribution over the index set
[M]:={1,...,M}
— Given J = j, sample Z ~ Py;
> let Q denote the joint distribution of the pair (Z, J), then the marginal distribution over Z
is Q= 47 Eﬁl Py;
» Consider the M-ary hypothesis testing problem of determining J based on a sample Z

> A testing function for this problem is a mapping ¢ : Z — [M]
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From estimation to testing

» The probability of error of ¢ is Q[¢)(Z) # J], can be used to obtain lower bound

Proposition 1.
(From estimation to testing) For any non-decreasing function ® and choice of 2§-separated set,

the minimax risk is lower bounded as
M(O(P), P o p) > (6) igf'@[l/}(Z) # Jl, (4)

where the infimum ranges over all test functions.
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Remarks

» The r.h.s. of the bound involves two terms, and both of them depends ¢

— The function ® is decreasing in §
— As ¢ increases, M decreases
— The underlying testing problem becomes easier, Q[¢/(Z) # J] decreases

» Choose a sufficiently small §* to ensure that this testing error is at least 0.5,

MO(P), & 0p) > 10 (5) (5)
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Proof

» For any P € P with parameter § = 6(P),

» It suffices to lower bound suppcp P[p(8,6(P)) > 6]
» Recall that Q denotes the joint distribution over the pair (Z, J),
~ 1 ~

>4 > — ; A ) >
sup Flp(6, 6(F)) > 3] > ) Pos [p(0.07) 2 6] =Qlp (9.07) 201 (7)

0 (@,W > 5}

Minimax lower bounds 19/40
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Proof

> Construct a test based on the estimator 0 via

Z) = i )
V(Z) argzgl[lﬁ]p@ﬁ)

» Suppose that the true parameter is 67, then the event {p (Gj, 5) < 6} ensures that the

test is correct
OIAR0)
bS Q/)\W

—~

Minimax lower bounds Figure: geometry of this argument
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Proof

» Conditioned on J = j, {p <9j,§) < 5} C{y¥(Z) = j}, implying

Po; [0 (6,67) 2 8 = Pos[(2) # j] (8)

» Taking averages over index j,
Qlp(0.67) = 0] = % Izwjﬂ%j [0 (8,07) > 8] > Ql(2) # J] 9)
j=1

» Combined with the earlier argument, suppcp ]E]p[q)(p(é\, 0)] > (5)Qy(Z2) # J]

> Take the infimum over all estimators @ on the I.h.s., and the the infimum over the induced
set of tests on the r.h.s.

» Finally notice that the full infimum over all tests can only be smaller, from which the

claim follows
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Some divergence measures

» Three important measures
— Total variation (TV) distance ||P — Q||1v := sup4c x [P(A) — Q(A)| = 5 [, Ip(z) — q(x)|dx
- KL divergence D(P||Q) = [, p(z)log p(z)dx
— Squared Hellinger distance H?(P||Q) : fx (Vp(@) — Va(@)?de =2 -2 [, \/p(z)q(z)dx
» The second and third distance can be used to upper bound TV distance
— Pinsker’s inequality [P — Q|lrv < /3 D(Q|/P)

. . [T H2(P|Q
— Le Cam'’s inequality [P — Q[lrv < H(P||Q)y/1 — %

» These inequalities are useful when dealing with product distributions
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Some divergence measures

> Let P1" = @, P; be the product distribution of (Py,...,P,) defined on X"
» What's the expression of Div(Q!"|P:") in terms of Div(Q;||P;)?
» The TV distance behaves badly: difficult to decouple

» The KL divergence exhibits a very attractive decoupling property,

n

D (P*™|Q") = D (Pi]|Q:)

i=1
» The squared Hellinger distance does not decouple in a simple way, but

1 2 1:n im) _ 1 - 71 2 . .
317 (P10 ) =1 TT (1 3° i)

=1
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Some divergence measures
» In the i.i.d. case where P; =Py and Q; = Q; for all ¢

D (PH"[|Q'™) = nD (P1[|Qu)

%H2 (P |QY") =1 — (1 - %HQ (P1@1)> < %nH2 (P1]]Q1)

» Combined with the previous inequalities,
— Pinsker’s inequality in the i.i.d. case

n m n
[P — @ lav < 4/ 3 D(P1]Q1)

— Le Cam'’s inequality in the i.i.d. case

(14)

HEZE) < nEie) < vaHE: @)

H]P)lzn _ Ql:nHTV g H(PlnHan)\/l _ 1

Minimax lower bounds

(25) 40



Outline

Minimax lower bounds
Le Cam’s method

Minimax lower bounds 25 /40



Binary test and Le Cam’s method

» Recall the reduction from estimation to testing
MO(P), ® 0 p) 2 () inf Qv(2) # J]

» Le Cam’s method is to consider the simplest type of testing problem - binary hypothesis
test, which involves only two distributions

» In a binary testing problem with equally weighted hypotheses, Z ~ Q := %]P’o + %Pl

» For a given decision rule ¢ : Z — {0,1}, the associated probability of error is

QU(Z) £ 1] = SFolu(2) # 0] + SP1[0(Z2) # 1 (16)
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Bayes error and TV distance

> Take the infimum over all decision rules yields Bayes error

> Recall the definition of TV distance [|P — Q||7v := supcx [P(4) — Q(A)]

» There is a one-to-one correspondence between v and partitions (A, A€) of the space X
A={z e X |¢(z)=1}

» The Bayes risk can be expressed in terms of [Py — Pyl

nf(Po[y(2) # 0] + P1[(Z) # 1])

inf Q[(2) # 7] =

A
{1 =Py = Poll v}

N = N = N =
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Le Cam’s method

Proposition 2.
(Le Cam’s bound) For any pair of distributions Py, Py € P s.t. p(0 (Py),0 (P1)) > 26,

MOP). 2o p) > 2O (1B Byfy) (17)

» Two extremes

— Worst case: P; = Py, hypotheses are completely indistinguishable
— Best case: ||Py — Pol|ty =1, Po and Py have disjoint supports

Minimax lower bounds 28 /40



Example 1: Gaussian location family

> {N(6,0%),0 € R}: a normal distribution family with fixed variance o
» Goal: Estimate 0

— Metric: either |§, 0| or (57 )2

- Data: a collection Z = (Y1,...,Yn) ~ N (0,02)1"1 =Py
» Apply the two-point Le Cam bound with the distributions P{; and P§

— Set = 20 s.t. the two means are 2§-separated
- Bound ||Pg — P || 1

3 (|2 n n 1 n92/o'2 } 1 { 4'n,62/z72 }
— < — = — — — = — —
IP5 — PS5y < 5D (PollPo) = 5 5 4{6 1} = {e 1
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Example 1: Gaussian location family

» Apply the two-point Le Cam bound with the distributions P{; and Pj

— Setting 6 = %% thus yields

inf sup o (18 — 0[] > 2 {1 1
9 0cRr 2

inf sup Eg [(5— 9)2} > % {1 - lﬁ} >

6 0eR
> Although the pre-factors 1/12 and 1/24 are not optimal, the scalings o/1/n and o2 /n are
sharp/order optimal
» Matching upper bound: the sample mean 5n = %2?21 Y, satisfies the bounds

~ 2 o ~ 2 o2
ZEEEG |:|9n_9|:| = ;\ﬁ and EEEEQ [(%-9) ] =
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Example 2: Uniform location family

1

» Mean-squared error decaying as n~ " is typical for parametric problems, but faster rates is

possible for some other problems
» {Uy,6 € R}: Uy is uniform over the interval [0, 6 + 1]
» Impossible to use Pinsker's inequality to control the TV norm!

» Consider H? (Uy||Uy), recall that

H(P|Q) =2 2 /X V@) @)z

— It suffices to consider the case 6’ > 6
—If0' >0+ 1, then H? (Ug||Up/) = 2

— Otherwise, H? (Up||Up) =2 —2 [ dt = 210" — 4
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Example 2: Uniform location family

> Apply the Le Cam bound with the distributions Uy and Uy,

— Take a pmré,H’sx.|9’—-9\::25;:;£;

- U5 — Upi |3y, < H? (U ||Up,) < nH? (Ug||Upr) = n210" — 0] = %

- e [§-07] 2 £ (- 2 = O

» Contrasted with the n~! rate, this lower bound has faster n

2 ratel

> Matching upper bound: the estimator § = min {Y7,...,Y,} satisfies the bound
Sup‘geRE |:(é - 0)2:| S 2

n?

» Estimating the location parameter of uniform location family is easier.
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Fano’s method

» Le Cam’s method reduces the estimation problem to binary test, how about M-ary
hypothesis testing problem?

» In information theory, Fano's inequality lower bounds the error probability in such problems

I(Z;J) 4 log2
Plp(Z2) #J] 21— log—M

» Combined with the reduction in Proposition 1

Proposition 3.

(Fano's bound) Let{",...,60M} be a 20-separated set in the p semi-metric on O(P),

M(O(P); @ o p) > ®(6) {1 _ I(ZJ)HOgQ}

log M
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Remarks on Fano’s method

» Consider the behavior of the different terms of r.h.s. as § — 0%
— The 2§-separation criterion becomes milder, M = M (26) increases
— J € [M(20)] can take on a larger number of potential values, I(Z;J) decreases
— Decreasing § sufficiently may ensure that

1(2;J) +1og2 1

log M 5 (19)
- M(O(P); ® o p) > 20(5)
» Two technical and possibly challenging steps
— Specify 20-separated sets with large cardinality M (2§), metric entropy theory
— Compute or upper bound I(Z; J), non-trivial
» Using convexity of KL divergence and the mixture representation
| M
[(Z;) =37 D (PulQ) < 515 Z (Pos[|Pgr) (20)
=1 = 3540
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Example 3: Gaussian location model via Fano’s method

> Consider the 20-separated set {6',62,63} = {0, 26, —26}

> D (PLr|PL) = 25 (07 — 6F)? < 8282 forall jk =1,2,3
> 1(2;J) < B
>
>

8132 /0’ +log 2
nd~/o”+log 701+10g2<075

Choosing 62 = Z— ensures that = =3
og 3

80 log 3
The Fano's bound with ®(t) = t? implies

~ 52 1 o2
Ee (-0 >2 = — 7
P 9[< )}— 43200
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Bounds based on local packings

» Construct a 20-separated set contained within €2 s.t. for some ¢ > 0
/D (Py; |Por) < cv/nd  forall j # k (21)
» The bound (20) then implies that I(Z;J) < ¢2nd?, and hence the bound (19) will hold if
log M (25) > 2 {c*né* +log 2} (22)

> The minimax risk is lower bounded as M(H(P), P o p) > 1&(J)
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Example 4: Minimax risks for linear regression

v

Standard linear regression model: y = X6* + w

v

X € R"*¢: fixed design matrix, w ~ N (0,07I,): observation noise

_ IxE-0)ll,

n

> , 0*: vary over R?¢
» Consider the set {7y € range(X) | ||v]l2 < 4v/nd}
>

>

Metric: prediction norm px (5, 9*) :

let {'yl, o ,’yM} be a 2y/nd-packing in the f3-norm, r = rank(X)
Lemma 5.7 in HDS book implies such a packing with log M > rlog?2 elements
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Example 4: Minimax risks for linear regression

» A collection of vectors of the form +7 = X#7 for some §7 € R? s.t.

HXQ]H? <46, foreach j € [M] (23)
vn
20 < M < 84, for each j
< < 84, J# ke [M]x[M] (24)

» Let Pp; denote the distribution of y when 6* = 67, then Py; = N (Xﬂj,azln)
> D (Pgs[|Pgr) = 202 ||X (oj )Hz < 3%62
» Condition (21) holds with ¢ = ¥32
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Example 4: Minimax risks for linear regression

> Need to lower bound log M > rlog2 > 2(c*nd? + log 2)

» Choose §2 = " , then condition (22) holds for sufficiently large r since
- D(PejHPek) <3
- 2(c®nd” +1og2) = 2(% +1log2) = r + log 2

> Set O(t) =

1 rank(X)o?

inf sup E [HX(Q 9)|2} > 153 .

0 gerd

» This lower bound is sharp up to constant pre-factors

Minimax lower bounds
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