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Example 0: Gaussian location family

▶ {
N

(
θ, σ2

)
, θ ∈ R

}
: a normal distribution family with fixed variance σ2

▶ Data: a collection Z = (Y1, . . . , Yn) with Yi i.i.d. ∼ N
(
θ, σ2

)
▶ Method: estimate unknown θ∗ via an estimator θ̂(Z)
▶ Performance measure: risk R(θ̂, θ∗)
▶ How does θ̃n := 1

n

∑n
i=1 Yi perform?

▶ Upper bound provides worst-case performance guarantee

sup
θ∈R

R(θ̃n, θ) ≤
σ2

n
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Example 0: Gaussian location family

▶ But how to answer the following questions?
– Can this analysis be improved? Or does θ̃n actually satisfy better bounds?
– Can any estimator improve upon the bound?

▶ Both questions ask about some form of optimality(switch orders?)
– Optimality of an estimator
– Optimality of a bound

▶ A positive answer consists in
– Finding a better proof for θ̃n
– Finding a better estimator, together with a proof that it performs better
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Example 0: Gaussian location family

▶ Lower bound may provide negative answer to both questions

inf
θ̂
sup
θ∈R

Eθ
[
(θ̂ − θ)2

]
≥ Θ(

σ2

n
)

▶ Any estimator suffers risk at least Θ(σ
2

n ) in the worst case
▶ Recall that θ̃n suffers risk at most Θ(σ

2

n ) in the worst case
▶ Both the upper bound Θ(σ

2

n ) and the estimator θ̃n are not improvable!
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Statistical decision theory

▶ P = {Pθ|θ ∈ Ω}: A parametric family with parameter θ
▶ Data/samples: Yi i.i.d. ∼ Pθ or Y n = (Y1, . . . , Yn) ∼ Pnθ
▶ Decision rule

– (Point) Estimation: estimate θ∗ via an estimator θ̂(Y n), θ̂ : Xn → Ω

– (Hypothesis) Test: nature randomly choose index J = j, decide j ∈ {1, 2, ...,M} via an test
function ψ(Y n), where Y n ∼ Pn

θj

▶ Loss function ρ
(
θ̂, θ∗

)
– Absolute loss ρ

(
θ̂, θ∗

)
= |θ̂ − θ∗|

– Squared loss ρ
(
θ̂, θ∗

)
= (θ̂ − θ∗)2

▶ Risk R(θ̂, θ∗) = EP

[
ρ
(
θ̂(Y n), θ∗

)]
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Information theory

▶ Entropy H(X) :=
∫
X pX(u) log 1

pX(u)du

▶ Relative entropy/KL divergence D(PX∥PY ) :=
∫
X pX(u) log pX(u)

pY (u)du

– D(N
(
θ1, σ

2
1

)
,N

(
θ2, σ

2
2

)
) = log σ2

σ1
+

σ2
1+(µ1−µ2)

2

2σ2
2

− 1
2

▶ Mutual information I(X;Y ) := D(PX,Y ∥PXPY )
– KL divergence form: I(X;Y ) = EXD(PY |X∥PY ) =

∑
x P(x)D(PY |X=x∥PY )

▶ Fano’s inequality provides a lower bound on the error in a M -ary testing problem

P[ψ(Z) ̸= J ] ≥ 1− I(Z; J) + log 2

logM
(1)
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Basic framework

▶ Given a class of distributions P and θ : P → Ω is a functional mapping distributions to a
parameter θ(P)

▶ For parametric classes, θ(P) uniquely determines the underlying distribution P, write
P = {Pθ|θ ∈ Ω} (e.g. Gaussian location family)

▶ The viewpoint of estimating functionals here is more general than a parametric family (e.g.
estimating the mode of the density θ(P) = argmaxx∈[0,1] f(x))
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Minimax risk

▶ Given a sample X ∼ Pθ∗ , θ∗ fixed but unknown
▶ The goal of an estimator θ̂ is to estimate θ∗ based on X, write also θ̂ ≡ θ̂(X)

▶ Let ρ : Ω× Ω → [0,∞) be a semi-metric, consider r.v. ρ
(
θ̂, θ∗

)
▶ Taking expectations over X yields the deterministic quantity R(θ̂, θ∗) := EP

[
ρ
(
θ̂, θ∗

)]
▶ Typically referred to as the risk function associated with θ̂

Minimax lower bounds 12 / 40



Minimax risk

▶ Goal: minθ̂ R(θ̂, θ
∗),∀θ∗?

▶ Multi-objective optimization problem
▶ Two ways to deal with this issue: Bayesian approach and minimax approach

– Bayesian approach: taking average over parameters

inf
θ̂

Eθ∗∼π[R(θ̂, θ
∗)]

– Minimax approach: adversarial perspective

inf
θ̂

sup θ∗R(θ̂, θ
∗)
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Minimax risk

▶ More generally
inf
θ̂

sup
P∈P

EP[ρ(θ̂, θ(P))]

▶ The ρ-minimax risk

M(θ(P); ρ) := inf
θ̂

sup
P∈P

EP[ρ(θ̂, θ(P))] (2)

▶ Introduce a non-decreasing function Φ : [0,∞) → [0,∞),

M(θ(P); Φ ◦ ρ) := inf
θ̂

sup
P∈P

EP[Φ(ρ(θ̂, θ(P)))] (3)

Minimax lower bounds 14 / 40



From estimation to testing

▶ Developing methods for lower bounding the minimax risk
▶ Reduction to the problem of obtaining lower bounds for certain testing problems
▶ Start with constructing such testing problems as follows:
▶ Suppose that

{
θ1, . . . , θM

}
⊆ θ(P) is a 2δ-separated set, i.e., ρ

(
θj , θk

)
≥ 2δ for all j ̸= k

▶ For each θj , choose some representative distribution Pθj for which θ (Pθj ) = θj
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From estimation to testing

▶ Generate a random variable Z by the following procedure:
– Sample a random integer J from the uniform distribution over the index set

[M ] := {1, . . . ,M}
– Given J = j, sample Z ∼ Pθj

▶ let Q denote the joint distribution of the pair (Z, J), then the marginal distribution over Z
is Q := 1

M

∑M
j=1 Pθj

▶ Consider the M -ary hypothesis testing problem of determining J based on a sample Z
▶ A testing function for this problem is a mapping ψ : Z → [M ]
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From estimation to testing

▶ The probability of error of ψ is Q[ψ(Z) ̸= J ], can be used to obtain lower bound

Proposition 1.
(From estimation to testing) For any non-decreasing function Φ and choice of 2δ-separated set,
the minimax risk is lower bounded as

M(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
ψ

Q[ψ(Z) ̸= J ], (4)

where the infimum ranges over all test functions.
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Remarks

▶ The r.h.s. of the bound involves two terms, and both of them depends δ
– The function Φ is decreasing in δ
– As δ increases, M decreases
– The underlying testing problem becomes easier, Q[ψ(Z) ̸= J ] decreases

▶ Choose a sufficiently small δ∗ to ensure that this testing error is at least 0.5,

M(θ(P),Φ ◦ ρ) ≥ 1

2
Φ (δ∗) (5)
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Proof

▶ For any P ∈ P with parameter θ = θ(P),

EP[Φ(ρ(θ̂, θ))]
( i)
≥ Φ(δ)P[Φ(ρ(θ̂, θ)) ≥ Φ(δ)]

( ii)
≥ Φ(δ)P[ρ(θ̂, θ) ≥ δ]. (6)

▶ It suffices to lower bound supP∈P P[ρ(θ̂, θ(P)) ≥ δ]

▶ Recall that Q denotes the joint distribution over the pair (Z, J),

sup
P∈P

P[ρ(θ̂, θ(P)) ≥ δ] ≥ 1

M

M∑
j=1

Pθj
[
ρ
(
θ̂, θj

)
≥ δ

]
= Q[ρ

(
θ̂, θJ

)
≥ δ]. (7)

▶ Reduced to lower bounding Q
[
ρ
(
θ̂, θJ

)
≥ δ

]
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Proof
▶ Construct a test based on the estimator θ̂ via

ψ(Z) := arg min
ℓ∈[M ]

ρ
(
θℓ, θ̂

)
▶ Suppose that the true parameter is θj , then the event

{
ρ
(
θj , θ̂

)
< δ

}
ensures that the

test is correct

Figure: geometry of this argumentMinimax lower bounds 20 / 40



Proof
▶ Conditioned on J = j,

{
ρ
(
θj , θ̂

)
< δ

}
⊆ {ψ(Z) = j}, implying

Pθj
[
ρ
(
θ̂, θj

)
≥ δ

]
≥ Pθj [ψ(Z) ̸= j] (8)

▶ Taking averages over index j,

Q
[
ρ
(
θ̂, θJ

)
≥ δ

]
=

1

M

M∑
j=1

Pθj
[
ρ
(
θ̂, θj

)
≥ δ

]
≥ Q[ψ(Z) ̸= J ] (9)

▶ Combined with the earlier argument, supP∈P EP[Φ(ρ(θ̂, θ))] ≥ Φ(δ)Q[ψ(Z) ̸= J ]

▶ Take the infimum over all estimators θ̂ on the l.h.s., and the the infimum over the induced
set of tests on the r.h.s.

▶ Finally notice that the full infimum over all tests can only be smaller, from which the
claim follows
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Some divergence measures

▶ Three important measures
– Total variation (TV) distance ∥P−Q∥TV := supA⊆X |P(A)−Q(A)| = 1

2

∫
X |p(x)− q(x)|dx

– KL divergence D(P∥Q) =
∫
X p(x) log

p(x)
q(x)

dx

– Squared Hellinger distance H2(P∥Q) :=
∫
X (

√
p(x)−

√
q(x))2dx = 2− 2

∫
X

√
p(x)q(x)dx

▶ The second and third distance can be used to upper bound TV distance
– Pinsker’s inequality ∥P−Q∥TV ≤

√
1
2
D(Q∥P)

– Le Cam’s inequality ∥P−Q∥TV ≤ H(P∥Q)

√
1− H2(P∥Q)

4

▶ These inequalities are useful when dealing with product distributions
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Some divergence measures

▶ Let P1:n =
⊗n

i=1 Pi be the product distribution of (P1, . . . ,Pn) defined on Xn

▶ What’s the expression of Div(Q1:n∥P1:n) in terms of Div(Qi∥Pi)?
▶ The TV distance behaves badly: difficult to decouple
▶ The KL divergence exhibits a very attractive decoupling property,

D
(
P1:n∥Q1:n

)
=

n∑
i=1

D (Pi∥Qi) (10)

▶ The squared Hellinger distance does not decouple in a simple way, but

1

2
H2

(
P1:n∥Q1:n

)
= 1−

n∏
i=1

(
1− 1

2
H2 (Pi∥Qi)

)
(11)
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Some divergence measures

▶ In the i.i.d. case where Pi = P1 and Qi = Q1 for all i

D
(
P1:n∥Q1:n

)
= nD (P1∥Q1) (12)

1

2
H2

(
P1:n∥Q1:n

)
= 1−

(
1− 1

2
H2 (P1∥Q1)

)n
≤ 1

2
nH2 (P1∥Q1) (13)

▶ Combined with the previous inequalities,
– Pinsker’s inequality in the i.i.d. case

∥P1:n −Q1:n∥TV ≤
√
n

2
D(P1∥Q1) (14)

– Le Cam’s inequality in the i.i.d. case

∥P1:n −Q1:n∥TV ≤ H(P1:n∥Q1:n)

√
1− H2(P1:n∥Q1:n)

4
≤ H(P1:n∥Q1:n) ≤

√
nH(P1∥Q1)

(15)Minimax lower bounds 24 / 40
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Binary test and Le Cam’s method

▶ Recall the reduction from estimation to testing

M(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
ψ

Q[ψ(Z) ̸= J ]

▶ Le Cam’s method is to consider the simplest type of testing problem - binary hypothesis
test, which involves only two distributions

▶ In a binary testing problem with equally weighted hypotheses, Z ∼ Q̄ := 1
2P0 +

1
2P1

▶ For a given decision rule ψ : Z → {0, 1}, the associated probability of error is

Q[ψ(Z) ̸= J ] =
1

2
P0[ψ(Z) ̸= 0] +

1

2
P1[ψ(Z) ̸= 1] (16)
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Bayes error and TV distance

▶ Take the infimum over all decision rules yields Bayes error
▶ Recall the definition of TV distance ∥P−Q∥TV := supA⊆X |P(A)−Q(A)|
▶ There is a one-to-one correspondence between ψ and partitions (A,Ac) of the space X
A = {x ∈ X | ψ(x) = 1}

▶ The Bayes risk can be expressed in terms of ∥P1 − P0∥TV

inf
ψ

Q[ψ(Z) ̸= J ] =
1

2
inf
ψ
(P0[ψ(Z) ̸= 0] + P1[ψ(Z) ̸= 1])

=
1

2
inf
A⊆X

(P0[A] + P1[A
c])

=
1

2
{1− ∥P1 − P0∥TV}
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Le Cam’s method

Proposition 2.
(Le Cam’s bound) For any pair of distributions P0,P1 ∈ P s.t. ρ (θ (P0) , θ (P1)) ≥ 2δ,

M(θ(P),Φ ◦ ρ) ≥ Φ(δ)

2
{1− ∥P1 − P0∥TV} (17)

▶ Two extremes
– Worst case: P1 = P0, hypotheses are completely indistinguishable
– Best case: ∥P1 − P0∥TV = 1, P0 and P1 have disjoint supports
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Example 1: Gaussian location family

▶ {
N

(
θ, σ2

)
, θ ∈ R

}
: a normal distribution family with fixed variance σ2

▶ Goal: Estimate θ
– Metric: either |θ̂ − θ| or (θ̂ − θ)2

– Data: a collection Z = (Y1, . . . , Yn) ∼ N
(
θ, σ2

)1:n
= Pn

θ

▶ Apply the two-point Le Cam bound with the distributions Pn0 and Pnθ
– Set θ = 2δ s.t. the two means are 2δ-separated
– Bound ∥Pn

θ − Pn
0 ∥TV

∥Pn
θ − Pn

0 ∥2TV ≤ n

2
D (Pθ∥P0) =

n

2

θ2

2σ2
≤ 1

4

{
enθ2/σ2

− 1
}
=

1

4

{
e4nδ2/σ2

− 1
}
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Example 1: Gaussian location family

▶ Apply the two-point Le Cam bound with the distributions Pn0 and Pnθ
– Setting δ = 1

2
σ√
n

thus yields

inf
θ̂

sup
θ∈R

Eθ[|θ̂ − θ|] ≥ δ

2

{
1− 1

2

√
e− 1

}
≥ δ

6
=

1

12

σ√
n

inf
θ̂

sup
θ∈R

Eθ

[
(θ̂ − θ)2

]
≥ δ2

2

{
1− 1

2

√
e− 1

}
≥ δ2

6
=

1

24

σ2

n

▶ Although the pre-factors 1/12 and 1/24 are not optimal, the scalings σ/√n and σ2/n are
sharp/order optimal

▶ Matching upper bound: the sample mean θ̃n := 1
n

∑n
i=1 Yi satisfies the bounds

sup
θ∈R

Eθ
[
|θ̃n − θ|

]
=

√
2

π

σ√
n

and sup
θ∈R

Eθ
[(
θ̃n − θ

)2
]
=
σ2

n
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Example 2: Uniform location family

▶ Mean-squared error decaying as n−1 is typical for parametric problems, but faster rates is
possible for some other problems

▶ {Uθ, θ ∈ R}: Uθ is uniform over the interval [θ, θ + 1]

▶ Impossible to use Pinsker’s inequality to control the TV norm!
▶ Consider H2 (Uθ∥Uθ′), recall that

H2(P∥Q) = 2− 2

∫
X

√
p(x)q(x)dx

– It suffices to consider the case θ′ > θ

– If θ′ > θ + 1, then H2 (Uθ∥Uθ′) = 2

– Otherwise, H2 (Uθ∥Uθ′) = 2− 2
∫ θ+1

θ′ dt = 2 |θ′ − θ|
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Example 2: Uniform location family

▶ Apply the Le Cam bound with the distributions Unθ and Un
θ′

– Take a pair θ, θ′ s.t. |θ′ − θ| = 2δ := 1
4n

– ∥Un
θ − Un

θ′∥
2
TV ≤ H2 (Un

θ ∥Un
θ′) ≤ nH2 (Uθ∥Uθ′) = n2 |θ′ − θ| = 1

2

– inf θ̂ supθ∈R Eθ

[
(θ̂ − θ)2

]
≥ δ2

2

{
1−

√
1
2

}
=

(
1− 1√

2

)
128

1
n2

▶ Contrasted with the n−1 rate, this lower bound has faster n−2 rate!
▶ Matching upper bound: the estimator θ̃ = min {Y1, . . . , Yn} satisfies the bound

supθ∈R E
[
(θ̃ − θ)2

]
≤ 2

n2

▶ Estimating the location parameter of uniform location family is easier.
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Fano’s method

▶ Le Cam’s method reduces the estimation problem to binary test, how about M -ary
hypothesis testing problem?

▶ In information theory, Fano’s inequality lower bounds the error probability in such problems

P[ψ(Z) ̸= J ] ≥ 1− I(Z; J) + log 2

logM

▶ Combined with the reduction in Proposition 1

Proposition 3.
(Fano’s bound) Let

{
θ1, . . . , θM

}
be a 2δ-separated set in the ρ semi-metric on Θ(P),

M(θ(P); Φ ◦ ρ) ≥ Φ(δ)

{
1− I(Z; J) + log 2

logM

}
(18)
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Remarks on Fano’s method
▶ Consider the behavior of the different terms of r.h.s. as δ → 0+

– The 2δ-separation criterion becomes milder, M ≡M(2δ) increases
– J ∈ [M(2δ)] can take on a larger number of potential values, I(Z; J) decreases
– Decreasing δ sufficiently may ensure that

I(Z; J) + log 2

logM
≤ 1

2
(19)

– M(θ(P); Φ ◦ ρ) ≥ 1
2
Φ(δ)

▶ Two technical and possibly challenging steps
– Specify 2δ-separated sets with large cardinality M(2δ), metric entropy theory
– Compute or upper bound I(Z; J), non-trivial

▶ Using convexity of KL divergence and the mixture representation

I(Z; J) =
1

M

M∑
j=1

D
(
Pθj∥Q

)
≤ 1

M2

M∑
j,k=1

D (Pθj∥Pθk) (20)
Minimax lower bounds 35 / 40



Example 3: Gaussian location model via Fano’s method

▶ Consider the 2δ-separated set
{
θ1, θ2, θ3

}
= {0, 2δ,−2δ}

▶ D
(
P1:n
θj ∥P1:n

θk

)
= n

2σ2

(
θj − θk

)2 ≤ 8nδ2

σ2 for all j, k = 1, 2, 3

▶ I (Z; J) ≤ 8nδ2

σ2

▶ Choosing δ2 = σ2

80n ensures that 8nδ2/σ2+log 2
log 3 = 0.1+log 2

log 3 < 0.75

▶ The Fano’s bound with Φ(t) = t2 implies

sup
θ∈R

Eθ
[
(θ̂ − θ)2

]
≥ δ2

4
=

1

320

σ2

n
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Bounds based on local packings

▶ Construct a 2δ-separated set contained within Ω s.t. for some c > 0√
D (Pθj∥Pθk) ≤ c

√
nδ for all j ̸= k (21)

▶ The bound (20) then implies that I(Z; J) ≤ c2nδ2, and hence the bound (19) will hold if

logM(2δ) ≥ 2
{
c2nδ2 + log 2

}
(22)

▶ The minimax risk is lower bounded as M(θ(P),Φ ◦ ρ) ≥ 1
2Φ(δ)
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Example 4: Minimax risks for linear regression

▶ Standard linear regression model: y = Xθ∗ + w

▶ X ∈ Rn×d: fixed design matrix, w ∼ N
(
0, σ2In

)
: observation noise

▶ Metric: prediction norm ρX

(
θ̂, θ∗

)
:=

∥X(θ̂−θ∗)∥
2√

n
, θ∗: vary over Rd

▶ Consider the set {γ ∈ range(X) | ∥γ∥2 ≤ 4
√
nδ}

▶ let
{
γ1, . . . , γM

}
be a 2

√
nδ-packing in the ℓ2-norm, r = rank(X)

▶ Lemma 5.7 in HDS book implies such a packing with logM ≥ r log 2 elements
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Example 4: Minimax risks for linear regression

▶ A collection of vectors of the form γj = Xθj for some θj ∈ Rd s.t.∥∥Xθj∥∥
2√

n
≤ 4δ, for each j ∈ [M ] (23)

2δ ≤
∥∥X (

θj − θk
)∥∥

2√
n

≤ 8δ, for each j ̸= k ∈ [M ]× [M ] (24)

▶ Let Pθj denote the distribution of y when θ∗ = θj , then Pθj = N
(
Xθj , σ2In

)
▶ D (Pθj∥Pθk) = 1

2σ2

∥∥X (
θj − θk

)∥∥2
2
≤ 32nδ2

σ2

▶ Condition (21) holds with c =
√
32
σ
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Example 4: Minimax risks for linear regression

▶ Need to lower bound logM ≥ r log 2 ≥ 2(c2nδ2 + log 2)

▶ Choose δ2 = σ2

64
r
n , then condition (22) holds for sufficiently large r since

– D (Pθj∥Pθk ) ≤ r
2

– 2(c2nδ2 + log 2) = 2( r
2
+ log 2) = r + log 2

▶ Set Φ(t) = t2

inf
θ̂

sup
θ∈Rd

E
[
1

n
∥X(θ̂ − θ)∥22

]
≥ 1

128

rank(X)σ2

n

▶ This lower bound is sharp up to constant pre-factors
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