Variance-reduced Q-learning is minimax optimal

Ziniu Li
liziniu1997@gmail.com

(incoming Ph.D. student at SDS)
The Chinese University of Hong Kong, Shenzhen, China

July 9, 2020

Summer Seminar of CUHK, Shenzhen
Mainly based on:
target

- We will briefly talk about the complexity of sequential decision-making, but mainly focus on the sample complexity under a generative model.
- We will illustrate the famous method called Q-learning and demonstrate the effectiveness of the variance-reduction technique.
- We will briefly explain the proof ideas for Q-learning and variance-reduced Q-learning.
Consider an infinite-horizon Markov Decision Process $\mathcal{M}^* = (S, A, P, R, \gamma, d_0)$ [3].

- S and A are the state and action space, respectively.
- P determines the transition probability of s_{t+1} conditioned on s_t and a_t.
- R is the reward function, which is often assumed to be deterministic and is bounded within the range $[0, 1]$.
- $\gamma \in [0, 1)$ is a discount factor.
- d_0 specifies the initial state distribution.
The decision process is characterized as follows:

- At the beginning of the epoch, the environment resets to some initial state s_0 according to d_0;
- The agent observes the state s_0 and selects an action a_0 to perform;
- The environment transits to s_1 according to P and sends a reward signal r_0 to the agent.
- This process repeats until some terminal signal is released, after which the environment resets to some initial state again.
Markov Decision Process

- The above action selection procedure can be described as a **policy**, which maps the state space to the action space.

- The goal of an intelligent agent is to maximize its payoff by searching the optimal policy π^* with maximal cumulative rewards.

 \[\pi^* = \arg \max_{\pi} \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] \]

- Though the above decision-making procedure seems endless, the **effective planning horizon** is $1/(1 - \gamma)$.

 \[\mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] \leq \frac{1}{1 - \gamma} \cdot r_{\text{max}} \]
Complexity of MDP

- With the knowledge of P and R, we can efficiently solve an (infinite-horizon) MDP with methods like value iteration, policy iteration, and linear programming [3].
- The computation complexity of the above methods mainly depends on $|S|$ and $|A|$ and $1/(1 - \gamma)$.
 - The above methods often can find an ϵ-optimal solution with the speed of $O(\gamma^t)$;
 - Thus, the number of iteration to find an ϵ-optimal solution is about $O\left(\log(1/\epsilon) \frac{1}{1-\gamma}\right)$.
 - At each iteration, the above methods use P to perform the expected Bellman update (define later), and this computation complexity linearly scales up to the whole space size (i.e., $|S| \times |A|$).
In reinforcement learning (RL), we cannot have access to the transition kernel P but we can interact with environments to collect information. Accordingly, we cannot directly apply the above methods since we cannot perform the expected Bellman update.

- Typically, we need exploration (e.g., take new actions) to discover potential high reward states and exploitation (e.g., take the best known action) to maintain a good performance.
The **PAC**(provably approximation correct) complexity of RL is (informally) defined as: how many interactions/samples (m) do we need to find an **good** policy (with the optimality gap ϵ) with **high** probability (at least $1 - \delta$)?

Unfortunately, it’s very challenging to analyze the complexity of RL methods, which does not only depend on $|S|$, $|A|$ and $1/(1 - \gamma)$, but also the intrinsic difficulty of MDP.

- For example, solving a motion planning task with many obstacles is much harder than the one with a simple structure even both MDPs have the same state and action spaces.

- Detailed analysis of the complexity of RL is beyond this talk. And we will focus on an intermediate problem defined later.
Let us introduce the generative model \mathcal{M}. Importantly, we can directly reset it to any state s_t, after which we can take an action a_t and observe the next state $s_{t+1} \sim p_{a_t}(\cdot|s_t)$ and the reward $r(s_t, a_t)$.

- Compared to the pure MDP problem, we still do not know P in advance.
- Compared to the pure RL problem, we can go to any s_t without the planning from an initial state s_0.

Example: a perfect simulator (e.g., some video game simulators), where we can load (reset) the state s_t from RAM.

Luckily, the complexity of RL with a generative model is shown to only depend on $|S|$, $|A|$, and $1/(1 - \gamma)$.
The state-action value function (or Q-function) for an infinite-horizon MDP is defined as:

\[\theta^\pi(x, u) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r(x_k, u_k) \mid x_0 = x, u_0 = u \right] \]

where \(u_k = \pi(x_k) \) for all \(k \geq 1 \)

where we replace the state \(s_t \) with \(x_t \) and the action \(a_t \) with \(u_t \).

The Bellman Optimality Equation is defined as:

\[\theta^\pi(x, u) = r(x, u) + \mathbb{E}_{x'}[\max_{u' \in \mathcal{U}} \theta^\pi(x', u')] \]

where \(x' \sim P_u(\cdot \mid x) \)

where \(P_u(\cdot \mid x) \) denotes the transition kernel based on current state \(x \) and current action \(u \).

Define the optimal state-value function \(\theta^* = \max_{\pi} \theta^\pi \). It can be proved only \(\theta^* \) is the solution to the above equation [3].
Bellman Operator

- The expected (population) Bellman operator \mathcal{T} is a mapping from $\mathbb{R}^{|X| \times |U|}$ to itself:

 $$\mathcal{T}(\theta)(x, u) := r(x, u) + \gamma \mathbb{E}_{x'}[\max_{u' \in U} \theta(x', u')]$$
 \[\text{where } x' \sim P_u(\cdot | x)\]

- Similarly, we can define the empirical (sampling-based) Bellman operator $\hat{\mathcal{T}}$:

 $$\hat{\mathcal{T}}(\theta)(x, u) := r(x, u) + \gamma \max_{u' \in U} \theta(x', u')$$
 \[\text{where } x' \sim P_u(\cdot | x)\]

- By construction, we have $\mathbb{E}[\hat{\mathcal{T}}(\theta)] = \mathcal{T}(\theta)$ and $\theta^* = \mathcal{T}(\theta^*)$
Properties of Bellman Operator

- (γ-contractive) For any $\theta_1, \theta_2 \in \mathbb{R}^{|X| \times |U|}$ and define $||\theta||_\infty = \max_{(x,u)} |\theta(x,u)|$, we have

\[||T(\theta_1) - T(\theta_2)||_\infty \leq \gamma ||\theta_1 - \theta_2||_\infty \]

- (orthant ordering) If $\theta_1 \preceq \theta_2$ (i.e., θ_1 is no larger than θ_2 elementwise), we have

\[T(\theta_1) \preceq T(\theta_2) \]

- Note the above properties also hold for \hat{T} (because \hat{T} is a special case of T).
Properties of Bellman Operator

Since \mathcal{T} is γ-contractive, we can repeatedly apply on \mathcal{T} on θ_k to get a contractive sequence $\{\theta_k\}$.

$$\theta_{k+1} := (1 - \lambda_k)\theta_k + \lambda_k \mathcal{T}(\theta_k)$$ (1)

where $\{\lambda_k : \lambda_k \in (0, 1]\}$ is some sequence of stepsize.

By γ-contractive, we can show that the optimal gap $\Delta_k = \theta_k - \theta^*$ decays with a linear rate (i.e., $\mathcal{O}(\gamma^t)$). Thus $\theta \rightarrow \theta^*$ if we know P to perform \mathcal{T}.

$$\Delta_{k+1} = (1 - \lambda_k)\Delta_k + \lambda_k \{\mathcal{T}(\Delta_k + \theta^*) - \mathcal{T}(\theta^*)\}$$

$$||\Delta_{k+1}||_{\infty} \overset{(\lambda_k=1)}{\leq} \gamma ||\Delta_k||_{\infty} \leq \gamma^t ||\Delta_1||_{\infty}$$

In the next part, we show the generative model only admits $\hat{\mathcal{T}}$, which results in sampling noise when updating.
Q-learning

The (synchronous) Q-learning takes a stochastic approximation (SA) approach to the Bellman optimality equation with \hat{T}:

$$\theta_{k+1} = (1 - \lambda_k)\theta_k + \lambda_k \hat{T}_k(\theta_k)$$ \hspace{1cm} (2)

We can rewrite the above update rule as:

$$\theta_{k+1} = (1 - \lambda_k)\theta_k + \lambda_k \{T(\theta_k) + E_k\}$$

where $E_k = \hat{T}(\theta_k) - T(\theta_k)$ is a zero-mean noise matrix.

Thus, we can view the above update rule as the expected Bellman update with some noise.
Noise in Q-learning

- Recall the Q-learning update rule (we will introduce θ^* and $\hat{T}_k(\theta^*)$ to “center”):

$$\theta_{k+1} - \theta^* = (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \hat{T}_k(\theta_k) - \lambda_k \hat{T}_k(\theta^*) + \lambda_k \hat{T}_k(\theta^*) - \lambda_k T(\theta^*)$$

- Similarly, let’s consider the update rule from the view of the optimal gap $\Delta_k = \theta_k - \theta^*$:

$$\Delta_{k+1} = (1 - \lambda_k)\Delta_k + \lambda_k \{\hat{T}_k(\theta^* + \Delta_k) - \hat{T}_k(\theta^*)\} + \lambda_k W_k$$ \hspace{1cm} (3)

Here $W_k = \hat{T}_k(\theta^*) - T(\theta^*)$ is a zero-mean random (noise) matrix.

- In this way, Δ_k decays over iteration with the sampling noise.
Q-learning with Oracle Variance Reduction

Let’s consider the following update rule:

$$
\theta_{k+1} = (1 - \lambda_k)\theta_k + \lambda_k \left(\hat{T}_k(\theta_k) - \hat{T}_k(\theta^*) + \mathcal{T}(\theta^*) \right)
$$

Note that $\mathbb{E}[\hat{T}_k(\theta^*)] = \mathcal{T}(\theta^*)$.

Again, let’s define the error matrix $\Delta_k = \theta_k - \theta^*$, we find that

$$
\Delta_{k+1} = (1 - \lambda_k)\Delta_k + \lambda_k \left\{ \hat{T}(\theta^* + \Delta_k) - \hat{T}(\theta^*) \right\}
$$

Compared to the previous one (see Equation (3)), the noise term $W_k = \hat{T}_k(\theta^*) - \mathcal{T}(\theta^*)$ vanishes.
Variance-reduced Q-learning

- Though the above method is not implementable because of the unknown θ^*, we can use a matrix $\bar{\theta}$ as a surrogate of θ^*.
- Let’s consider the following control variate:

$\tilde{T}_N(\bar{\theta}) = \frac{1}{N} \sum_{i \in D} \tilde{T}_i(\bar{\theta})$

where D is a collection of N i.i.d samples.
- By construction, $\tilde{T}_N(\bar{\theta})$ is an unbiased approximation to $T(\bar{\theta})$, with the variance controlled by N.
Let’s define an operator \mathcal{V}_k on $\mathbb{R}^{|\mathcal{X}| \times |\mathcal{U}|}$ via

$$
\mathcal{V}_k(\theta; \lambda, \bar{\theta}, \tilde{T}_N) = (1 - \lambda)\theta + \lambda \left\{ \hat{T}_k(\theta) - \hat{T}_k(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) \right\}
$$

By construction, we show that \mathcal{V}_k is also unbiased:

$$
\mathbb{E} \left[\hat{T}_k(\theta) - \hat{T}_k(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) \right] = \mathcal{T}(\theta)
$$

This variance-reduced operator is similar to the one used in SVRG [2].
Why variance-reduced?

Why $\mathcal{V}_k(\theta; \lambda, \bar{\theta}, \tilde{T}_N) = (1 - \lambda)\theta + \lambda \left\{ \hat{T}_k(\theta) - \hat{T}_k(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) \right\}$ is variance-reduced?

If $\bar{\theta}$ is close to θ and θ^*, $\hat{T}_k(\theta)$ has the close direction with $\hat{T}_k(\bar{\theta})$, and $\tilde{T}_N(\bar{\theta})$ is very close to $\mathcal{T}(\theta)$ by choosing a large N. In this way, we “recover” the expected Bellman update.
Why variance-reduced?

- You may want to understand VRQL from the perspective of the optimality gap. If we follow the previous stepups, we have

\[
\Delta_{k+1} = (1 - \lambda_k)\Delta_k + \lambda_k \left\{ \hat{T}_k(\theta^* + \Delta_k) - \hat{T}_k(\theta^*) \right\} + W_k
\]

where \(W_k = \hat{T}_k(\theta^*) - T(\theta^*) - \hat{T}_k(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) \).

- However, note that \(\mathbb{E}[W_k] \neq 0 \) (the expectation is taken over the stochastic process of \(\hat{T}_k \)).

- Correspondingly, \(W_k \) can _not_ be viewed as a zero-mean noise term. In contrast, we also need to “center” \(\hat{T}_k(\bar{\theta}) \) and consider the (shifted) fixed point by \(\hat{\nu}_k \) (we will formally analyze this later).
Sing Epoch of variance-reduced Q-learning (VRQL) is outlined below:

Function \text{RunEpoch}(\theta; K, N)

Inputs:
(a) Epoch length K
(b) Recentering matrix θ
(c) Recentering sample size N

1. Compute $\tilde{T}_N(\theta) := \frac{1}{N} \sum_{i=1}^{N} \tilde{T}_i(\theta)$.
2. Initialize $\theta_1 = \theta$.
3. For $k = 1, \ldots, K$, compute the variance-reduced update (11):

$$\theta_{k+1} = \mathcal{V}_k(\theta_k; \lambda_k, \theta, \tilde{T}_N) \quad \text{with stepsize } \lambda_k = \frac{1}{1+(1-\gamma)k}. \quad (12)$$

Output: Return θ_{K+1}.

Variance Reduction in Q-learning
Overall Algorithm

The overall algorithm runs by repeatedly calling the sub-procedure of RunEpoch.

Algorithm: Variance-reduced Q-learning

Inputs:
(a) Number of epochs M
(b) Epoch length K
(c) Recentering sizes $\{N_m\}_{m=1}^M$

1. Initialize $\theta_0 = 0$.
2. For epochs $m = 1, \ldots, M$:
 $\theta_m = \text{RunEpoch}(\theta_{m-1}; K, N_m)$.

All input parameters: M-number of epochs, K-epoch length, $\{N_m\}_{m=1}^M$-centering sizes and $\{\lambda_k\}_{k=1}^K$-stepsizes.

The total number of matrix samples required by VRQL is $KM + \sum_{m=1}^M N_m$.
We can compare VRQL (red line) and ordinary Q-learning (blue line) under two MDPs with different γ (this figure from [7]).

![Log error versus sample size](image)

- **Standard**: $\gamma = 0.85$
- **Var. reduced**: $\gamma = 0.85$
- **Standard**: $\gamma = 0.50$
- **Var. reduced**: $\gamma = 0.50$

3.4.1 Illustrations of qualitative behavior

In Figure 1, we provide some plots that illustrate the qualitative behavior of variance-reduced Q-learning. In panel (a), we plot the log ℓ_∞-error versus the number of samples for both VR-Q-learning (red dashed curves), and ordinary Q-learning (blue solid curves). Due to the epoch structure of VR-Q-learning, note how the error decreases in distinct quanta.

For small values of the discount factor γ, the convergence rate of VR-Q-learning is very similar to that of ordinary Q-learning. On the other hand, as γ increases towards 1, we start to see the benefits of variance reduction, as predicted by our theory.

3.4.2 Total number of samples used

We now state a corollary that provides an explicit bound on the number of samples required to return an ϵ-accurate solution with high probability, as a function of the instance θ^*. We then specialize this result to the worst-case setting. In stating this result, we introduce the complexity 2. We have interpolated the error so as to avoid sharp jumps while conveying the qualitative behavior.
Parameter Choice

- Given a tolerance parameter $\delta \in (0, 1)$, let’s choose the epoch length K and centering sizes $\{N_m\}_{m=1}^M$ so as to ensure that the final guarantees hold with probability as least $1 - \delta$.

\[
K = c_1 \frac{\log \left(\frac{8MD}{(1-\gamma)\delta} \right)}{(1 - \gamma)^3}
\]

\[
N_m = c_2 4^m \frac{\log(8MD/\delta)}{(1 - \gamma)^2}
\]

(4)

where $D = |X| \times |U|$.

- The number of epoch M depends on the convergence rate and the desired accuracy, which will be decided later.
Linear Convergence Over Epochs

Theorem 1.

Given a γ-discounted MDP with optimal Q-function θ^* and a given error probability $\delta \in (0, 1)$, suppose that we run variance-reduced Q-learning from $\bar{\theta}_0 = 0$ for M epochs using parameters K and $\{N_m\}_{m=1}^M$ chosen according to the criteria (4). Then we have

$$||\bar{\theta}_M - \theta^*||_\infty \leq \frac{||\sigma(\theta^*)||_\infty + ||\theta^*||_\infty (1 - \gamma)}{2^M}$$

with probability at least $1 - \delta$, where $||\sigma(\theta^*)||_\infty = \sqrt{\max_{(x,u)} \text{Var}(\hat{T}(\theta^*)(x,u))}$.
Sample Complexity of VRQL

Corollary 1.

Consider a γ-discounted MDP with optimal Q-function θ^*, a given error probability $\delta \in (0, 1)$ and ℓ_∞-error level $\epsilon > 0$. Then there are universal constants c, c' such that a total of

$$T(\theta^*, \delta, \epsilon) = \begin{cases} \log \left(\frac{8MD}{(1-\gamma)^2} \right) \log \left(\frac{b_0}{\epsilon} \right) \frac{\epsilon^2}{(1-\gamma)^2} & \epsilon = \frac{b_0}{\epsilon} \frac{\epsilon^2}{(1-\gamma)^2} \\ c \frac{\log \left(\frac{8MD}{(1-\gamma)^2} \right)}{(1-\gamma)^3} \log \left(\frac{b_0}{\epsilon} \right) + c' \frac{b_0}{\epsilon} \frac{\epsilon^2}{(1-\gamma)^2} & \end{cases}$$

matrix samples in the generative model is sufficient to obtain an ϵ-accurate estimate with probability at least $1 - \delta$, where b_0 is defined as

$$b_0 = ||\sigma(\theta^*)||_\infty + ||\theta^*||_\infty (1 - \gamma)$$
Proof of Corollary 1

- We first note that to obtain an ϵ-accurate estimate, the following number of epochs M is enough.

$$M = \left\lceil \log_2 \left(\frac{b_0}{\epsilon} \right) \right\rceil$$

- By construction, the total number of matrix samples of VRQL is $KM + \sum_{m=1}^{M} N_m$. Thus,

$$KM + \sum_{m=1}^{M} N_m \leq MK + c4^M \frac{\log(8MD/\delta)}{(1-\gamma)^2}$$

$$\leq c' \frac{\log \left(\frac{8MD}{(1-\gamma)\delta} \right)}{(1-\gamma)^3} \log \left(\frac{b_0}{\epsilon} \right) + c \left(\frac{b_0}{\epsilon} \right)^2 \frac{\log(8MD/\delta)}{(1-\gamma)^2}$$
Worst Case Analysis

- Assume that reward function is bounded by r_{max}, i.e., $\max_{(x,u) \in \mathcal{X} \times \mathcal{U}} |r(x, u)| \leq r_{\text{max}}$.
- We can give a worst case bound for b_0:

$$
\sup_{\mathcal{M}^*} b_0 = \sup_{\mathcal{M}^*} \|\sigma(\theta^*)\|_{\infty} + \|\theta^*\|_{\infty} (1 - \gamma) \leq r_{\text{max}} \left(\frac{2}{1 - \gamma} + 1 \right) \leq \frac{4r_{\text{max}}}{1 - \gamma}
$$

- Applying this bound to Corollary 1, we have

$$
\sup_{\mathcal{M}^*} T(\theta^*, \delta, \epsilon) \leq \left[c \left(\frac{r_{\text{max}}^2}{\epsilon^2} \right) \frac{\log \left(\frac{D}{(1 - \gamma)\delta} \right) \log \left(\frac{1}{(1 - \gamma)\epsilon} \right)}{(1 - \gamma)^4} \right]
$$

and the total number of epochs required is $M = c \log \left(\frac{r_{\text{max}}}{1 - \gamma} \right)$ for some universal constant c.

Refine our analysis

In the worst case, we require the following matrix samples:

\[
\sup_{\mathcal{M}^*} T(\theta^*, \delta, \epsilon) \leq \left[c \left(\frac{r_{\max}^2}{\epsilon^2} \right) \log \left(\frac{D}{(1-\gamma)\delta} \right) \log \left(\frac{1}{(1-\gamma)\epsilon} \right) \right] \frac{1}{(1-\gamma)^4}
\]

If we do not start with zero vector (zero vector is the worst one), we can further improve this result by a good initial point such that \(\bar{\theta}_0 \) with \(\|\bar{\theta}_0 - \theta^*\|_\infty \leq \frac{r_{\max}}{\sqrt{1-\gamma}} \leq \frac{r_{\max}}{1-\gamma} \).
Proposition 1 (Minimax optimality).

Consider a γ-discounted MDP with optimal Q-function θ^*, a given error probability $\delta \in (0, 1)$, and a given error tolerance. Then running variance-reduced Q-learning from in initial point $\bar{\theta}_0$ such that $||\bar{\theta}_0 - \theta^*||_\infty \leq \frac{r_{\text{max}}}{\sqrt{1-\gamma}}$ for a total of $M = c \log \left(\frac{r_{\text{max}}}{\sqrt{(1-\gamma)\epsilon}} \right)$ epochs using K and $\{N_m\}_{m=1}^M$ chosen according to the criteria (4), yields a solution $\bar{\theta}_M$ such that $||\bar{\theta}_M - \theta^*|| \leq \epsilon$ with probability at least $1 - \delta$. And the total number of matrix samples is bounded by

$$T_{\text{max}}(\theta^*, \delta, \epsilon) = c \left(\frac{r_{\text{max}}^2}{\epsilon^2} \right) \log \left(\frac{D}{(1-\gamma)\delta} \right) \log \left(\frac{1}{(1-\gamma)\epsilon} \right) \frac{1}{(1-\gamma)^3}$$
Definition 1 ((\(\epsilon, \delta\))-correct algorithm).

Let \(\theta\) be the output of some RL algorithm \(\mathbb{A}\). We say that \(\mathbb{A}\) is \((\epsilon, \delta)\)-correct on the class of MDPs \(\mathbb{M} = \{\mathcal{M}_1^*, \mathcal{M}_2^*, \cdots\}\) if \(||\theta^* - \theta||_\infty \leq \epsilon\) with probability at least \(1 - \delta\) for all \(\mathcal{M}^* \in \mathbb{M}\).

Theorem 2 (Lower bound on the sample complexity of RL with a generative model[1]).

There exist some constants \(\epsilon_0, \delta_0, c_1, c_2\) and a class of MDPs \(\mathbb{M}\) such that for all \(\epsilon \in (0, \epsilon_0)\), \(\delta \in (0, \delta_0/(|S| \times |A|))\), and every \((\epsilon, \delta)\)-correct RL algorithm on the class of MDPs \(\mathbb{M}\) the total number of state-transition samples need to be least

\[
T = \left\lceil \frac{|S| \times |A|}{c_1 \epsilon^2 (1 - \gamma)^3 \log \frac{|S| \times |A|}{c_2 \delta}} \right\rceil
\]
Theorem 3 (Sublinear Convergence Rate of Q-learning).

Consider the stepsize $\lambda_k = \frac{1}{1+(1-\gamma)k}$. Then there exist a universal constant c such that running the empirical Bellman update (see Equation (2)) yields

$$
\mathbb{E} [||\theta^k - \theta^*||] \leq \left|\frac{||\theta_1 - \theta^*||_\infty}{1 + (1 - \gamma)k}\right|
$$

$$
+ \frac{c}{1 - \gamma} \left\{ \frac{||\sigma(\theta^*)||_\infty \sqrt{\log(2D)}}{\sqrt{1 + (1 - \gamma)k}} + \frac{||\theta^*||_{\text{span}} \log(2eD(1 + (1 - \gamma)k))}{1 + (1 - \gamma)k} \right\}
$$

where $||\theta^*||_{\text{span}} = \max_{(x,u)} \theta^*(x,u) - \min_{(x,u)} \theta^*(x,u)$, and $||\sigma(\theta^*)||_\infty = \sqrt{\max_{(x,u)} \text{Var} \left(\hat{T}(\theta^*)(x,u) \right)}$.

(Remark) A high probability bound can also be derived by replacing $\log(D)$ with $c \log(Dk/\delta)$.
Sample Complexity of Ordinary Q-learning (worst case)

Let’s consider the worst case analysis.

\[
\sup_{M^*} ||\theta^*||_{\text{span}} \leq \frac{2r_{\text{max}}}{1 - \gamma}, \quad \text{and} \quad \sup_{M^*} ||\sigma(\theta^*)||_{\infty} \leq \frac{r_{\text{max}}}{1 - \gamma}
\]

In this way, we claim that ordinary Q-learning requires a total of

\[
\sup_{M^*} T(\epsilon, \gamma, \theta^*) = O \left(\frac{r_{\text{max}}^2}{(1 - \gamma)^5} \right)
\]

matrix samples to find an \(\epsilon\)-optimal solution in expectation.
VRQL ($\mathcal{O}(1/(1 - \gamma)^4))$) improves the upper bound compared to ordinary Q-learning ($\mathcal{O}(1/(1 - \gamma)^5))$ in the worst case.

Note that model-free methods (e.g., value iteration and q-learning) with the variance-reduction technique can often get better performance [4].

To match the lower bound $\mathcal{O}(1/(1 - \gamma)^3), VRQL requires a good initial point. This is somewhat unsatisfying, because the same kind method of Variance-reduced Value Iteration [4] does not require this to match the lower bound.

On the other hand, model-based methods do not require variance-reduction to match the lower bound [1].

- Model-based methods first construct a virtual MDP \hat{M} with collected samples and then learns a (near-) optimal $\hat{\theta}^*$ on this recovered MDP.
Why variance-reduction is important for model-free methods?

- Intuitively, model-free methods iteratively interact with the environment to collect samples. As a result, we will waste samples if we do not use $\bar{\theta}$, which contains past information.

- Technically, both model-free and model-based approaches use samples to estimate the expected Bellman update.
 - Naive model-free methods require a union bound accuracy for all iterations.
 - Model-based methods only need the estimate is accuracy for the optimal $\hat{\theta}^*$ on recovered MDP.
Proof Idea of Q-learning

- We start with the simplest case: Q-learning, which will be insightful for analysis of VRQL.
- We can rewrite the update rule of Q-learning (ref to Equation (2)) as:

\[\theta_{k+1} - \theta^* = (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \left\{ \hat{H}_k(\theta_k) + W_k \right\} \]

\[\hat{H}_k(\theta_k) = \hat{T}_k(\theta_k) - \hat{T}_k(\theta^*) \]

\[W_k = \hat{T}_k(\theta^*) - T(\theta^*) \]

- \(\hat{H}_k(\theta_k) \) is \(\gamma \)-contractive with respective to \(||\theta_k - \theta^*||_{\infty} \).

- \(W_k \) is a \(\theta_k \)-independent noise term, which is governed by the statistical features (e.g., bounded value and variance) of \(\theta^* \).
Proof Idea of Q-learning

Note that W_k incurs a stochastic process, which is independent of θ_k,

$$P_k = (1 - \lambda_{k-1})P_{k-1} + \lambda_{k-1}W_{k-1}, \text{ with initialization } P_1 = 0$$

Thanks to the linearity, by properly choosing two real-value series a_k (related to γ and $||P_k||$) and b_k (related to the initial value $||\theta_1 - \theta^*||\infty$), we can show that (see [6] for details)

$$||\theta_k - \theta^*||\infty \leq b_k + a_k + ||P_k||\infty$$
Proof Idea of Q-learning

- Furthermore, when $\lambda_k = \frac{1}{1+(1-\gamma)k}$, we have (see [6] for details)

$$
\|\theta_{k+1} - \theta^*\|_\infty \leq \lambda_k \left\{ \frac{\|\theta_1 - \theta^*\|_\infty}{\lambda_1} + \gamma \sum_{\ell=1}^{k} \|P_\ell\|_\infty \right\} + \|P_{k+1}\|_\ell
$$

- Hence, for ordinary Q-learning, we need to bound $\|P_k\|_\infty$ to estimate the converge rate.
Proof Idea of Q-learning

- Recall that $W_k = \hat{T}_k(\theta^*) - T(\theta^*)$ is a zero-mean random matrix with bounded value $2||\theta^*||_{\infty}$ and the maximal variance $||\sigma(\theta^*)||_{\infty}^2$.

- Hence, we conclude that W_k satisfies Bernstein condition [5]. Using the inductive reasoning, we can show that $P_k(x, u)$ also satisfies certain Bernstein condition due to the linearity of the following stochastic process.

$$P_k = (1 - \lambda_{k-1})P_{k-1} + \lambda_{k-1}W_{k-1}, \quad \text{with initialization } P_1 = 0$$

- Finally, we can apply a union bound to derive high probability bound for $||P_k||_{\infty}$.
Proof Idea of VRQL

- The high-level proof procedure of VRQL is similar to the one of ordinary Q-learning.
- The main difference (difficulty) is that the noise term W_k is not a zero-mean random matrix!

\[
\theta_{k+1} - \theta^* = (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \left\{ \hat{H}_k(\theta_k) + W_k \right\}
\]

\[
\hat{H}_k(\theta_k) = \hat{T}_k(\theta_k) - \hat{T}_k(\theta^*)
\]

\[
W_k = -\hat{H}_k(\bar{\theta}) - T(\theta^*) + \tilde{T}_N(\bar{\theta})
\]

where $\hat{H}_k(\bar{\theta}) = \hat{T}_k(\bar{\theta}) - \hat{T}_k(\theta^*)$ is a centered operator.
Proof Idea of VRQL

To use concentration inequalities, we need to separately “center” each term in W_k.

$$W_k = -\hat{H}_k(\bar{\theta}) - \mathcal{T}(\theta^*) + \tilde{T}_N(\bar{\theta})$$

$$= -\hat{H}_k(\bar{\theta}) + \underbrace{\tilde{T}_N(\bar{\theta}) - \tilde{T}_N(\theta^*)}_{\tilde{H}_N(\bar{\theta})} + \tilde{T}_N(\theta^*) - \mathcal{T}(\theta^*)$$

$$= -\hat{H}_k(\bar{\theta}) + \tilde{H}_N(\bar{\theta}) + \left\{ \tilde{T}_N(\theta^*) - \mathcal{T}(\theta^*) \right\}$$

where we define $\tilde{H}_N(\bar{\theta}) = \tilde{T}_N(\bar{\theta}) - \tilde{T}_N(\theta^*)$ as a centered operator.

Note that only the first term depends on the iteration k, while the last two terms do not.
Proof Idea of VRQL

- To apply concentration inequalities, we need to introduce the population operator for each uncentered term that appeared in W_k.
- Let’s define the population operator $\mathcal{H}(\theta) := \mathcal{T}(\theta) - \mathcal{T}(\theta^*)$, then

\[
W_k = \left\{ \mathcal{H}(\bar{\theta}) - \hat{\mathcal{H}}_k(\bar{\theta}) \right\} + \left\{ \tilde{\mathcal{H}}_N(\bar{\theta}) - \mathcal{H}(\bar{\theta}) \right\} + \left\{ \tilde{T}_N(\theta^*) - \mathcal{T}(\theta^*) \right\}
\]

- Again, we observe that only the first term W'_k is important for the induced stochastic process while the last two terms are independent over iteration k.
- Thus, we can similarly apply previous results by replacing W_k with W'_k to get P'_k.
Proof Idea of VRQL

Now, our target becomes to separately bound $\|P'_k\|_\infty$ (induced by W'_k), $\|W^o\|_\infty$ and $\|W^\dagger\|_\infty$.

$$W_k = \underbrace{\{\mathcal{H}(\bar{\theta}) - \hat{\mathcal{H}}_k(\bar{\theta})\}}_{W'_k} + \underbrace{\{\tilde{\mathcal{H}}_N(\bar{\theta}) - \mathcal{H}(\bar{\theta})\}}_{W^o} + \underbrace{\{\tilde{T}_N(\theta^*) - T(\theta^*)\}}_{W^\dagger}$$

- Bounding $\|P'_k\|_\infty$ is also based on inductive reasoning of Bernstein inequalities.
- Bounding $\|W^o\|_\infty$ can directly use Hoeffding’s inequality.
- Bounding $\|W^\dagger\|_\infty$ can smartly use Bernstein inequality since we know the variance.
Proof of Theorem 1

At a high-level argument, we prove Theorem 1 via an inductive argument.

\[||\bar{\theta}_M - \theta^*||_\infty \leq \frac{||\sigma(\theta^*)||_\infty + ||\theta^*||_\infty (1 - \gamma)}{2^M} \]

Base case Given the initialization \(\bar{\theta}_0 = 0 \), we prove that \(\bar{\theta}_1 \) satisfies such a bound with probability at least \(1 - \frac{\delta}{M} \).

Inductive step In this step, we prove, with probability at least \(1 - \frac{\delta}{M} \), \(\bar{\theta}_{m+1} \) satisfies such a bound with the assumption that it holds for \(\bar{\theta}_m \).

Union bound Finally, by taking a union bound over all \(M \) epochs of the algorithm we guarantee the bound holds uniformly for all \(m = 1, \cdots M \) with probability at least \(1 - \delta \).
Proof of Theorem 1 - Base Case

- For the given initialization $\bar{\theta}_0 = 0$, we have $\hat{T}_k(\bar{\theta}_0) = r$ and $\tilde{T}_k(\bar{\theta}_0) = r$. Consequently, $\hat{T}_k(\bar{\theta}_0) - \tilde{T}_k(\bar{\theta}_0) = 0$, so that the update rule reduces to the case of ordinary Q-learning with stepsize $\lambda_k = \frac{1}{1+(1-\gamma)k}$.

- According to the prior work [6], there is a universal constant $c' > 0$ such that after M iterations, we have

$$||\theta_{K+1} - \theta^*||_\infty \leq \frac{||\theta^*||_\infty}{(1-\gamma)K} + c' \left\{ \frac{||\sigma(\theta^*)||_\infty \sqrt{\log(2DMK/\delta)}}{(1-\gamma)^{3/2} \sqrt{K}} + \frac{||\theta^*||_\infty \log\left(\frac{2eDMK}{\delta} \frac{(1+(1-\gamma)K)}{(1-\gamma)^2 K}\right)}{(1-\gamma)^2 K} \right\}$$

- Choosing $K = c \log\left(\frac{8MD}{\delta(1-\gamma)}\right)$ for a sufficient large constant c suffices to ensure that

$$||\theta_{K+1} - \theta^*|| \leq \frac{1}{2} \{||\sigma(\theta^*)||_\infty + ||\theta^*||_\infty (1 - \gamma)\}$$

with probability at least $1 - \frac{\delta}{M}$.
Proof of Theorem 1 - Inductive Step

▶ For this step, we assume that the input $\bar{\theta}_m$ to epoch m satisfies the bound

$$
\|\bar{\theta}_m - \theta^*\|_\infty \leq \frac{\|\sigma(\theta^*)\|_\infty + \|\theta^*\|_\infty (1 - \gamma)}{2m} =: b_m
$$

▶ Our target is to prove that $\|\bar{\theta}_{m+1} - \theta^*\|_\infty \leq b_{m+1} = \frac{b_m}{2}$.

▶ It turns out that if we can prove

$$
\|\bar{\theta}_{K+1} - \theta^*\|_\infty \leq cb_m \left\{ \frac{1}{1 + (1 - \gamma)K} + \frac{1}{1 - \gamma} \sqrt{\frac{\log(8MDK/\delta)}{1 + (1 - \gamma)K}} + \sqrt{4m \frac{\log(8MD/\delta)}{(1 - \gamma)^2 N_m}} \right\}
$$

(5)

, K and N_m defined in Equation (4) are sufficient to prove the inductive step.
Proof of Theorem 1 - Inductive Step

Recall the update rule of VRQL

\[\theta_{k+1} = (1 - \lambda) \theta + \lambda_k \{ \hat{T}_k(\theta) - \hat{T}_k(\bar{\theta}) + \hat{T}_N(\bar{\theta}) \} \]

Let’s introduce the auxiliary recentered operators:

\[\hat{H}_k(\theta) := \hat{T}_k(\theta) - \hat{T}_k(\theta^*) \]

Thus, we can rewrite the VRQL update rule as

\[\theta_{k+1} - \theta^* = (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \{ \hat{H}_k(\theta_k) - \hat{H}_k(\bar{\theta}) - \hat{T}_N(\bar{\theta}) - \mathcal{T}(\theta^*) \} \]

\[= (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \{ \hat{H}_k(\theta_k) - \hat{H}_k(\bar{\theta}) + \hat{T}_N(\bar{\theta}) - \mathcal{T}(\theta^*) \} \]
Proof of Theorem 1 - Inductive Step

- Continue to the last page, let $W_k = -\hat{H}_k(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) - T(\theta^*)$, we have

$$
\theta_{k+1} - \theta^* = (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \left\{ \hat{H}_k(\theta_k) - \hat{H}_k(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) - T(\theta^*) \right\}
$$

$$
= (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \left\{ \hat{H}_k(\theta_k) + W_k \right\}
$$

- We can view W_k as a random noise sequence, which defines the following auxiliary stochastic progress:

$$
P_k := (1 - \lambda_{k-1})P_{k-1} + \lambda_{k-1}W_{k-1}, \quad \text{with initialization } P_1 = 0
$$
Proof of Theorem 1 - Inductive Step

Note that the operator \(\hat{H}_k(\theta) := \hat{T}_k(\theta) - \hat{T}_k(\theta^*) \) is monotonic respect to the orthant ordering and \(\gamma \)-contractive with respect to the \(\ell_\infty \)-norm.

Corollary 2.

[Adapted from the paper [6]] For all iterations \(k = 1, 2, \cdots \), we have

\[
||\theta_{k+1} - \theta^*||_\infty \leq \frac{2}{1 + (1 - \gamma)k} \left\{ ||\theta_1 - \theta^*||_\infty + \sum_{\ell=1}^{k} ||P_{\ell}||_\infty \right\} + ||P_{k+1}||_\infty
\]
Proof of Theorem 1 - Inductive Step

In order to derive a concrete result based on Corollary 2, we need to obtain high-probability upper bounds on the terms $\|P_\ell\|_\infty$.

Note that P_k relies on the stochastic process induced by W_k:

$$W_k = -\hat{H}_k(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) - \tilde{T}_N(\theta^*) - T(\theta^*) = -\hat{H}_k(\bar{\theta}) + \tilde{H}_N(\bar{\theta}) + \left\{\tilde{T}_N(\theta^*) - T(\theta^*)\right\}$$

where $\tilde{H}_N(\theta) := \tilde{T}_N(\theta) - \tilde{T}_N(\theta^*)$.

Let’s define the population operator $\mathcal{H}(\theta) := T(\theta) - T(\theta^*)$ to center, then

$$W_k = \left\{\mathcal{H}(\bar{\theta}) - \hat{H}_k(\bar{\theta})\right\} + \left\{\tilde{H}_N(\bar{\theta}) - \mathcal{H}(\bar{\theta})\right\} + \left\{\tilde{T}_N(\theta^*) - T(\theta^*)\right\}$$
Proof of Theorem 1 - Inductive Step

▶ Continue to the last page,

\[W_k = \{ \mathcal{H}(\bar{\theta}) - \hat{\mathcal{H}}_k(\bar{\theta}) \} + \{ \tilde{\mathcal{H}}_N(\bar{\theta}) - \mathcal{H}(\bar{\theta}) \} + \{ \tilde{T}_N(\theta^*) - T(\theta^*) \} \]

▶ We note that \(W^o \) and \(W^\dagger \) are independent of \(k \), thus using inductive reasoning, we can prove that (the original paper states that \(P_k \preceq W^o + W^\dagger + P'_k \). However, this inequality is ill-conditioned for the base case (\(k = 2 \)).

\[P_k \preceq W^o + W^\dagger + P'_k \]
Proof of Theorem 1 - Inductive Step

▶ Thus, we can decompose the error bound of $||P_\ell||_\infty$ in Corollary 2 into that (note that $||\theta_1 - \theta^*|| \leq b$)

$$
||\theta_{K+1} - \theta^*||_\infty \leq \frac{2b}{1+(1-\gamma)K} + 3 \left\{ \frac{||W^o||_\infty + ||W^\dagger||_\infty}{1-\gamma} \right\} + \left\{ \frac{2 \sum_{\ell=1}^{K} ||P'_\ell||_\infty}{1+(1-\gamma)K} + ||P'_{K+1}||_\infty \right\}
$$

(7)

▶ In the next, we will bound the noise terms W^o and W^\dagger, and the stochastic process $\{P'_k\}_{k \geq 1}$ separately.
Lemma 1 (High probability bounds on recentering terms).

Fix an arbitrary $\delta \in (0, 1)$.

(a) If $||\bar{\theta} - \theta^*||_\infty \leq bm$, then there is a universal constant c such that (Note that the origin paper does not consider the constant c, but it should be! And this constant does not change the final result.)

$$||W^o||_\infty \leq c4b_m\sqrt{\frac{\log(8MD/\delta)}{N}} \quad \text{with prob. at least } 1 - \frac{\delta}{3M}$$

(b) There is a universal constant c such that

$$||W^\dagger||_\infty \leq c \{||\sigma(\theta^*)||_\infty + ||\theta^*||_\infty(1 - \gamma)\} \sqrt{\frac{\log(8MD/\delta)}{N}} \quad \text{with prob. at least } 1 - \frac{\delta}{3M}$$
Proof of Lemma 1 - Bounding W^o

- Recall the definition of W^o:

$$W^o = \tilde{\mathcal{H}}_N(\bar{\theta}) - \mathcal{H}(\bar{\theta}) = \{\tilde{T}_N(\bar{\theta}) - \tilde{T}_N(\theta^*)\} - \{T(\bar{\theta}) - T(\theta^*)\}$$

- Thus, each entry of W^o is a zero mean, i.i.d. sum of N random variables bounded in absolute value by $2b_m$.

- By Hoeffding’s inequality, we have

$$||W^o||_\infty \leq c4b_m \sqrt{\frac{\log(8MD/\delta)}{N}} \quad \text{with prob. at least } 1 - \frac{\delta}{3M}$$
Proof of Lemma 1 - Bounding W^\dagger

- Recall the definition of W^\dagger:
 \[
 W^\dagger = \tilde{T}_N(\theta^*) - T(\theta^*)
 \]

- Note that W^\dagger is a sum of N i.i.d. terms, each of which is bounded in absolute value by $||\theta^*||_\infty$ and has the variance $\sigma^2(\theta^*)$.

- By Bernstein’s inequality, there is a universal constant c such that with prob. $1 - \frac{\delta}{3M}$, we have
 \[
 ||\tilde{T}_N(\theta^*) - T(\theta^*)||_\infty \leq c \left\{ ||\sigma(\theta^*)||_\infty \sqrt{\frac{\log(8MD/\delta)}{N}} + \frac{||\theta^*||_\infty \log(8MD/\delta)}{N} \right\}
 \]
Proof of Lemma 1 - Bounding W^+

Note that our choice of $N \geq c \frac{4^n \log(8MD/\delta)}{(1-\gamma)^2}$, we further have

\[
\|\tilde{T}_N(\theta^*) - T(\theta^*)\|_\infty \leq c \left\{ \|\sigma(\theta^*)\|_\infty \sqrt{\frac{\log(8MD/\delta)}{N}} + \|\theta^*\|_\infty \log(8MD/\delta) \right\}
\]

\[
= c \sqrt{\frac{\log(8MD/\delta)}{N}} \left\{ \|\sigma(\theta^*)\|_\infty + \|\theta^*\|_\infty \sqrt{\frac{\log(8MD/\delta)}{N}} \right\}
\]

\[
\leq c \sqrt{\frac{\log(8MD/\delta)}{N}} \left\{ \|\sigma(\theta^*)\|_\infty + \|\theta^*\|_\infty (1 - \gamma) \right\}
\]
Proof of Theorem 1 - Inductive Step: Bounding the stochastic process

Lemma 2 (High probability on noise).
There is a universal constant $c > 0$ such that for any $\delta \in (0, 1)$

$$
\left\{ \frac{2 \sum_{\ell=1}^{K} \|P_{\ell}'\|_{\infty}}{1 + (1 - \gamma)K} + \|P'_{K+1}\|_{\infty} \right\} \leq \frac{cbm}{1 - \gamma} \sqrt{\frac{2 \log(8MDK/\delta)}{1 + (1 - \gamma)K}}
$$

with probability as least $1 - \frac{\delta}{3M}$.
Proof of Theorem 1 - Inductive Step

Applying the bounds of Lemma 1 and 2 into Equation (7): there are universal constant c, c' such that

$$\frac{\|\theta_{K+1} - \theta^*\|_\infty}{b_m} \leq \frac{2}{1 + (1 - \gamma)K} + c' \left\{ 1 + \frac{\|\sigma(\theta^*)\|_\infty + \|\theta^*\|_\infty (1 - \gamma)}{b_m} \right\} \sqrt{\frac{\log(8MD/\delta)}{(1 - \gamma)^2 N}}$$

$$+ \frac{c}{1 - \gamma} \sqrt{\frac{\log(8MDK/\delta)}{1 + (1 - \gamma)K}}$$

with probability at least $1 - \frac{\delta}{M}$.
Proof of Theorem 1 - Inductive Step

- Recall that \(b_m = \frac{||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty} (1-\gamma)}{2^m} \), we conclude that

\[
\left\{ 1 + \frac{||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty} (1-\gamma)}{b_m} \right\} \sqrt{\frac{\log(8MD/\delta)}{(1-\gamma)^2 N}} \leq c'' \sqrt{\frac{4^m \log(8MD/\delta)}{(1-\gamma)^2 N}}
\]

- Putting together the pieces, with probability at least \(1 - \frac{\delta}{M} \), we have

\[
\frac{||\theta_{K+1} - \theta^*||_{\infty}}{b_m} \leq c \left\{ \frac{1}{1 + (1-\gamma)K} \sqrt{\frac{4^m \log(8MD/\delta)}{(1-\gamma)^2 N}} + \frac{1}{1 - \gamma} \sqrt{\frac{\log(8MDK/\delta)}{1 + (1-\gamma)K}} \right\}
\]

- By our choice of \(N_m \) and \(K \), we complete the desired claim in Equation (5).
Proof of Lemma 2

We prove Lemma 2 by two steps. In the first step, we prove by induction that the MGF of $P_k'(x, u)$ is bounded by

$$\log \mathbb{E}[e^{sp_k'(x, u)}] \leq \frac{b^2 m s^2 \lambda_{k-1}}{8}$$

for all $s \in \mathbb{R}$ (8)

Combining the Chernoff bounding technique and the union bound, we find that there is a universal constant c such that

$$\Pr \left[\|P'_\ell\|_\infty \geq cb_m \sqrt{\lambda_{k-1}} \sqrt{\log 8KMD/\delta} \right] \leq \frac{\delta}{3KM}$$
Proof of Lemma 2

- Taking a union bound over all K iterations, we find that

$$
\frac{2 \sum_{\ell=1}^{K} \| P'_\ell \|_\infty}{1 + (1 - \gamma)K} + \| P'_{K+1} \|_\infty \leq \frac{cb_m}{1 + (1 - \gamma)K} \sqrt{\log(8KMD/\delta)} \left\{ \sum_{\ell=1}^{K} \sqrt{\lambda_{\ell-1}} + \sqrt{\lambda_K} \right\}
$$

with probability at least $1 - \frac{\delta}{3M}$.

- From the proof of Corollary 3 in the paper [6], we have

$$
\sum_{\ell=1}^{K} \sqrt{\lambda_{\ell-1}} + \sqrt{\lambda_K} \leq c \frac{\sqrt{1 + (1 - \gamma)K}}{1 - \gamma}
$$

- Putting together these pieces yields the claim bound Lemma 2.
Proof of Equation (8)

- Recall the stochastic process \(\{P'_k\}_{k \geq 1} \) evolves the recursion \(P'_{k+1} = (1 - \lambda_k)P'_k + \lambda_k W'_k \), where

 \[
 W'_k := \mathcal{H}(\bar{\theta}) - \hat{\mathcal{H}}_k(\bar{\theta}) = \{T(\theta) - T(\theta^*)\} - \left\{\hat{T}_k(\bar{\theta}) - \hat{T}_k(\theta^*)\right\}
 \]

- Similarly, we see that each entry of \(W'_k \) is a zero-mean random variable with the absolute value by \(b_m := ||\bar{\theta} - \theta^*|| \).

- Using the Hoeffding inequality, we have that

 \[
 \log \mathbb{E} \left[e^{sW'_k(x,u)} \right] \leq \frac{s^2 b^2_m}{8} \quad \text{for all } s \in \mathbb{R}
 \]
Proof of Equation (8) - Base case

- We will use the above bound to prove the following claim (ref to Equation (8)) by induction.

\[
\log \mathbb{E}[e^{sP'_k(x,u)}] \leq \frac{b^2_m s^2 \lambda_{k-1}}{8} \quad \text{for all } s \in \mathbb{R}
\]

- **Base case (k=1):** The case \(k = 1 \) is trivial since \(P'_1 = 0 \) by definition.

- **Base case (k=2):** When \(k = 2 \), we have \(P'_2 = \lambda_1 W'_1 \), and hence

\[
\log \mathbb{E}[e^{sP'_2(x,u)}] = \log \mathbb{E}[e^{s\lambda_1 W'_1(x,u)}] \leq \frac{s^2 \lambda_1^2 b^2_m}{8} \leq \frac{s^2 \lambda_1 b^2_m}{8}
\]

where the last inequality follows from the fact that \(\lambda_k = \frac{1}{1+(1-\gamma)} \leq 1 \).
Proof of Equation (8) - Inductive step

Now we assume that Equation (8) holds for some iteration $k \geq 2$, and we verify that it holds for iteration $k + 1$.

\[
\log \mathbb{E}[e^{sP'_{k+1}(x,u)}] = \log \mathbb{E}[e^{s(1-\lambda_k)P'_k(x,u)}] + \log \mathbb{E}[e^{s\lambda_k P'_k(x,u)}]
\leq \frac{s^2(1-\lambda_k)^2 \lambda_{k-1} b_m^2}{8} + \frac{s^2(1-\lambda_k)^2 b_m^2}{8}
\]

We can show that (details not given) based on the definition that $\lambda_k = \frac{1}{1+(1-\gamma)k}$

\[
(1 - \lambda_k) \lambda_{k-1} \leq \lambda_k
\]

Consequently, we can prove that

\[
\frac{s^2(1-\lambda_k)^2 \lambda_{k-1} b_m^2}{8} + \frac{s^2(1-\lambda_k)^2 b_m^2}{8} \leq \frac{s^2(1-\lambda_k) \lambda_k b_m^2}{8} + \frac{s^2(1-\lambda_k)^2 b_m^2}{8} = \frac{s^2 \lambda_k b_m^2}{8}
\]
Proof of Proposition 1 - Base case

- Again, at a high level, the proof is based on the stated condition ($||\theta_0 - \theta^*||_\infty \leq \frac{r_{\text{max}}}{\sqrt{1-\gamma}}$) to show that

$$||\bar{\theta}_m - \theta^*||_\infty \leq \frac{1}{2^m} \frac{r_{\text{max}}}{\sqrt{1-\gamma}}$$

for all $m = 1, \cdots, M$ (9)

- The base case ($k = 0$) holds trivially and we will focus on the inductive step.

- By hypothesis, for $k \geq 1$ we have (with a little abuse of b_m)

$$||\bar{\theta} - \theta^*||_\infty \leq b_m := \frac{1}{2^m} \frac{r_{\text{max}}}{\sqrt{1-\gamma}}$$
Proof of Proposition 1 - Inductive Step

In this case, our analysis involves two operators

\[\hat{J}_k(\theta) := \hat{T}_k(\theta) - \hat{T}_k(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) \quad \text{and} \quad J(\theta) := T(\theta) - T(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) \]

Note that the variance-reduced Q-learning updates can be written as

\[\theta_{k+1} = (1 - \lambda_k)\theta_k + \lambda_k\hat{J}_k(\theta_k) \quad (10) \]

Note that \(J \) is \(\gamma \)-contractive, thus it has a unique fixed point, which we denote by \(\hat{\theta} \).

Since \(J(\theta) = \mathbb{E}[\hat{J}_k(\theta)] \) by construction, it is natural to analyze the convergence of \(\theta_k \) to \(\hat{\theta} \).

\[||\theta_{K+1} - \theta^*||_{\infty} \leq ||\theta_{K+1} - \hat{\theta}||_{\infty} + ||\hat{\theta} - \theta^*||_{\infty} \]
Proof of Proposition 1 - Inductive Step

Lemma 3.
After $K = c_1 \frac{\log\left(\frac{8MD}{(1-\gamma)^3} \right)}{(1-\gamma)^3}$ iterations, we are guaranteed that

$$||\theta_{K+1} - \hat{\theta}||_\infty \leq \frac{b_m}{4} + \frac{1}{4} ||\hat{\theta} - \theta^*||_\infty$$

with probability at least $1 - \frac{\delta}{2M}$.

Lemma 4.
Given a sample size $N_m = c_2 4m \frac{\log(MD/\delta)}{(1-\gamma)^2}$, we have

$$||\hat{\theta} - \theta^*||_\infty \leq \frac{b_m}{5}$$

with probability at least $1 - \frac{\delta}{2M}$.
Proof of Proposition 1 - Inductive Step

- Combining Lemma 4 and Lemma 4, we have

\[||\theta_{K+1} - \theta^*||_\infty \leq \left\{ \frac{b_m}{4} + \frac{1}{4} ||\hat{\theta} - \theta^*||_\infty \right\} + ||\hat{\theta} - \theta^*||_\infty \leq \frac{b_m}{2} \]

- Thus, we verify the claim of Equation (9). The computation of total samples is similar to what we have done:

\[KM + \sum_{m=1}^{M} N_m \]

- For VQRL, we have that the \(K = c \log \frac{r_{\max}}{\epsilon \sqrt{1-\gamma}} \). It is clear that the discount complexity is reduced.
Proof of Lemma 3

- We rewrite Equation (9) as subtracting the fixed point of $\hat{\theta}$ of J:

$$
\theta_{k+1} - \hat{\theta} = (1 - \lambda_k)(\theta_k - \hat{\theta}) + \lambda_k \left(\hat{J}_k(\theta_k) - \hat{J}_k(\hat{\theta}) \right) + \lambda_k \left(\hat{J}_k(\hat{\theta}) - J(\hat{\theta}) \right)
$$

- We can similarly to apply Corollary 2 (see also Equation (6)). In this case, the noise term is given by (with a little abuse of notation, we previously use W_k to denote the noise term):

$$
E_k := \hat{J}_k(\hat{\theta}) - J(\hat{\theta}) = \left\{ \hat{\mathcal{T}}_k(\hat{\theta}) - \hat{\mathcal{T}}_k(\bar{\theta}) \right\} - \left\{ \mathcal{T}_k(\hat{\theta}) - \mathcal{T}_k(\bar{\theta}) \right\}
$$

- Consequently, we have $\|E_k\|_{\infty} \leq 2\|\hat{\theta} - \bar{\theta}\|_{\infty}$.
Proof of Lemma 3

By applying Corollary 1 from the paper [6], we have

$$
||\theta_{K+1} - \hat{\theta}||_\infty \leq \frac{2}{1 + (1 - \gamma)K} \left\{ ||\bar{\theta} - \hat{\theta}||_\infty + \sum_{\ell=1}^{K} ||P_\ell||_\infty \right\} + ||P_{K+1}||_\ell
$$

where the auxiliary stochastic process evolves as $P_k = (1 - \lambda_{k-1})P_{k-1} + \lambda_{k-1}E_{k-1}$.

Following the same line of argument as in the proof of Lemma 2, we find that

$$
||\theta_{K+1} - \hat{\theta}||_\infty \leq c \left\{ \frac{||\bar{\theta} - \hat{\theta}||_\infty}{1 + (1 - \gamma)K} + \frac{||\bar{\theta} - \hat{\theta}||_\infty}{(1 - \gamma)^{3/2}\sqrt{K}} \right\} \sqrt{\log(8MD/\delta)}
$$

with probability at least $1 - \frac{\delta}{2M}$.
Proof of Lemma 3

With the choice of \(K = c_1 \frac{\log \left(\frac{8 M D}{(1-\gamma)^3} \right)}{(1-\gamma)^3} \), we are guaranteed that

\[
||\theta_{K+1} - \hat{\theta}||_\infty \leq \frac{1}{4} ||\bar{\theta} - \hat{\theta}||_\infty \leq \frac{1}{4} ||\bar{\theta} - \theta^*||_\infty + \frac{1}{4} ||\hat{\theta} - \theta^*||_\infty
\]
Proof of Lemma 4

Note that \(\hat{\theta} \) is the fixed point of the operator \(J(\theta) := T(\theta) - T(\bar{\theta}) + \tilde{T}_N(\bar{\theta}) \), and hence can be viewed as a fixed point of the population Bellman operator defined with perturbed reward function \(\tilde{r} \) with each entry \(\tilde{r}(x, u) = r(x, u) + \left[\tilde{T}(\bar{\theta}) - T(\bar{\theta}) \right](x, u) \).

The following lemma guarantees that this perturbation is relatively small.

Lemma 5 (Bounds on perturbed reward).

For any matrix \(\bar{\theta} \) such that \(||\bar{\theta} - \theta^*||_\infty \leq b_m \), we have

\[
|\tilde{r} - r| \leq c(b_m \mathbf{1} + \sigma(\theta^*)) \sqrt{\frac{\log(8MD/\delta)}{N}} + c'||\theta^*||_\infty \frac{\log(8MD/\delta)}{N} \mathbf{1}
\]

with probability at least \(1 - \frac{\delta}{8M} \), where \(\mathbf{1} \) denotes the unit vector.
Proof of Lemma 4

- We still need a lemma that provides elementwise upper bounds on the absolute difference $|\theta^* - \hat{\theta}|$ in terms of the absolute difference $|\tilde{r} - r|$.

- Let’s define P^{π^*} as the linear operator defined by the policy π^* that is optimal with respect to θ^*, and similarly let $P^{\hat{\pi}}$ be the linear operator defined by the policy $\hat{\pi}$ that is optimal with respect to $\hat{\theta}$.

Lemma 6 (Elementwise bounds).

We have the elementwise upper bound:

$$|\theta^* - \hat{\theta}| \leq \max \left\{ (I - \gamma P^{\pi^*})^{-1} |\tilde{r} - r|, (I - \gamma P^{\hat{\pi}})^{-1} |\tilde{r} - r| \right\}$$
Proof of Lemma 4 - Upper bounding \((\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} |\tilde{r} - r|\)

- Based on Lemma 5, we have

\[
(\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} |\tilde{r} - r| \leq c \left(\frac{b_m}{1 - \gamma} + \|\mathbb{I} - \gamma \mathbb{P}^{\pi^*}\|^{-1} \sigma(\theta^*) \right) \sqrt{\frac{\log(8MD/\delta)}{N}} 1 + c' \frac{\|\theta^*\|_{\infty} \log(8MD/\delta)}{1 - \gamma} \frac{1}{N}
\]

where we have used the fact that \(\|\mathbb{I} - \gamma \mathbb{P}^{\pi^*}\|^{-1} u\|_{\infty} \leq \frac{\|u\|_{\infty}}{1 - \gamma}\) for any vector \(u\).

- According to Lemma 8 in [1], we have

\[
\|\mathbb{I} - \gamma \mathbb{P}^{\pi^*}\|^{-1} \sigma(\theta^*) \|_{\infty} \leq \frac{4}{(1 - \gamma)^{3/2}} \leq \frac{4(2^m)}{1 - \gamma} b_m
\]

where the last step follows our notation that \(b_m = \frac{1}{2^m} \frac{1}{\sqrt{1 - \gamma}}\).
Proof of Lemma 4 - Upper bounding $(\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1}|\tilde{r} - r|$

- Similarly, we also have that

$$\frac{||\theta^*||_{\infty}}{1 - \gamma} \leq \frac{1}{(1 - \gamma)^2} \leq \frac{2^m b_m}{(1 - \gamma)^{3/2}}$$

- Putting together pieces yields the elementwise bound

$$(\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1}|\tilde{r} - r| \preceq b_m \Phi(N, m, \gamma) 1$$

where we define the non-negative scalar

$$\Phi(N, m, \gamma) := c' \left\{ \frac{2^m}{1 - \gamma} \sqrt{\frac{\log(8MD/\delta)}{N}} + \frac{2^m}{(1 - \gamma)^{3/2}} \frac{\log(8MD/\delta)}{N} \right\}$$
Proof of Lemma 4 - Upper bounding \((I - \gamma P{\hat{\pi}})^{-1}|{\tilde{r}} - r|\)

- The only difference with the previous derivation is the term regarding \(\sigma(\theta^*)\).
- Again, according to [1] we are guaranteed that

\[||I - \gamma P{\hat{\pi}})^{-1}\sigma(\hat{\theta})||_\infty \leq \frac{4}{(1 - \gamma)^{3/2}}.\]

- Moreover, we have \(\sigma(\theta^*) \leq \sigma(\hat{\theta}) + |\hat{\theta} - \theta^*|\).
- Combining the pieces, we are guaranteed to have the elementwise bound

\[(I - \gamma P{\hat{\pi}})^{-1}|{\tilde{r}} - r| \preceq b_m \Phi(N, m, \gamma) + \frac{c}{1 - \gamma} \sqrt{\frac{\log(8MD/\delta)}{N}}\]
Proof of Lemma 4 - Upper bounding \((\mathbb{I} - \gamma \mathbb{P}^{\hat{\pi}})^{-1} |\tilde{r} - r|\)

Combining the previous bounds with Lemma 6, we find

\[
|\hat{\theta} - \theta^*| \leq b_m \Phi(N, m, \gamma) 1 + c \frac{|\hat{\theta} - \theta^*|}{1 - \gamma} \sqrt{\frac{\log(8MD/\delta)}{N}}
\]

Our choice of \(N\) ensures that \(\frac{c}{1 - \gamma} \sqrt{\frac{\log(8MD/\delta)}{N}} \leq \frac{1}{2}\), so that we have established the upper bound \(||\hat{\theta} - \theta^*||_\infty \leq 2b_m \Phi(N, m, \gamma)\).

Finally, we see that our choice of \(N\) ensures that \(||\Phi(N, m, \gamma)||_\infty \leq \frac{1}{10}\), so that we complete the proof of Lemma 6.
Proof of Lemma 5

Starting with the definition of \tilde{r} we have

$$|	ilde{r} - r| = \left| \tilde{T}_N(\bar{\theta}) - \mathcal{T}(\bar{\theta}) \right|$$

$$\leq \left| \left(\tilde{T}_N(\bar{\theta}) - \tilde{T}_N(\theta^*) \right) - \left(\mathcal{T}(\bar{\theta}) - \mathcal{T}(\theta^*) \right) \right| + \left| \tilde{T}_N(\theta^*) - \mathcal{T}(\theta^*) \right|$$

By definition, the random matrix $\left(\tilde{T}_N(\bar{\theta}) - \tilde{T}_N(\theta^*) \right)$ is the sum of N i.i.d terms, with each entry are uniformly bounded by $\gamma \|ar{\theta} - \theta^*\|_{\infty} \leq b_m$. Consequently, with a combination of Hoeffding’s inequality and the union bound, we find that

$$\| \left(\tilde{T}_N(\bar{\theta}) - \tilde{T}_N(\theta^*) \right) - \left(\mathcal{T}(\bar{\theta}) - \mathcal{T}(\theta^*) \right) \|_{\infty} \leq 4b_m \sqrt{\frac{\log(8MD/\delta)}{N}}$$

with probability at least $1 - \frac{\delta}{4M}$.
Proof of Lemma 5

Turning to the term $|\tilde{T}_N(\theta^*) - T(\theta^*)|$, by a Bernstein inequality, we have

$$|\tilde{T}_N(\theta^*) - T(\theta^*)| \leq c \left\{ \sigma(\theta^*) \sqrt{\frac{\log(8MD/\delta)}{N}} + ||\theta^*||_\infty \frac{\log(8MD/\delta)}{N} \right\}$$

Combing the pieces yields the claim in Lemma 5.
Proof of Lemma 6

In this proof, we make use of the function \(|u|_+ = \max\{u, 0\} \), applied elementwise to a vector \(u \).

Note that we have \(|u| = \max\{|u|_+, |u|_+ - u|_+\} \) by definition, thus it suffices to prove that two elementwise bounds:

\[
|\theta^* - \hat{\theta}|_+ \leq (I - \gamma \Pi_{\hat{\pi}})^{-1} |\tilde{r} - r| \quad \text{and} \quad |\theta^* - \hat{\theta}|_+ \leq (I - \gamma \Pi_{\hat{\pi}})^{-1} |\tilde{r} - r|
\]

Recall that \(\theta^* \) and \(\hat{\theta} \) are the optimal Q-functions for the reward functions \(r \) and \(\tilde{r} \), respectively. By this optimality, we have

\[
\hat{\theta} = \tilde{r} + \gamma \Pi_{\hat{\pi}} \hat{\theta} \geq \tilde{r} + \gamma \Pi_{\hat{\pi}} \theta^* \quad \text{and} \quad \theta^* = r + \gamma \Pi_{\pi^*} \theta^* \geq r + \gamma \Pi_{\hat{\pi}} \theta^*
\]
Proof of Lemma 6 - The first term

- Using these relations, we can rewrite that

\[
\theta^* - \hat{\theta} = (r - \tilde{r}) + \gamma P^{\pi^*} \theta^* - P^{\hat{\pi}} \hat{\theta} \leq |\tilde{r} - r| + \gamma P^{\pi^*} (\theta^* - \hat{\theta}) \\
\leq |\tilde{r} - r| + \gamma P^{\pi^*} |\theta^* - \hat{\theta}|_+
\]

- Since the RHS is non-negative, the above inequality implies that

\[
|\theta^* - \hat{\theta}|_+ \leq |\tilde{r} - r| + \gamma P^{\pi^*} |\theta^* - \hat{\theta}|_+
\]

- Rearranging, we have that

\[
|\theta^* - \hat{\theta}|_+ \leq (I - \gamma P^{\pi^*})^{-1} |\tilde{r} - r|
\]
Proof of Lemma 6 - The second term

- Using the same reasoning, we have that

\[
\hat{\theta} - \theta^* = (r - \tilde{r}) + \gamma P\hat{\pi} \hat{\theta} - \gamma P\pi^* \theta^*
\]

\[
\leq |\tilde{r} - r| + \gamma P\hat{\pi} (\hat{\theta} - \theta^*)
\]

\[
\leq |\tilde{r} - r| + \gamma P\hat{\pi}|\hat{\theta} - \theta^*|+
\]

- Therefore, we can prove that

\[
|\hat{\theta} - \theta^*|_+ \leq (I - \gamma P\hat{\pi})^{-1} |\tilde{r} - r|
\]
References I

References II

The presenter appreciates insightful comments and instructions from Yingru Li, Hao Liang, and Tian Xu.