Variance-reduced Q-learning is minimax optimal

Ziniu Li liziniu1997@gmail.com

(incoming Ph.D. student at SDS) The Chinese University of Hong Kong, Shenzhen, China

July 9, 2020

Summer Seminar of CUHK, Shenzhen

Mainly based on:

Wainwright, Martin J. "Variance-reduced Q-learning is minimax optimal." arXiv preprint arXiv:1906.04697 (2019).

Target

- We will briefly talk about the complexity of sequential decision-making, but mainly focus on the sample complexity under a generative model.
- We will illustrate the famous method called Q-learning and demonstrate the effectiveness of the variance-reduction technique.
- ▶ We will briefly explain the proof ideas for Q-learning and variance-reduced Q-learning.

Markov Decision Process

Consider an infinite-horizon Markov Decision Process $\mathcal{M}^* = (\mathcal{S}, \mathcal{A}, P, R, \gamma, d_0)$ [3].

- ${\cal S}$ and ${\cal A}$ are the state and action space, respectively.
- P determines the transition probability of s_{t+1} conditioned on s_t and a_t .
- R is the reward function, which is often assumed to be deterministic and is bounded within the range [0, 1].
- $\gamma \in [0, 1)$ is a discount factor.
- d_0 specifies the initial state distribution.

Markov Decision Process

► The decision process is characterized as follows:

- At the beginning of the epoch, the environment resets to some initial state s_0 according to d_0 ;
- The agent observes the state s_0 and select an action a_0 to perform;
- The environment transits to s_1 according to P and sends a reward signal r_0 to the agent.
- This process repeats until some terminal signal is released, after which the environment resets to some initial state again.

Markov Decision Process

- The above action selection procedure can be described as a <u>policy</u>, which maps the state space to the action space.
- The goal of an intelligent agent is to maximize its payoff by searching the optimal policy π^{*} with maximal cumulative rewards.

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$$

Though the above decision-making procedure seems endless, the <u>effective planning horizon</u> is 1/(1 - γ).

$$\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})\right] \leq \frac{1}{1-\gamma} \cdot r_{\max}$$

Complexity of MDP

- With the knowledge of P and R, we can efficiently solve an (infinite-horizon) MDP with methods like value iteration, policy iteration, and linear programming [3].
- The computation complexity of the above methods mainly depends on |S| and |A| and $1/(1-\gamma)$.
 - The above methods often can find an ϵ -optimal solution with the speed of $\mathcal{O}(\gamma^t)$;
 - Thus, the number of iteration to find an ϵ -optimal solution is about $\mathcal{O}(\frac{\log(1/\epsilon)}{1-\gamma})$.
 - At each iteration, the above methods use P to perform the expected Bellman update (define later), and this computation complexity linearly scales up to the whole space size (i.e., $|S| \times |A|$).

Reinforcement Learning

In reinforcement learning (RL), we <u>cannot</u> have access to the transition kernel P but we can interact with environments to collect information. Accordingly, we <u>cannot</u> directly apply the above methods since we cannot perform the expected Bellman update.

Typically, we need <u>exploration</u> (e.g., take new actions) to discover potential high reward states and <u>exploitation</u> (e.g., take the best known action) to maintain a good performance.

Complexity of RL

- The PAC(provably approximation correct) complexity of RL is (informally) defined as: how many interactions/samples (m) do we need to find an good policy (with the optimality gap ε) with high probability (at least 1 δ)?
- Unfortunately, it's very challenging to analyze the complexity of RL methods, which does not only depend on |S|, |A| and $1/(1 \gamma)$, but also the intrinsic difficulty of MDP.
 - For example, solving a motion planning task with many obstacles is much harder than the one with a simple structure even both MDPs have the same state and action spaces.
- Detailed analysis of the complexity of RL is beyond this talk. And we will focus on an intermediate problem defined later.

RL with a Generative Model

- Let us introduce the generative model \mathcal{M} . Importantly, we can directly reset it to any state s_t , after which we can take an action a_t and observe the next state $s_{t+1} \sim p_{a_t}(\cdot|s_t)$ and the reward $r(s_t, a_t)$.
 - Compared to the pure MDP problem, we still do not known P in advance.
 - Compared to the pure RL problem, we can go to any st without the planning from an initial state s₀.
- Example: a perfect simulator (e.g., some video game simulators), where we can load (reset) the state s_t from RAM.
- Luckily, the complexity of RL with a generative model is shown to only depend on |S|, |A|, and $1/(1-\gamma)$.

Bellman Optimality Equation

► The state-action value function (or Q-function) for an infinite-horizon MDP is defined as:

$$heta^{\pi}(x,u) = \mathbb{E}[\sum_{k=0}^{\infty} \gamma^k r(x_k,u_k) | x_0 = x, u_0 = u] \qquad ext{where } u_k = \pi(x_k) ext{ for all } k \geq 1$$

where we replace the state s_t with x_t and the action a_t with u_t .

► The Bellman Optimality Equation is defined as :

$$\theta^{\pi}(x, u) = r(x, u) + \mathbb{E}_{x'}[\max_{u' \in \mathcal{U}} \theta^{\pi}(x', u')] \quad \text{where } x' \sim P_u(\cdot | x)$$

where P_u(·|x) denotes the transition kernel based on current state x and current action u.
Define the optimal state-value function θ* = max_π θ^π. It can be proved only θ* is the solution to the above equation [3].

Bellman Operator

▶ The expected (population) Bellman operator \mathcal{T} is a mapping from $\mathbb{R}^{|\mathcal{X}| \times |\mathcal{U}|}$ to itself:

$$\mathcal{T}(\theta)(x,u) := r(x,u) + \gamma \mathbb{E}_{x'}[\max_{u' \in \mathcal{U}} \theta(x',u')] \qquad \text{where } x' \sim P_u(\cdot|x)$$

Similarly, we can define the empirical (sampling-based) Bellman operator $\hat{\mathcal{T}}$:

$$\hat{\mathcal{T}}(\theta)(x,u) := r(x,u) + \gamma \max_{u' \in \mathcal{U}} \theta(x',u') \qquad \text{where } x' \sim P_u(\cdot|x)$$

▶ By construction, we have $\mathbb{E}[\hat{\mathcal{T}}(\theta)] = \mathcal{T}(\theta)$ and $\theta^* = \mathcal{T}(\theta^*)$

Properties of Bellman Operator

• (γ -contractive) For any $\theta_1, \theta_2 \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{U}|}$ and define $||\theta||_{\infty} = \max_{(x,u)} |\theta(x,u)|$, we have

$$||\mathcal{T}(\theta_1) - \mathcal{T}(\theta_2)||_{\infty} \le \gamma ||\theta_1 - \theta_2||_{\infty}$$

▶ (orthant ordering) If $\theta_1 \leq \theta_2$ (i.e., θ_1 is no larger than θ_2 elementwise), we have

 $\mathcal{T}(\theta_1) \preceq \mathcal{T}(\theta_2)$

Note the above properties also hold for $\hat{\mathcal{T}}$ (because $\hat{\mathcal{T}}$ is a special case of \mathcal{T}).

Properties of Bellman Operator

Since \mathcal{T} is γ -contractive, we can repeatedly apply on \mathcal{T} on θ_k to get a contractive sequence $\{\theta_k\}$.

$$\theta_{k+1} := (1 - \lambda_k)\theta_k + \lambda_k \mathcal{T}(\theta_k) \tag{1}$$

where $\{\lambda_k : \lambda_k \in (0,1]\}$ is some sequence of stepsize.

By γ-contractive, we can show that the optimal gap Δ_k = θ_k − θ^{*} decays with a linear rate (i.e., O(γ^t)). Thus θ → θ^{*} if we know P to perform T.

$$\Delta_{k+1} = (1 - \lambda_k)\Delta_k + \lambda_k \left\{ \mathcal{T}(\Delta_k + \theta^*) - \mathcal{T}(\theta^*) \right\}$$
$$||\Delta_{k+1}||_{\infty} \stackrel{(\lambda_k=1)}{\leq} \gamma ||\Delta_k||_{\infty} \leq \gamma^t ||\Delta_1||_{\infty}$$

In the next part, we show the generative model only admits *T̂*, which results in sampling noise when updating.

Q-learning

The (synchronous) Q-learning takes a stochastic approximation (SA) approach to the Bellman optimality equation with *T*:

$$\theta_{k+1} = (1 - \lambda_k)\theta_k + \lambda_k \hat{\mathcal{T}}_k(\theta_k)$$
(2)

We can rewrite the above update rule as:

$$\theta_{k+1} = (1 - \lambda_k)\theta_k + \lambda_k \{\mathcal{T}(\theta_k) + E_k\}$$

where $E_k = \hat{\mathcal{T}}(\theta_k) - \mathcal{T}(\theta_k)$ is a zero-mean noise matrix.

Thus, we can view the above update rule as the expected Bellman update with some noise.

Noise in Q-learning

▶ Recall the Q-learning update rule (we will introduce θ^* and $\hat{\mathcal{T}}_k(\theta^*)$ to "center"):

$$\theta_{k+1} - \theta^* = (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \hat{\mathcal{T}}_k(\theta_k) - \lambda_k \hat{\mathcal{T}}_k(\theta^*) + \lambda_k \hat{\mathcal{T}}_k(\theta^*) - \lambda_k \mathcal{T}(\theta^*)$$

Similarly, let's consider the update rule from the view of the optimal gap $\Delta_k = \theta_k - \theta^*$:

$$\Delta_{k+1} = (1 - \lambda_k)\Delta_k + \underbrace{\lambda_k \{\hat{\mathcal{T}}_k(\theta^* + \Delta_k) - \hat{\mathcal{T}}_k(\theta^*)\}}_{\gamma \text{-contractive}} + \underbrace{\lambda_k W_k}_{\text{noise}}$$
(3)

Here $W_k = \hat{\mathcal{T}}_k(\theta^*) - \mathcal{T}(\theta^*)$ is a zero-mean random (noise) matrix.

ln this way, Δ_k decays over iteration with the sampling noise.

Q-learning with Oracle Variance Reduction

Let's consider the following update rule:

$$\theta_{k+1} = (1 - \lambda_k)\theta_k + \lambda_k \left(\hat{\mathcal{T}}_k(\theta_k) - \hat{\mathcal{T}}_k(\theta^*) + \mathcal{T}(\theta^*)\right)$$

Note that $\mathbb{E}[\hat{\mathcal{T}}_k(\theta^*)] = \mathcal{T}(\theta^*).$

▶ Again, let's define the error matrix $\Delta_k = \theta_k - \theta^*$, we find that

$$\Delta_{k+1} = (1 - \lambda_k)\Delta_k + \lambda_k \left\{ \hat{\mathcal{T}}(\theta^* + \Delta_k) - \hat{\mathcal{T}}(\theta^*) \right\}$$

Compared to the previous one (see Equation (3)), the noise term $W_k = \hat{\mathcal{T}}_k(\theta^*) - \mathcal{T}(\theta^*)$ vanishes.

Variance Reduction in Q-learning

Variance-reduced Q-learning

- Though the above method is not implementable because of the unknown θ*, we can use a matrix θ
 as a surrogate of θ*.
- Let's consider the following control variate:

$$\tilde{\mathcal{T}}_N(\bar{\theta}) = \frac{1}{N} \sum_{i \in D} \hat{\mathcal{T}}_i(\bar{\theta})$$

where D is a collection of N i.i.d samples.

• By construction, $\tilde{\mathcal{T}}_N(\bar{\theta})$ is an unbiased approximation to $\mathcal{T}(\bar{\theta})$, with the variance controlled by N.

Variance-reduced Q-learning

• Let's define an operator \mathcal{V}_k on $\mathbb{R}^{|\mathcal{X}| \times |\mathcal{U}|}$ via

$$\mathcal{V}_{k}(\theta;\lambda,\bar{\theta},\tilde{\mathcal{T}}_{N}) = (1-\lambda)\theta + \lambda \left\{ \hat{\mathcal{T}}_{k}(\theta) - \hat{\mathcal{T}}_{k}(\bar{\theta}) + \tilde{\mathcal{T}}_{N}(\bar{\theta}) \right\}$$

• By construction, we show that \mathcal{V}_k is also unbiased:

$$\mathbb{E}\left[\hat{\mathcal{T}}_{k}(\theta) - \hat{\mathcal{T}}_{k}(\bar{\theta}) + \tilde{\mathcal{T}}_{N}(\bar{\theta})\right] = \mathcal{T}(\theta)$$

This variance-reduced operator is similar to the one used in SVRG [2].

Why variance-reduced?

- Why $\mathcal{V}_k(\theta; \lambda, \bar{\theta}, \tilde{\mathcal{T}}_N) = (1 \lambda)\theta + \lambda \left\{ \hat{\mathcal{T}}_k(\theta) \hat{\mathcal{T}}_k(\bar{\theta}) + \tilde{\mathcal{T}}_N(\bar{\theta}) \right\}$ is variance-reduced?
- ▶ If $\bar{\theta}$ is close to θ and θ^* , $\hat{\mathcal{T}}_k(\theta)$ has the close direction with $\hat{\mathcal{T}}_k(\bar{\theta})$, and $\tilde{\mathcal{T}}_N(\bar{\theta})$ is very close to $\mathcal{T}(\theta)$ by choosing a large N. In this way, we "recover" the expected Bellman update.

Why variance-reduced?

You may want to understand VRQL from the perspective of the optimality gap. If we follow the previous stepups, we have

$$\Delta_{k+1} = (1 - \lambda_k)\Delta_k + \lambda_k \left\{ \hat{\mathcal{T}}_k(\theta^* + \Delta_k) - \hat{\mathcal{T}}_k(\theta^*) \right\} + W_k$$

where $W_k = \hat{\mathcal{T}}_k(\theta^*) - \mathcal{T}(\theta^*) - \hat{\mathcal{T}}_k(\bar{\theta}) + \tilde{\mathcal{T}}_N(\bar{\theta}).$

- However, note that $\mathbb{E}[W_k] \neq 0$ (the expectation is taken over the stochastic process of $\hat{\mathcal{T}}_k$).
- Correspondingly, W_k can <u>not</u> be viewed as a zero-mean noise term. In contrast, we also need to "center" $\hat{\mathcal{T}}_k(\bar{\theta})$ and consider the (shifted) fixed point by $\hat{\mathcal{V}}_k$ (we will formally analyze this later).

Sing Epoch of Variance-Reduced Q-learning

Sing Epoch of variance-reduced Q-learning (VRQL) is outlined below:

Function RunEpoch($\overline{\theta}$; K, N) Inputs: (a) Epoch length K (b) Recentering matrix $\overline{\theta}$ (c) Recentering sample size N (1) Compute $\widetilde{T}_N(\overline{\theta}) := \frac{1}{N} \sum_{i=1}^N \widehat{T}_i(\overline{\theta}).$ (2) Initialize $\theta_1 = \overline{\theta}.$ (3) For k = 1, ..., K, compute the variance-reduced update (11): $\theta_{k+1} = \mathcal{V}_k(\theta_k; \lambda_k, \overline{\theta}, \widetilde{T}_N)$ with stepsize $\lambda_k = \frac{1}{1+(1-\gamma)k}.$ (12) Output: Return $\theta_{K+1}.$

Variance Reduction in Q-learning

Overall Algorithm

▶ The overall algorithm runs by repeatedly calling the sub-procedure of RunEpoch.

Algorithm: Variance-reduced Q-learning Inputs: (a) Number of epochs M (b) Epoch length K (c) Recentering sizes $\{N_m\}_{m=1}^M$ (1) Initialize $\overline{\theta}_0 = 0$. (2) For epochs $m = 1, \dots, M$: $\overline{\theta}_m = \text{RunEpoch}(\overline{\theta}_{m-1}; K, N_m)$.

- All input parameters: *M*-number of epochs, *K*-epoch length, $\{N_m\}_{m=1}^M$ -centering sizes and $\{\lambda_k\}_{k=1}^K$ -stepsizes.
- The total number of matrix samples required by VRQL is $KM + \sum_{m=1}^{M} N_m$.

Experimental Comparison

We can compare VRQL (red line) and ordinary Q-learning (blue line) under two MDPs with different γ (this figure from [7]).

Parameter Choice

• Given a tolerance parameter $\delta \in (0, 1)$, let's choose the epoch length K and centering sizes $\{N_m\}_{m=1}^M$ so as to ensure that the final guarantees hold with probability as least $1 - \delta$.

$$K = c_1 \frac{\log\left(\frac{8MD}{(1-\gamma)\delta}\right)}{(1-\gamma)^3}$$

$$V_m = c_2 4^m \frac{\log(8MD/\delta)}{(1-\gamma)^2}$$
(4)

where $D = |\mathcal{X}| \times |\mathcal{U}|$.

The number of epoch M depends on the convergence rate and the desired accuracy, which will be decided later.

Linear Convergence Over Epochs

Theorem 1.

Given a γ -discounted MDP with optimal Q-function θ^* and a given error probability $\delta \in (0, 1)$, suppose that we run variance-reduced Q-learning from $\overline{\theta}_0 = 0$ for M epochs using parameters Kand $\{N_m\}_{m=1}^M$ chosen according to the criteria (4). Then we have

$$||\bar{\theta}_M - \theta^*||_{\infty} \le \frac{||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1-\gamma)}{2^M}$$

with probability at least $1 - \delta$, where $||\sigma(\theta^*)||_{\infty} = \sqrt{\max_{(x,u)} \operatorname{Var}\left(\hat{\mathcal{T}}(\theta^*)(x,u)\right)}$.

Sample Complexity of VRQL

Corollary 1.

Consider a γ -discounted MDP with optimal Q-function θ^* , a given error probability $\delta \in (0,1)$ and ℓ_{∞} -error level $\epsilon > 0$. Then there are universal constants c, c' such that a total of

$$T(\theta^*, \delta, \epsilon) = \left\{ c \frac{\log\left(\frac{8MD}{(1-\gamma)\delta}\right)}{(1-\gamma)^3} \log\left(\frac{b_0}{\epsilon}\right) + c'\left(\frac{b_0}{\epsilon}\right)^2 \frac{\log(8MD/\delta)}{(1-\gamma)^2} \right\}$$

matrix samples in the generative model is sufficient to obtain an ϵ -accurate estimate with probability at least $1 - \delta$, where b_0 is defined as

$$b_0 = ||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1-\gamma)$$

Proof of Corollary 1

► We first note that to obtain an *e*-accurate estimate, the following number of epochs *M* is enough.

$$M = \left\lceil \log_2\left(\frac{b_0}{\epsilon}\right) \right\rceil$$

▶ By construction, the total number of matrix samples of VRQL is $KM + \sum_{m=1}^{M} N_m$. Thus,

$$KM + \sum_{m=1}^{M} N_m \le MK + c4^M \frac{\log(8MD/\delta)}{(1-\gamma)^2}$$
$$\le c' \frac{\log\left(\frac{8MD}{(1-\gamma)\delta}\right)}{(1-\gamma)^3} \log\left(\frac{b_0}{\epsilon}\right) + c\left(\frac{b_0}{\epsilon}\right)^2 \frac{\log(8MD/\delta)}{(1-\gamma)^2}$$

Worst Case Analysis

▶ Assume that reward function is bounded by r_{max}, i.e., max_{(x,u)∈X×U} |r(x,u)| ≤ r_{max}.
 ▶ We can give a worst case bound for b₀:

$$\sup_{\mathcal{M}^*} b_0 = \sup_{\mathcal{M}^*} ||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1-\gamma) \le r_{\max}\left(\frac{2}{1-\gamma}+1\right) \le \frac{4r_{\max}}{1-\gamma}$$

Applying this bound to Corollary 1, we have

$$\sup_{\mathcal{M}^*} T(\theta^*, \delta, \epsilon) \le \left\lceil c\left(\frac{r_{\max}^2}{\epsilon^2}\right) \frac{\log\left(\frac{D}{(1-\gamma)\delta}\right)\log\left(\frac{1}{(1-\gamma)\epsilon}\right)}{(1-\gamma)^4} \right\rceil$$

and the total number of epochs required is $M = c \log \left(\frac{r_{\text{max}}}{1-\gamma}\right)$ for some universal constant c.

Refine our analysis

▶ In the worst case, we require the following matrix samples:

$$\sup_{\mathcal{M}^*} T(\theta^*, \delta, \epsilon) \le \left\lceil c\left(\frac{r_{\max}^2}{\epsilon^2}\right) \frac{\log\left(\frac{D}{(1-\gamma)\delta}\right)\log\left(\frac{1}{(1-\gamma)\epsilon}\right)}{(1-\gamma)^4}\right\rceil$$

► If we do not start with zero vector (zero vector is the worst one), we can further improve this result by a good initial point such that $\bar{\theta}_0$ with $||\bar{\theta}_0 - \theta^*||_{\infty} \leq \frac{r_{\text{max}}}{\sqrt{1-\gamma}} \leq \frac{r_{\text{max}}}{1-\gamma}$.

Refined Sample Complexity of VRQL

Proposition 1 (Minimax optimality).

Consider a γ -discounted MDP with optimal Q-function θ^* , a given error probability $\delta \in (0, 1)$, and a given error tolerance. Then running variance-reduced Q-learning from in initial point $\bar{\theta}_0$ such that $||\bar{\theta}_0 - \theta^*||_{\infty} \leq \frac{r_{\max}}{\sqrt{1-\gamma}}$ for a total of $M = c \log \left(\frac{r_{\max}}{\sqrt{(1-\gamma)\epsilon}}\right)$ epochs using K and $\{N_m\}_{m=1}^M$ chosen according to the criteria (4), yields a solution $\bar{\theta}_M$ such that $||\bar{\theta}_M - \theta^*|| \leq \epsilon$ with probability at least $1 - \delta$. And the total number of matrix samples is bounded by

$$T_{\max}(\theta^*, \delta, \epsilon) = c \left(\frac{r_{\max}^2}{\epsilon^2}\right) \frac{\log\left(\frac{D}{(1-\gamma)\delta}\right)\log\left(\frac{1}{(1-\gamma)\epsilon}\right)}{(1-\gamma)^3}$$

Lower Bound on Generative Model

Definition 1 ((ϵ, δ)**-correct algorithm).**

Let θ be the output of some RL algorithm \mathbb{A} . We say that \mathbb{A} is (ϵ, δ) -correct on the class of MDPs $\mathbb{M} = \{\mathcal{M}_1^*, \mathcal{M}_2^*, \cdots\}$ if $||\theta^* - \theta||_{\infty} \leq \epsilon$ with probability at least $1 - \delta$ for all $\mathcal{M}^* \in \mathbb{M}$.

Theorem 2 (Lower bound on the sample complexity of RL with a generative model[1]). There exist some constants $\epsilon_0, \delta_0, c_1, c_2$ and a class of MDPs \mathbb{M} such that for all $\epsilon \in (0, \epsilon_0)$, $\delta \in (0, \delta_0/(|\mathcal{S}| \times |\mathcal{A}|))$, and every (ϵ, δ) -correct RL algorithm on the class of MDPs \mathbb{M} the total number of state-transition samples need to be least

$$T = \left\lceil \frac{|\mathcal{S}| \times |\mathcal{A}|}{c_1 \epsilon^2 (1 - \gamma)^3} \log \frac{|\mathcal{S}| \times |\mathcal{A}|}{c_2 \delta} \right\rceil$$

Sample Complexity of Ordinary Q-learning

Theorem 3 (Sublinear Convergence Rate of Q-learning).

Consider the stepsize $\lambda_k = \frac{1}{1+(1-\gamma)k}$. Then there exist a universal constant c such that running the empirical Bellman update (see Equation (2)) yields

$$\begin{split} \mathbb{E}\left[||\theta_{k+1} - \theta^*||\right] &\leq \frac{||\theta_1 - \theta^*||_{\infty}}{1 + (1 - \gamma)k} \\ &+ \frac{c}{1 - \gamma} \left\{ \frac{||\sigma(\theta^*)||_{\infty} \sqrt{\log(2D)}}{\sqrt{1 + (1 - \gamma)k}} + \frac{||\theta^*||_{span} \log(2eD(1 + (1 - \gamma)k))}{1 + (1 - \gamma)k} \right\} \end{split}$$

where
$$||\theta^*||_{span} = \max_{(x,u)} \theta^*(x,u) - \min_{(x,u)} \theta^*(x,u)$$
, and $||\sigma(\theta^*)||_{\infty} = \sqrt{\max_{(x,u)} \operatorname{Var}\left(\hat{\mathcal{T}}(\theta^*)(x,u)\right)}.$

(Remark) A high probability bound can also be derived by replacing $\log(D)$ with $\log(Dk/\delta)$. Theoretical Guarantees 39/98

Sample Complexity of Ordinary Q-learning (worst case)

Let's consider the worst case analysis.

$$\sup_{\mathcal{M}^*} ||\theta^*||_{\mathsf{span}} \leq \frac{2r_{\max}}{1-\gamma}, \qquad \text{and} \ \sup_{\mathcal{M}^*} ||\sigma(\theta^*)||_{\infty} \leq \frac{r_{\max}}{1-\gamma}$$

▶ In this way, we claim that ordinary Q-learning requires a total of

$$\sup_{\mathcal{M}^*} T(\epsilon, \gamma, \theta^*) = \mathcal{O}\left(\frac{r_{\max}^2}{(1-\gamma)^5}\right)$$

matrix samples to find an ϵ -optimal solution in expectation.

Discussion

- ► VRQL $(\mathcal{O}(1/(1-\gamma)^4))$ improves the upper bound compared to ordinary Q-learning $(\mathcal{O}(1/(1-\gamma)^5))$ in the worst case .
- Note that model-free methods (e.g., value iteration and q-learning) with the variance-reduction technique can often get better performance [4].
- To match the lower bound O(1/(1 γ)³), VRQL requires a good initial point. This is somewhat unsatisfying, because the same kind method of Variance-reduced Value Iteration
 [4] does not require this to match the lower bound.
- On the other hand, model-based methods do not require variance-reduction to match the lower bound [1].
 - Model-based methods first construct a virtual MDP $\hat{\mathcal{M}}$ with collected samples and then learns a (near-) optimal $\hat{\theta}^*$ on this recovered MDP.

Why variance-reduction is important for model-free methods?

- Technically, both model-free and model-based approaches use samples to estimate the expected Bellman update.
 - Naive model-free methods require a <u>union bound</u> accuracy for all iterations.
 - Model-based methods <u>only</u> need the estimate is accuracy for the optimal $\hat{\theta}^*$ on recovered MDP.

Proof Idea of Q-learning

- ▶ We start with the simplest case: Q-learning, which will be insightful for analysis of VRQL.
- ▶ We can rewrite the update rule of Q-learning (ref to Equation (2)) as:

$$\begin{aligned} \theta_{k+1} - \theta^* &= (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \left\{ \hat{\mathcal{H}}_k(\theta_k) + W_k \right\} \\ \hat{\mathcal{H}}_k(\theta_k) &= \hat{\mathcal{T}}_k(\theta_k) - \hat{\mathcal{T}}_k(\theta^*) \\ W_k &= \hat{\mathcal{T}}_k(\theta^*) - \mathcal{T}(\theta^*) \end{aligned}$$

• $\hat{\mathcal{H}}_k(\theta_k)$ is <u> γ -contractive</u> with respective to $||\theta_k - \theta^*||_{\infty}$.

• W_k is a $\underline{\theta_k}$ -independent noise term, which is governed by the statistical features (e.g., bounded value and variance) of θ^* .

Proofs of VRQL
Proof Idea of Q-learning

▶ Note that W_k incurs a stochastic process, which is independent of θ_k ,

$$P_k = (1 - \lambda_{k-1})P_{k-1} + \lambda_{k-1}W_{k-1}$$
, with initialization $P_1 = 0$

► Thanks to the linearity, by properly choosing two real-value series a_k (related to γ and $||P_k||$) and b_k (related to the initial value $||\theta_1 - \theta^*||_{\infty}$), we can show that (see [6] for details)

$$||\theta_k - \theta^*||_{\infty} \le b_k + a_k + ||P_k||_{\infty}$$

Proof Idea of Q-learning

Futhermore, when $\lambda_k = \frac{1}{1+(1-\gamma)k}$, we have (see [6] for details)

$$||\theta_{k+1} - \theta^*||_{\infty} \le \lambda_k \left\{ \frac{||\theta_1 - \theta^*||_{\infty}}{\lambda_1} + \gamma \sum_{\ell=1}^k ||P_\ell||_{\infty} \right\} + ||P_{k+1}||_{\ell}$$

▶ Hence, for ordinary Q-learning, we need to bound $||P_k||_{\infty}$ to estimate the converge rate.

Proof Idea of Q-learning

- ▶ Recall that $W_k = \hat{\mathcal{T}}_k(\theta^*) \mathcal{T}(\theta^*)$ is a zero-mean random matrix with bounded value $2||\theta^*||_{\infty}$ and the maximal variance $||\sigma(\theta^*)||_{\infty}^2$.
- Hence, we conclude that W_k satisfies Bernstein condition [5]. Using the inductive reasoning, we can show that $P_k(x, u)$ also satisfies certain Bernstein condition due to the linearity of the following stochastic process.

$$P_k = (1 - \lambda_{k-1})P_{k-1} + \lambda_{k-1}W_{k-1}$$
, with initialization $P_1 = 0$

Finally, we can apply a union bound to derive high probability bound for $||P_k||_{\infty}$.

- ▶ The high-level proof procedure of VRQL is similar to the one of ordinary Q-learning.
- The main difference (difficulty) is that the noise term W_k is not a zero-mean random matrix!

$$\begin{aligned} \theta_{k+1} - \theta^* &= (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \left\{ \hat{\mathcal{H}}_k(\theta_k) + W_k \right\} \\ \hat{\mathcal{H}}_k(\theta_k) &= \hat{\mathcal{T}}_k(\theta_k) - \hat{\mathcal{T}}_k(\theta^*) \\ W_k &= -\hat{\mathcal{H}}_k(\bar{\theta}) - \mathcal{T}(\theta^*) + \tilde{\mathcal{T}}_N(\bar{\theta}) \end{aligned}$$

where $\hat{\mathcal{H}}_k(\bar{\theta}) = \hat{\mathcal{T}}_k(\bar{\theta}) - \hat{\mathcal{T}}_k(\theta^*)$ is a centered operator.

 \blacktriangleright To use concentration inequalities, we need to separately "center" each term in W_k .

$$\begin{split} W_k &= -\hat{\mathcal{H}}_k(\bar{\theta}) - \mathcal{T}(\theta^*) + \tilde{\mathcal{T}}_N(\bar{\theta}) \\ &= -\hat{\mathcal{H}}_k(\bar{\theta}) + \underbrace{\tilde{\mathcal{T}}_N(\bar{\theta}) - \underbrace{\tilde{\mathcal{T}}_N(\theta^*)}_{\tilde{\mathcal{H}}_N(\bar{\theta})} + \check{\mathcal{T}}_N(\theta^*) - \mathcal{T}(\theta^*) \\ &= -\hat{\mathcal{H}}_k(\bar{\theta}) + \tilde{\mathcal{H}}_N(\bar{\theta}) + \left\{ \tilde{\mathcal{T}}_N(\theta^*) - \mathcal{T}(\theta^*) \right\} \end{split}$$

where we define $\tilde{\mathcal{H}}_N(\bar{\theta}) = \tilde{\mathcal{T}}_N(\bar{\theta}) - \tilde{\mathcal{T}}_N(\theta^*)$ as a centered operator.

Note that only the first term depends on the iteration k, while the last two terms do not.

- To apply concentration inequalities, we need to introduce the population operator for each uncentered term that appeared in W_k.
- ▶ Let's define the population operator $\mathcal{H}(\theta) := \mathcal{T}(\theta) \mathcal{T}(\theta^*)$, then

$$W_{k} = \underbrace{\left\{ \underbrace{\mathcal{H}(\bar{\theta}) - \hat{\mathcal{H}}_{k}(\bar{\theta})}_{W'_{k}} \right\}}_{W'_{k}} + \underbrace{\left\{ \underbrace{\tilde{\mathcal{H}}_{N}(\bar{\theta}) - \mathcal{H}(\bar{\theta})}_{W^{o}} \right\}}_{W^{o}} + \underbrace{\left\{ \underbrace{\tilde{\mathcal{T}}_{N}(\theta^{*}) - \mathcal{T}(\theta^{*})}_{W^{\dagger}} \right\}}_{W^{\dagger}}$$

- ► Again, we observe that only the first term W'_k is important for the induced stochastic process while the last two terms are independent over iteration k.
- ▶ Thus, we can similarly apply previous results by replacing W_k with W'_k to get P'_k .

Now, our target becomes to separately bound $||P'_k||_{\infty}$ (induced by W'_k), $||W^o||_{\infty}$ and $||W^{\dagger}||_{\infty}$.

$$W_{k} = \underbrace{\left\{ \underbrace{\mathcal{H}(\bar{\theta}) - \hat{\mathcal{H}}_{k}(\bar{\theta})}_{W_{k}'} \right\}}_{W_{k}'} + \underbrace{\left\{ \underbrace{\tilde{\mathcal{H}}_{N}(\bar{\theta}) - \mathcal{H}(\bar{\theta})}_{W^{\circ}} \right\}}_{W^{\circ}} + \underbrace{\left\{ \underbrace{\tilde{\mathcal{T}}_{N}(\theta^{*}) - \mathcal{T}(\theta^{*})}_{W^{\dagger}} \right\}}_{W^{\dagger}}$$

- Bounding $||P'_k||_{\infty}$ is also based on inductive reasoning of Bernstein inequalities.
- Bounding $||W^o||_\infty$ can directly use Hoeffding's inequality.
- Bounding $||W^\dagger||_\infty$ can smartly use Bernstein inequality since we know the variance.

Proof of Theorem 1

At a high-level argument, we prove Theorem 1 via an inductive argument.

$$||\bar{\theta}_M - \theta^*||_{\infty} \le \frac{||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1-\gamma)}{2^M}$$

- (Base case) Given the initialization $\bar{\theta}_0 = 0$, we prove that $\bar{\theta}_1$ satisfies such a bound with probability at least $1 \frac{\delta}{M}$.
- (Inductive step) In this step, we prove, with probability at least $1 \frac{\delta}{M}$, $\bar{\theta}_{m+1}$ satisfies such a bound with the assumption that it holds for $\bar{\theta}_m$.
- (Union bound) Finally, by taking a union bound over all M epochs of the algorithm we guarantee the bound holds uniformly for all $m = 1, \dots M$ with probability at least 1δ .

Proof of Theorem 1 - Base Case

- For the given initialization $\bar{\theta}_0 = 0$, we have $\hat{\mathcal{T}}_k(\bar{\theta}_0) = r$ and $\tilde{\mathcal{T}}_k(\bar{\theta}_0) = r$. Consequently, $\hat{\mathcal{T}}_k(\bar{\theta}_0) \tilde{\mathcal{T}}_k(\bar{\theta}_0) = 0$, so that the update rule reduces to the case of ordinary Q-learning with stepsize $\lambda_k = \frac{1}{1+(1-\gamma)k}$.
- According to the prior work [6], there is a universal constant c' > 0 such that after M iterations, we have

$$||\theta_{K+1} - \theta^*||_{\infty} \le \frac{||\theta^*||_{\infty}}{(1-\gamma)K} + c' \left\{ \frac{||\sigma(\theta^*)||_{\infty}\sqrt{\log(2DMK/\delta)}}{(1-\gamma)^{3/2}\sqrt{K}} + \frac{||\theta^*||_{\infty}\log\left(\frac{2eDMK}{\delta}(1+(1-\gamma)K)\right)}{(1-\gamma)^{2}K} \right\}$$

• Choosing $K = c \frac{\log(\frac{8MO}{\delta(1-\gamma)})}{(1-\gamma)^3}$ for a sufficient large constant c suffices to ensure that

$$||\theta_{K+1} - \theta^*|| \leq \frac{1}{2} \left\{ ||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1-\gamma) \right\} \text{ with probability at least } 1 - \frac{\delta}{M}$$

 \blacktriangleright For this step, we assume that the input $\bar{\theta}_m$ to epoch m satisfies the bound

$$||\bar{\theta}_m - \theta^*||_{\infty} \le \underbrace{\frac{||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1-\gamma)}{2^m}}_{=:b_m}$$

- Our target is to prove that $||\bar{\theta}_{m+1} \theta^*||_{\infty} \le b_{m+1} = \frac{b_m}{2}$.
- It turns out that if we can prove

$$||\bar{\theta}_{K+1} - \theta^*||_{\infty} \le cb_m \left\{ \frac{1}{1 + (1 - \gamma)K} + \frac{1}{1 - \gamma} \sqrt{\frac{\log(8MDK/\delta)}{1 + (1 - \gamma)K}} + \sqrt{\frac{4m\log(8MD/\delta)}{(1 - \gamma)^2 N_m}} \right\}$$
(5)

, K and N_m defined in Equation (4) are sufficient to prove the inductive step. Proofs of VRQL

Recall the update rule of VRQL

$$\theta_{k+1} = (1-\lambda)\theta + \lambda_k \left\{ \hat{\mathcal{T}}_k(\theta) - \hat{\mathcal{T}}_k(\bar{\theta}) + \tilde{\mathcal{T}}_N(\bar{\theta}) \right\}$$

Let's introduce the auxiliary recentered operators:

$$\hat{\mathcal{H}}_k(\theta) := \hat{\mathcal{T}}_k(\theta) - \hat{\mathcal{T}}_k(\theta^*)$$

▶ Thus, we can rewrite the VRQL update rule as

$$\theta_{k+1} - \theta_* = (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \Big\{ \underbrace{\hat{\mathcal{T}}_k(\theta_k) - \hat{\mathcal{T}}_k(\theta^*)}_{\hat{\mathcal{H}}_k(\theta_k)} \underbrace{-\hat{\mathcal{T}}_k(\bar{\theta}) + \hat{\mathcal{T}}_k(\theta^*)}_{\hat{\mathcal{H}}_k(\bar{\theta})} + \tilde{\mathcal{T}}_N(\bar{\theta}) - \mathcal{T}(\theta^*) \Big\} \\ = (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \Big\{ \hat{\mathcal{H}}_k(\theta_k) - \hat{\mathcal{H}}_k(\bar{\theta}) + \tilde{\mathcal{T}}_N(\bar{\theta}) - \mathcal{T}(\theta^*) \Big\}$$

▶ Continue to the last page, let $W_k = -\hat{\mathcal{H}}_k(\bar{\theta}) + \tilde{\mathcal{T}}_N(\bar{\theta}) - \mathcal{T}(\theta^*)$, we have

$$\theta_{k+1} - \theta_* = (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \left\{ \hat{\mathcal{H}}_k(\theta_k) \underbrace{-\hat{\mathcal{H}}_k(\bar{\theta}) + \tilde{\mathcal{T}}_N(\bar{\theta}) - \mathcal{T}(\theta^*)}_{W_k} \right\}$$

$$= (1 - \lambda_k)(\theta_k - \theta^*) + \lambda_k \left\{ \hat{\mathcal{H}}_k(\theta_k) + W_k \right\}$$
(6)

We can view W_k as a <u>random noise sequence</u>, which defines the following auxiliary stochastic progress:

$$P_k := (1 - \lambda_{k-1})P_{k-1} + \lambda_{k-1}W_{k-1},$$
 with initialization $P_1 = 0$

Note that the operator $\hat{\mathcal{H}}_k(\theta) := \hat{\mathcal{T}}_k(\theta) - \hat{\mathcal{T}}_k(\theta^*)$ is monotonic respect to the orthant ordering and γ -contractive with respect to the ℓ_{∞} -norm.

Corollary 2.

[Adapted from the paper [6]] For all iterations $k=1,2,\cdots$, we have

$$||\theta_{k+1} - \theta^*||_{\infty} \le \frac{2}{1 + (1 - \gamma)k} \left\{ ||\theta_1 - \theta^*||_{\infty} + \sum_{\ell=1}^k ||P_\ell||_{\infty} \right\} + ||P_{k+1}||_{\infty}$$

- In order to derive a concrete result based on Corollary 2, we need to obtain high-probability upper bounds on the terms ||P_ℓ||_∞.
- ▶ Note that P_k relies on the stochastic process induced by W_k :

$$W_{k} = -\hat{\mathcal{H}}_{k}(\bar{\theta}) + \underbrace{\tilde{\mathcal{T}}_{N}(\bar{\theta}) - \tilde{\mathcal{T}}_{N}(\theta^{*})}_{\tilde{\mathcal{H}}_{N}(\bar{\theta})} + \underbrace{\tilde{\mathcal{T}}_{N}(\theta^{*}) - \mathcal{T}(\theta^{*})}_{\tilde{\mathcal{H}}_{N}(\bar{\theta})} = -\hat{\mathcal{H}}_{k}(\bar{\theta}) + \tilde{\mathcal{H}}_{N}(\bar{\theta}) + \left\{\tilde{\mathcal{T}}_{N}(\theta^{*}) - \mathcal{T}(\theta^{*})\right\}$$

where $ilde{H}_N(heta) := ilde{\mathcal{T}}_N(heta) - ilde{\mathcal{T}}_N(heta^*).$

▶ Let's define the population operator $\mathcal{H}(\theta) := \mathcal{T}(\theta) - \mathcal{T}(\theta^*)$ to center, then

$$W_{k} = \underbrace{\left\{ \underbrace{\mathcal{H}(\bar{\theta}) - \hat{\mathcal{H}}_{k}(\bar{\theta}) \right\}}_{W'_{k}} + \underbrace{\left\{ \underbrace{\tilde{\mathcal{H}}_{N}(\bar{\theta}) - \mathcal{H}(\bar{\theta}) \right\}}_{W^{o}} + \underbrace{\left\{ \underbrace{\tilde{\mathcal{T}}_{N}(\theta^{*}) - \mathcal{T}(\theta^{*}) \right\}}_{W^{\dagger}}}_{W^{\dagger}}$$

Continue to the last page,

$$W_{k} = \underbrace{\left\{ \underbrace{\mathcal{H}(\bar{\theta}) - \hat{\mathcal{H}}_{k}(\bar{\theta})}_{W'_{k}} \right\}}_{W'_{k}} + \underbrace{\left\{ \underbrace{\tilde{\mathcal{H}}_{N}(\bar{\theta}) - \mathcal{H}(\bar{\theta})}_{W^{o}} \right\}}_{W^{o}} + \underbrace{\left\{ \underbrace{\tilde{\mathcal{T}}_{N}(\theta^{*}) - \mathcal{T}(\theta^{*})}_{W^{\dagger}} \right\}}_{W^{\dagger}}$$

▶ We note that W^o and W^{\dagger} are independent of k, thus using inductive reasoning, we can prove that (the original paper states that $P_k \leq W^o + W^{\dagger} + P'_k$. However, this inequality is ill-conditioned for the base case (k = 2).)

$$P_k \preceq W^o + W^\dagger + P'_k$$

▶ Thus, we can decompose the error bound of $||P_{\ell}||_{\infty}$ in Corollary 2 into that (note that $||\theta_1 - \theta^*|| \le b$)

$$||\theta_{K+1} - \theta^*||_{\infty} \le \frac{2b}{1 + (1 - \gamma)K} + 3\left\{\frac{||W^\circ||_{\infty} + ||W^\dagger||_{\infty}}{1 - \gamma}\right\} + \left\{\frac{2\sum_{\ell=1}^K ||P_\ell'||_{\infty}}{1 + (1 - \gamma)K} + ||P_{K+1}'||_{\infty}\right\}$$
(7)

▶ In the next, we will bound the noise terms W^o and W^{\dagger} , and the stochastic process $\{P'_k\}_{k\geq 1}$ separately.

Proof of Theorem 1 - Inductive Step: Bounding the recentering terms

Lemma 1 (High probability bounds on recentering terms).

Fix an arbitrary $\delta \in (0, 1)$. (a) If $||\bar{\theta} - \theta^*||_{\infty} \leq b_m$, then there is a universal constant c such that (Note that the origin paper does not consider the constant c, but it should be! And this constant does not change the final result.)

$$||W^o||_{\infty} \leq c4b_m \sqrt{rac{\log(8MD/\delta)}{N}}$$
 with prob. at least $1 - rac{\delta}{3M}$

(b) There is a universal constant c such that

$$||W^{\dagger}||_{\infty} \leq c \left\{ ||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1-\gamma) \right\} \sqrt{\frac{\log(8MD/\delta)}{N}} \quad \text{with prob. at least } 1 - \frac{\delta}{3M}$$

Proof of Lemma 1 - Bounding W^o

 \blacktriangleright Recall the definition of W^o :

$$W^{o} = \tilde{\mathcal{H}}_{N}(\bar{\theta}) - \mathcal{H}(\bar{\theta}) = \left\{ \tilde{\mathcal{T}}_{N}(\bar{\theta}) - \tilde{\mathcal{T}}_{N}(\theta^{*}) \right\} - \left\{ \mathcal{T}(\bar{\theta}) - \mathcal{T}(\theta^{*}) \right\}$$

- Thus, each entry of W^o is a zero mean, i.i.d. sum of N random variables bounded in absolute value by 2b_m.
- By Hoeffding's inequality, we have

$$||W^o||_\infty \leq c4b_m \sqrt{\frac{\log(8MD/\delta)}{N}} \qquad \text{with prob. at least } 1-\frac{\delta}{3M}$$

Proof of Lemma 1 - Bounding W^{\dagger}

• Recall the definition of W^{\dagger} :

$$W^{\dagger} = \tilde{\mathcal{T}}_N(\theta^*) - \mathcal{T}(\theta^*)$$

- ▶ Note that W^{\dagger} is a sum of N i.i.d. terms, each of which is bounded in absolute value by $||\theta^*||_{\infty}$ and has the variance $\sigma^2(\theta^*)$.
- ▶ By Bernstein's inequality, there is a universal constant c such that with prob. $1 \frac{\delta}{3M}$, we have

$$||\tilde{\mathcal{T}}_N(\theta)^* - \mathcal{T}(\theta^*)||_{\infty} \le c \left\{ ||\sigma(\theta^*)||_{\infty} \sqrt{\frac{\log(8MD/\delta)}{N}} + \frac{||\theta^*||_{\infty} \log(8MD/\delta)}{N} \right\}$$

Proof of Lemma 1 - Bounding W^{\dagger}

 \blacktriangleright Note that our choice of $N \geq c \frac{4^m \log(8MD/\delta)}{(1-\gamma)^2}$, we further have

$$\begin{split} ||\tilde{\mathcal{T}}_{N}(\theta)^{*} - \mathcal{T}(\theta^{*})||_{\infty} &\leq c \left\{ ||\sigma(\theta^{*})||_{\infty} \sqrt{\frac{\log(8MD/\delta)}{N}} + \frac{||\theta^{*}||_{\infty} \log(8MD/\delta)}{N} \right\} \\ &= c \sqrt{\frac{\log(8MD/\delta)}{N}} \left\{ ||\sigma(\theta^{*})||_{\infty} + ||\theta^{*}||_{\infty} \sqrt{\frac{\log(8MD/\delta)}{N}} \right\} \\ &\leq c \sqrt{\frac{\log(8MD/\delta)}{N}} \left\{ ||\sigma(\theta^{*})||_{\infty} + ||\theta^{*}||_{\infty} (1 - \gamma) \right\} \end{split}$$

Proof of Theorem 1 - Inductive Step: Bounding the stochastic process

Lemma 2 (High probability on noise).

There is a universal constant c > 0 such that for any $\delta \in (0, 1)$

$$\left\{\frac{2\sum_{\ell=1}^{K}||P_{\ell}'||_{\infty}}{1+(1-\gamma)K}+||P_{K+1}'||_{\infty}\right\} \le \frac{cb_m}{1-\gamma}\sqrt{\frac{2\log(8MDK/\delta)}{1+(1-\gamma)K}}$$

with probability as least $1 - \frac{\delta}{3M}$.

Applying the bounds of Lemma 1 and 2 into Equation (7): there are universal constant c, c' such that

$$\begin{aligned} \frac{||\theta_{K+1} - \theta^*||_{\infty}}{b_m} &\leq \frac{2}{1 + (1 - \gamma)K} + c' \left\{ 1 + \frac{||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1 - \gamma)}{b_m} \right\} \sqrt{\frac{\log(8MD/\delta)}{(1 - \gamma)^2 N}} \\ &+ \frac{c}{1 - \gamma} \sqrt{\frac{\log(8MDK/\delta)}{1 + (1 - \gamma)K}} \end{aligned}$$

with probability at least $1 - \frac{\delta}{M}$.

▶ Recall that $b_m = \frac{||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1-\gamma)}{2^m}$, we conclude that

$$\left\{1 + \frac{||\sigma(\theta^*)||_{\infty} + ||\theta^*||_{\infty}(1-\gamma)}{b_m}\right\} \sqrt{\frac{\log(8MD/\delta)}{(1-\gamma)^2N}} \le c'' \sqrt{\frac{4^m \log(8MD/\delta)}{(1-\gamma)^2N}}$$

 \blacktriangleright Putting together the pieces, with probability at least $1-\frac{\delta}{M}$, we have

$$\frac{||\theta_{K+1} - \theta^*||_{\infty}}{b_m} \le c \left\{ \frac{1}{1 + (1 - \gamma)K} + \sqrt{\frac{4^m \log(8MD/\delta)}{(1 - \gamma)^2 N}} + \frac{1}{1 - \gamma} \sqrt{\frac{\log(8MDK/\delta)}{1 + (1 - \gamma)K}} \right\}$$

b By our choice of N_m and K, we complete the desired claim in Equation (5).

• We prove Lemma 2 by two steps. In the first step, we prove by induction that the MGF of $P'_k(x, u)$ is bounded by

$$\log \mathbb{E}[e^{sP'_k(x,u)}] \le \frac{b_m^2 s^2 \lambda_{k-1}}{8} \quad \text{for all } s \in \mathbb{R}$$
(8)

Combining the Chernoff bounding technique and the union bound, we find that there is a universal constant c such that

$$\Pr\left[||P'_{\ell}||_{\infty} \ge cb_m \sqrt{\lambda_{k-1}} \sqrt{\log 8KMD/\delta}\right] \le \frac{\delta}{3KM}$$

 \blacktriangleright Taking a union bound over all K iterations, we find that

$$\frac{2\sum_{\ell=1}^{K}||P_{\ell}'||_{\infty}}{1+(1-\gamma)K} + ||P_{K+1}'||_{\infty} \le \frac{cb_m}{1+(1-\gamma)K}\sqrt{\log(8KMD/\delta)} \left\{ \sum_{\ell=1}^{K} \sqrt{\lambda_{\ell-1}} + \sqrt{\lambda_K} \right\}$$

with probability at least $1 - \frac{\delta}{3M}$.

From the proof of Corollary 3 in the paper [6], we have

$$\sum_{\ell=1}^{K} \sqrt{\lambda_{\ell-1}} + \sqrt{\lambda_K} \le c \frac{\sqrt{1 + (1-\gamma)k}}{1-\gamma}$$

Putting together these pieces yields the claim bound Lemma 2.

Proof of Equation (8)

► Recall the stochastic process $\{P'_k\}_{k\geq 1}$ evolves the recursion $P'_{k+1} = (1 - \lambda_k)P'_k + \lambda_k W'_k$, where

$$W'_k := \mathcal{H}(\bar{\theta}) - \hat{\mathcal{H}}_k(\bar{\theta}) = \{\mathcal{T}(\theta) - \mathcal{T}(\theta^*)\} - \left\{\hat{\mathcal{T}}_k(\bar{\theta}) - \hat{\mathcal{T}}_k(\theta^*)\right\}$$

- Similarly, we see that each entry of W'_k is a zero-mean random variable with the absolute value by $b_m := ||\bar{\theta} \theta^*||$.
- Using the Hoeffding inequality, we have that

$$\log \mathbb{E}\left[e^{sW'_k(x,u)}\right] \leq \frac{s^2 b_m^2}{8} \quad \text{for all } s \in \mathbb{R}$$

Proof of Equation (8) - Base case

▶ We will use the above bound to prove the following claim (ref to Equation (8)) by induction.

$$\log \mathbb{E}[e^{sP_k'(x,u)}] \le \frac{b_m^2 s^2 \lambda_{k-1}}{8} \qquad \text{for all } s \in \mathbb{R}$$

Base case (k=1): The case k = 1 is trivial since $P'_1 = 0$ by definition.

▶ Base case (k=2): When k = 2, we have $P'_2 = \lambda_1 W'_1$, and hence

$$\log \mathbb{E}[e^{sP'_2(x,u)}] = \log \mathbb{E}[e^{s\lambda_1 W'_1(x,u)}] \le \frac{s^2\lambda_1^2 b_m^2}{8} \le \frac{s^2\lambda_1 b_m^2}{8}$$

where the last inequality follows from the fact that $\lambda_k = \frac{1}{1+(1-\gamma)} \leq 1$.

Proof of Equation (8) - Inductive step

Now we assume that Equation (8) holds for some iteration k ≥ 2, and we verify that it holds for iteration k + 1.

$$\log \mathbb{E}[e^{sP'_{k+1}(x,u)}] = \log \mathbb{E}[e^{s(1-\lambda_k)P'_k(x,u)}] + \log \mathbb{E}[e^{s\lambda_k P'_k(x,u)}] \\ \leq \frac{s^2(1-\lambda_k)^2\lambda_{k-1}b_m^2}{8} + \frac{s^2(1-\lambda_k)^2b_m^2}{8}$$

• We can show that (details not given) based on the definition that $\lambda_k = \frac{1}{1+(1-\gamma)k}$

$$(1 - \lambda_k)\lambda_{k-1} \le \lambda_k$$

Consequently, we can prove that

$$\frac{s^2(1-\lambda_k)^2\lambda_{k-1}b_m^2}{8} + \frac{s^2(1-\lambda_k)^2b_m^2}{8} \le \frac{s^2(1-\lambda_k)\lambda_kb_m^2}{8} + \frac{s^2(1-\lambda_k)^2b_m^2}{8} = \frac{s^2\lambda_kb_m^2}{8}$$
Proofs of VRQL

Proof of Proposition 1 - Base case

Again, at a high level, the proof is based on the stated condition $(||\theta_0 - \theta^*||_{\infty} \leq \frac{r_{\max}}{\sqrt{1-\gamma}})$ to show that

$$||\bar{\theta}_m - \theta^*||_{\infty} \le \frac{1}{2^m} \frac{r_{\max}}{\sqrt{1 - \gamma}} \qquad \text{for all } m = 1, \cdots, M \tag{9}$$

• The base case (k = 0) holds trivially and we will focus on the inductive step.

• By hypothesis, for $k \ge 1$ we have (with a little abuse of b_m)

$$||\bar{\theta} - \theta^*||_{\infty} \le b_m := \frac{1}{2^m} \frac{r_{\max}}{\sqrt{1 - \gamma}}$$

Proof of Proposition 1 - Inductive Step

In this case, our analysis involves two operators

$$\hat{\mathcal{J}}_k(heta) := \hat{\mathcal{T}}_k(heta) - \hat{\mathcal{T}}_k(ar{ heta}) + ilde{\mathcal{T}}_N(ar{ heta}) ext{ and } \mathcal{J}(heta) := \mathcal{T}(heta) - \mathcal{T}(ar{ heta}) + ilde{\mathcal{T}}_N(ar{ heta})$$

Note that the variance-reduced Q-learning updates can be written as

$$\theta_{k+1} = (1 - \lambda_k)\theta_k + \lambda_k \hat{\mathcal{J}}_k(\theta_k)$$
(10)

Note that *J* is γ-contractive, thus it has a unique fixed point, which we denote by θ̂.
 Since *J*(θ) = ℝ[Ĵ_k(θ)] by construction, it is natural to analyze the convergence of θ_k to θ̂.

$$||\theta_{K+1} - \theta^*||_{\infty} \le ||\theta_{K+1} - \hat{\theta}||_{\infty} + ||\hat{\theta} - \theta^*||_{\infty}$$

Proof of Proposition 1 - Inductive Step

Lemma 3. After $K = c_1 \frac{\log(\frac{8MD}{(1-\gamma)\delta})}{(1-\gamma)^3}$ iterations, we are guaranteed that

$$||\theta_{K+1} - \hat{\theta}||_{\infty} \le \frac{b_m}{4} + \frac{1}{4}||\hat{\theta} - \theta^*||_{\infty}$$

with probability at least $1 - \frac{\delta}{2M}$.

Lemma 4.

Given a sample size $N_m = c_2 4^m \frac{\log(MD/\delta)}{(1-\gamma)^2}$, we have

$$||\hat{\theta} - \theta^*||_{\infty} \le \frac{b_m}{5}$$

with probability at least $1 - \frac{\delta}{2M}$. Proofs of VRQL

Proof of Proposition 1 - Inductive Step

Combining Lemma 4 and Lemma 4, we have

$$\begin{aligned} ||\theta_{K+1} - \theta^*||_{\infty} &\leq \left\{ \frac{b_m}{4} + \frac{1}{4} ||\hat{\theta} - \theta^*||_{\infty} \right\} + ||\hat{\theta} - \theta^*||_{\infty} \\ &\leq \frac{b_m}{2} \end{aligned}$$

Thus, we verify the claim of Equation (9). The computation of total samples is similar to what we have done:

$$KM + \sum_{m=1}^{M} N_m$$

► For VQRL, we have that the $K = c \log \frac{r_{\max}}{\epsilon \sqrt{1-\gamma}}$. It is clear that the discount complexity is reduced.

• We rewrite Equation (9) as subtracting the fixed point of $\hat{\theta}$ of \mathcal{J} :

$$\theta_{k+1} - \hat{\theta} = (1 - \lambda_k)(\theta_k - \hat{\theta}) + \lambda_k \left(\hat{\mathcal{J}}_k(\theta_k) - \hat{\mathcal{J}}_k(\hat{\theta})\right) + \lambda_k \underbrace{\left(\hat{\mathcal{J}}_k(\hat{\theta}) - \mathcal{J}(\hat{\theta})\right)}_{E_k}$$

We can similarly to apply Corollary 2 (see also Equation (6)). In this case, the noise term is given by (with a little abuse of notation, we previously use W_k to denote the noise term):

$$E_k := \hat{\mathcal{J}}_k(\hat{\theta}) - \mathcal{J}(\hat{\theta}) = \left\{ \hat{\mathcal{T}}_k(\hat{\theta}) - \hat{\mathcal{T}}_k(\bar{\theta}) \right\} - \left\{ \mathcal{T}_k(\hat{\theta}) - \mathcal{T}_k(\bar{\theta}) \right\}$$

• Consequently, we have $||E_k||_{\infty} \leq 2||\hat{\theta} - \bar{\theta}||_{\infty}$.

▶ By applying Corollary 1 from the paper [6], we have

$$||\theta_{K+1} - \hat{\theta}||_{\infty} \le \frac{2}{1 + (1 - \gamma)K} \left\{ ||\bar{\theta} - \hat{\theta}||_{\infty} + \sum_{\ell=1}^{K} ||P_{\ell}||_{\infty} \right\} + ||P_{K+1}||_{\ell}$$

where the auxiliary stochastic process evolves as $P_k = (1 - \lambda_{k-1})P_{k-1} + \lambda_{k-1}E_{k-1}$.

▶ Following the same line of argument as in the proof of Lemma 2, we find that

$$||\theta_{K+1} - \hat{\theta}||_{\infty} \le c \left\{ \frac{||\bar{\theta} - \hat{\theta}||_{\infty}}{1 + (1 - \gamma)K} + \frac{||\bar{\theta} - \hat{\theta}||_{\infty}}{(1 - \gamma)^{3/2}\sqrt{K}} \right\} \sqrt{\log(8MD/\delta)}$$

with probability at least $1 - \frac{\delta}{2M}$.

▶ With the choice of
$$K = c_1 \frac{\log\left(\frac{8MD}{(1-\gamma)\delta}\right)}{(1-\gamma)^3}$$
, we are guaranteed that

$$||\theta_{K+1} - \hat{\theta}||_{\infty} \le \frac{1}{4} ||\bar{\theta} - \hat{\theta}||_{\infty} \le \frac{1}{4} ||\bar{\theta} - \theta^*||_{\infty} + \frac{1}{4} ||\hat{\theta} - \theta^*||_{\infty}$$

- Note that θ̂ is the fixed point of the operator J(θ) := T(θ) − T(θ̄) + T̃_N(θ̄), and hence can be viewed as a fixed point of the population Bellman operator defined with perturbed reward function r̃ with each entry r̃(x, u) = r(x, u) + [T̃(θ̄) − T(θ̄)] (x, u).
- ▶ The following lemma guarantees that this perturbation is relatively small.

Lemma 5 (Bounds on perturbed reward).

For any matrix $\overline{ heta}$ such that $||\overline{ heta} - heta^*||_\infty \leq b_m$, we have

$$|\tilde{r} - r| \leq c(b_m \mathbf{1} + \sigma(\theta^*)) \sqrt{\frac{\log(8MD/\delta)}{N}} + c' ||\theta^*||_{\infty} \frac{\log(8MD/\delta)}{N} \mathbf{1}$$

with probability at least $1 - \frac{\delta}{8M}$, where 1 denotes the unit vector.
- We still need a lemma that provides elementwise upper bounds on the absolute difference $|\theta^* \hat{\theta}|$ in terms of the absolute difference $|\tilde{r} r|$.
- Let's define \mathbb{P}^{π^*} as the linear operator defined by the policy π^* that is optimal with respect to θ^* , and similarly let $P^{\hat{\pi}}$ be the linear operator defined by the policy $\hat{\pi}$ that is optimal with respect to $\hat{\theta}$.

Lemma 6 (Elementwise bounds).

We have the elementwise upper bound:

$$|\theta^* - \hat{\theta}| \leq \max\left\{ (\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} |\tilde{r} - r|, (\mathbb{I} - \gamma \mathbb{P}^{\hat{\pi}})^{-1} |\tilde{r} - r| \right\}$$

Proof of Lemma 4 - Upper bounding $(\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} |\tilde{r} - r|$

Based on Lemma 5, we have

$$\begin{aligned} (\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} |\tilde{r} - r| &\leq c \left(\frac{b_m}{1 - \gamma} + ||\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} \sigma(\theta^*)||_{\infty} \right) \sqrt{\frac{\log(8MD/\delta)}{N}} \mathbf{1} \\ &+ c' \frac{||\theta^*||_{\infty}}{1 - \gamma} \frac{\log(8MD/\delta)}{N} \mathbf{1} \end{aligned}$$

where we have used the fact that $||(\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1}u||_{\infty} \leq \frac{||u||_{\infty}}{1-\gamma}$ for any vector u. According to Lemma 8 in [1], we have

$$||(\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} \sigma(\theta^*)||_{\infty} \le \frac{4}{(1-\gamma)^{3/2}} \le \frac{4(2^m)}{1-\gamma} b_m$$

where the last step follows our notation that $b_m=\frac{1}{2^m}\frac{1}{\sqrt{1-\gamma}}.$ Proofs of VRQL

Proof of Lemma 4 - Upper bounding $(\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} |\tilde{r} - r|$

Similarly, we also have that

$$\frac{||\theta^*||_{\infty}}{1-\gamma} \le \frac{1}{(1-\gamma)^2} \le \frac{2^m b_m}{(1-\gamma)^{3/2}}$$

Putting together pieces yields the elementwise bound

$$(\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} |\tilde{r} - r| \leq b_m \Phi(N, m, \gamma) \mathbf{1}$$

where we define the non-negative scalar

$$\Phi(N,m,\gamma) := c' \left\{ \frac{2^m}{1-\gamma} \sqrt{\frac{\log(8MD/\delta)}{N}} + \frac{2^m}{(1-\gamma)^{3/2}} \frac{\log(8MD/\delta)}{N} \right\}$$

Proof of Lemma 4 - Upper bounding $(\mathbb{I} - \gamma \mathbb{P}^{\hat{\pi}})^{-1} |\tilde{r} - r|$

• The only difference with the previous derivation is the term regarding $\sigma(\theta^*)$.

▶ Again, according to [1] we are guaranteed that

$$||\mathbb{I} - \gamma \mathbb{P}^{\hat{\pi}})^{-1} \sigma(\hat{\theta})||_{\infty} \le \frac{4}{(1-\gamma)^{3/2}}.$$

• Moreover, we have $\sigma(\theta^*) \preceq \sigma(\hat{\theta}) + |\hat{\theta} - \theta^*|$.

Combining the pieces, we are guaranteed to have the elementwise bound

$$(\mathbb{I} - \gamma \mathbb{P}^{\hat{\pi}})^{-1} |\tilde{r} - r| \leq b_m \Phi(N, m, \gamma) \mathbf{1} + c \frac{|\hat{\theta} - \theta^*|}{1 - \gamma} \sqrt{\frac{\log(8MD/\delta)}{N}}$$

Proof of Lemma 4 - Upper bounding $(\mathbb{I} - \gamma \mathbb{P}^{\hat{\pi}})^{-1} |\tilde{r} - r|$

Combining the previous bounds with Lemma 6, we find

$$|\hat{\theta} - \theta^*| \leq b_m \Phi(N, m, \gamma) \mathbf{1} + c \frac{|\hat{\theta} - \theta^*|}{1 - \gamma} \sqrt{\frac{\log(8MD/\delta)}{N}}$$

- Our choice of N ensures that $\frac{c}{1-\gamma}\sqrt{\frac{\log(8MD/\delta)}{N}} \leq \frac{1}{2}$, so that we have established the upper bound $||\hat{\theta} \theta^*||_{\infty} \leq 2b_m \Phi(N, m, \gamma)$.
- Finally, we see that our choice of N ensures that $||\Phi(N, m, \gamma)||_{\infty} \leq \frac{1}{10}$, so that we complete the proof of Lemma 6.

• Starting with the definition of \tilde{r} we have

$$egin{aligned} | ilde{r}-r|&=\left| ilde{\mathcal{T}}_N(ar{ heta})-\mathcal{T}(ar{ heta})
ight|\ &\leq \left|\left(ilde{\mathcal{T}}_N(ar{ heta})- ilde{\mathcal{T}}_N(m{ heta}^*)
ight)-\left(\mathcal{T}(ar{ heta})-\mathcal{T}(m{ heta}^*)
ight)
ight|+\left| ilde{\mathcal{T}}_N(m{ heta}^*)-\mathcal{T}(m{ heta}^*)
ight. \end{aligned}$$

▶ By definition, the random matrix $\left(\tilde{\mathcal{T}}_N(\bar{\theta}) - \tilde{\mathcal{T}}_N(\theta^*)\right)$ is the sum of N i.i.d terms, with each entry are uniformly bounded by $\gamma ||\bar{\theta} - \theta^*||_{\infty} \leq b_m$. Consequently, with a combination of Hoeffding's inequality and the union bound, we find that

$$\left\| \left(\tilde{\mathcal{T}}_N(\bar{\theta}) - \tilde{\mathcal{T}}_N(\theta^*) \right) - \left(\mathcal{T}(\bar{\theta}) - \mathcal{T}(\theta^*) \right) \right\|_{\infty} \le 4b_m \sqrt{\frac{\log(8MD/\delta)}{N}}$$

with probability at least $1-\frac{\delta}{4M}.$ Proofs of VRQL

 \blacktriangleright Turning to the term $|\tilde{\mathcal{T}}_N(\theta^*)-\mathcal{T}(\theta^*)|,$ by a Bernstein inequality, we have

$$|\tilde{\mathcal{T}}_N(\theta^*) - \mathcal{T}(\theta^*)| \le c \left\{ \sigma(\theta^*) \sqrt{\frac{\log(8MD/\delta)}{N}} + ||\theta^*||_{\infty} \frac{\log(8MD/\delta)}{N} \right\}$$

- ▶ In this proof, we make use of the function $|u|_{+} = \max\{u, 0\}$, applied elementwise to a vector u.
- Note that we have |u| = max{|u|₊, | − u|₊} by definition, thus it suffices to prove that two elementwise bounds:

$$|\theta^* - \hat{\theta}|_+ \preceq (\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} |\tilde{r} - r| \qquad \text{and} \ |\theta^* - \hat{\theta}|_+ \preceq (\mathbb{I} - \gamma \mathbb{P}^{\hat{\pi}})^{-1} |\tilde{r} - r|$$

Recall that θ^* and $\hat{\theta}$ are the optimal Q-functions for the reward functions r and \tilde{r} , respectively. By this optimality, we have

$$\hat{\theta} = \tilde{r} + \gamma \mathbb{P}^{\hat{\pi}} \hat{\theta} \succeq \tilde{r} + \gamma \mathbb{P}^{\pi^*} \hat{\theta} \qquad \text{and} \ \theta^* = r + \gamma \mathbb{P}^{\pi^*} \theta^* \succeq r + \gamma \mathbb{P}^{\hat{\pi}} \theta^*$$

Proof of Lemma 6 - The first term

Using these relations, we can rewrite that

$$\begin{aligned} \theta^* - \hat{\theta} &= (r - \tilde{r}) + \gamma \mathbb{P}^{\pi^*} \theta^* - \mathbb{P}^{\hat{\pi}} \hat{\theta} \leq |\tilde{r} - r| + \gamma \mathbb{P}^{\pi^*} (\theta^* - \hat{\theta}) \\ &\leq |\tilde{r} - r| + \gamma \mathbb{P}^{\pi^*} |\theta^* - \hat{\theta}|_+ \end{aligned}$$

Since the RHS is non-negative, the above inequality implies that

$$|\theta^* - \hat{\theta}|_+ \le |\tilde{r} - r| + \gamma \mathbb{P}^{\pi^*} |\theta^* - \hat{\theta}|_+$$

Rearranging, we have that

$$|\theta^* - \hat{\theta}|_+ \preceq (\mathbb{I} - \gamma \mathbb{P}^{\pi^*})^{-1} |\tilde{r} - r|$$

Proof of Lemma 6 - The second term

▶ Using the same reasoning, we have that

$$\hat{\theta} - \theta^* = (r - \tilde{r}) + \gamma \mathbb{P}^{\hat{\pi}} \hat{\theta} - \gamma \mathbb{P}^{\pi^*} \theta^*$$
$$\leq |\tilde{r} - r| + \gamma \mathbb{P}^{\hat{\pi}} (\hat{\theta} - \theta^*)$$
$$\leq |\tilde{r} - r| + \gamma \mathbb{P}^{\hat{\pi}} |\hat{\theta} - \theta^*|_+$$

► Therefore, we can prove that

$$|\hat{\theta} - \theta^*|_+ \leq (\mathbb{I} - \gamma \mathbb{P}^{\hat{\pi}})^{-1} |\tilde{r} - r|$$

References I

- Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J. Kappen. Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model. <u>Machine Learning</u>, 91(3):325–349, 2013.
- [2] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In <u>Proceedings of the 27th Annual Conference on Neural Information</u> <u>Processing Systems</u>, pages 315–323, 2013.
- [3] Martin L. Puterman. <u>Markov Decision Processes: Discrete Stochastic Dynamic</u> Programming. Wiley Series in Probability and Statistics. Wiley, 1994.
- [4] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and faster algorithms for solving markov decision processes. In <u>Proceedings of the 29th Annual</u> <u>ACM-SIAM Symposium on Discrete Algorithms</u>, pages 770–787, 2018.

References II

- [5] Martin J Wainwright. <u>High-dimensional statistics: A non-asymptotic viewpoint</u>. Cambridge University Press, 2019.
- [6] Martin J. Wainwright. Stochastic approximation with cone-contractive operators: sharp bounds for q-learning. arXiv, 1905.06265, 2019.
- [7] Martin J. Wainwright. Variance-reduced q-learning is minimax optimal. <u>arXiv</u>, 1906.04697, 2019.

Acknowledgement

The presenter appreciates insightful comments and instructions from Yingru Li, Hao Liang, and Tian Xu.