
Variance-reduced Q-learning is minimax optimal

Ziniu Li
liziniu1997@gmail.com

(incoming Ph.D. student at SDS)

The Chinese University of Hong Kong, Shenzhen, China

July 9, 2020

Summer Seminar of CUHK, Shenzhen

Mainly based on:

Wainwright, Martin J. ”Variance-reduced Q-learning is minimax optimal.” arXiv preprint arXiv:1906.04697 (2019).

Target

I We will briefly talk about the complexity of sequential decision-making, but mainly focus on

the sample complexity under a generative model.

I We will illustrate the famous method called Q-learning and demonstrate the effectiveness of

the variance-reduction technique.

I We will briefly explain the proof ideas for Q-learning and variance-reduced Q-learning.

Introduction & Background 3 / 98

Markov Decision Process

I Consider an infinite-horizon Markov Decision Process M∗ = (S,A, P,R, γ, d0) [3].

– S and A are the state and action space, respectively.

– P determines the transition probability of st+1 conditioned on st and at.

– R is the reward function, which is often assumed to be deterministic and is bounded within

the range [0, 1].

– γ ∈ [0, 1) is a discount factor.

– d0 specifies the initial state distribution.

Introduction & Background 4 / 98

Markov Decision Process

I The decision process is characterized as follows:

– At the beginning of the epoch, the environment resets to some initial state s0 according to d0;

– The agent observes the state s0 and select an action a0 to perform;

– The environment transits to s1 according to P and sends a reward signal r0 to the agent.

– This process repeats until some terminal signal is released, after which the environment resets

to some initial state again.

Introduction & Background 5 / 98

Markov Decision Process

I The above action selection procedure can be described as a policy, which maps the state

space to the action space.

I The goal of an intelligent agent is to maximize its payoff by searching the optimal policy π∗

with maximal cumulative rewards.

π∗ = arg max
π

Eπ[

∞∑

t=0

γtr(st, at)]

I Though the above decision-making procedure seems endless, the effective planning horizon

is 1/(1− γ).

Eπ[
∞∑

t=0

γtr(st, at)] ≤
1

1− γ · rmax

Introduction & Background 6 / 98

Complexity of MDP

I With the knowledge of P and R, we can efficiently solve an (infinite-horizon) MDP with

methods like value iteration, policy iteration, and linear programming [3].

I The computation complexity of the above methods mainly depends on |S| and |A| and

1/(1− γ).

– The above methods often can find an ε-optimal solution with the speed of O(γt);
– Thus, the number of iteration to find an ε-optimal solution is about O(log(1/ε)

1−γ).

– At each iteration, the above methods use P to perform the expected Bellman update (define

later), and this computation complexity linearly scales up to the whole space size (i.e.,

|S| × |A|).

Introduction & Background 7 / 98

Reinforcement Learning

I In reinforcement learning (RL), we cannot have access to the transition kernel P but we can

interact with environments to collect information. Accordingly, we cannot directly apply the

above methods since we cannot perform the expected Bellman update.

I Typically, we need exploration (e.g., take new actions) to discover potential high reward

states and exploitation (e.g., take the best known action) to maintain a good performance.

Introduction & Background 8 / 98

Complexity of RL

I The PAC(provably approximation correct) complexity of RL is (informally) defined as: how

many interactions/samples (m) do we need to find an good policy (with the optimality gap

ε) with high probability (at least 1− δ)?

I Unfortunately, it’s very challenging to analyze the complexity of RL methods, which does

not only depend on |S|, |A| and 1/(1− γ), but also the intrinsic difficulty of MDP.

– For example, solving a motion planning task with many obstacles is much harder than the one

with a simple structure even both MDPs have the same state and action spaces.

I Detailed analysis of the complexity of RL is beyond this talk. And we will focus on an

intermediate problem defined later.

Introduction & Background 9 / 98

RL with a Generative Model

I Let us introduce the generative model M. Importantly, we can directly reset it to any state

st, after which we can take an action at and observe the next state st+1 ∼ pat(·|st) and

the reward r(st, at).

– Compared to the pure MDP problem, we still do not known P in advance.

– Compared to the pure RL problem, we can go to any st without the planning from an initial

state s0.

I Example: a perfect simulator (e.g., some video game simulators), where we can load (reset)

the state st from RAM.

I Luckily, the complexity of RL with a generative model is shown to only depend on |S|, |A|,
and 1/(1− γ).

Introduction & Background 10 / 98

Bellman Optimality Equation

I The state-action value function (or Q-function) for an infinite-horizon MDP is defined as:

θπ(x, u) = E[

∞∑

k=0

γkr(xk, uk)|x0 = x, u0 = u] where uk = π(xk) for all k ≥ 1

where we replace the state st with xt and the action at with ut.

I The Bellman Optimality Equation is defined as :

θπ(x, u) = r(x, u) + Ex′ [max
u′∈U

θπ(x′, u′)] where x′ ∼ Pu(·|x)

where Pu(·|x) denotes the transition kernel based on current state x and current action u.

I Define the optimal state-value function θ∗ = maxπ θ
π. It can be proved only θ∗ is the

solution to the above equation [3].

Introduction & Background 11 / 98

Bellman Operator

I The expected (population) Bellman operator T is a mapping from R|X |×|U| to itself:

T (θ)(x, u) := r(x, u) + γEx′ [max
u′∈U

θ(x′, u′)] where x′ ∼ Pu(·|x)

I Similarly, we can define the empirical (sampling-based) Bellman operator T̂ :

T̂ (θ)(x, u) := r(x, u) + γmax
u′∈U

θ(x′, u′) where x′ ∼ Pu(·|x)

I By construction, we have E[T̂ (θ)] = T (θ) and θ∗ = T (θ∗)

Introduction & Background 12 / 98

Properties of Bellman Operator

I (γ-contractive) For any θ1, θ2 ∈ R|X |×|U| and define ||θ||∞ = max(x,u) |θ(x, u)|, we have

||T (θ1)− T (θ2)||∞ ≤ γ||θ1 − θ2||∞

I (orthant ordering) If θ1 � θ2 (i.e., θ1 is no larger than θ2 elementwise), we have

T (θ1) � T (θ2)

I Note the above properties also hold for T̂ (because T̂ is a special case of T).

Introduction & Background 13 / 98

Properties of Bellman Operator

I Since T is γ-contractive, we can repeatedly apply on T on θk to get a contractive sequence

{θk}.
θk+1 := (1− λk)θk + λkT (θk) (1)

where {λk : λk ∈ (0, 1]} is some sequence of stepsize.

I By γ-contractive, we can show that the optimal gap ∆k = θk − θ∗ decays with a linear rate

(i.e., O(γt)). Thus θ 7→ θ∗ if we know P to perform T .

∆k+1 = (1− λk)∆k + λk {T (∆k + θ∗)− T (θ∗)}

||∆k+1||∞
(λk=1)

≤ γ||∆k||∞ ≤ γt||∆1||∞

I In the next part, we show the generative model only admits T̂ , which results in sampling

noise when updating.

Introduction & Background 14 / 98

Q-learning

I The (synchronous) Q-learning takes a stochastic approximation (SA) approach to the

Bellman optimality equation with T̂ :

θk+1 = (1− λk)θk + λkT̂k(θk) (2)

I We can rewrite the above update rule as:

θk+1 = (1− λk)θk + λk{T (θk) + Ek}

where Ek = T̂ (θk)− T (θk) is a zero-mean noise matrix.

I Thus, we can view the above update rule as the expected Bellman update with some noise.

Introduction & Background 15 / 98

Noise in Q-learning

I Recall the Q-learning update rule (we will introduce θ∗ and T̂k(θ∗) to “center”):

θk+1−θ∗ = (1− λk)(θk−θ∗) + λkT̂k(θk)−λkT̂k(θ∗) + λkT̂k(θ∗)−λkT (θ∗)

I Similarly, let’s consider the update rule from the view of the optimal gap ∆k = θk − θ∗:

∆k+1 = (1− λk)∆k + λk{T̂k(θ∗ + ∆k)− T̂k(θ∗)}︸ ︷︷ ︸
γ-contractive

+λkWk︸ ︷︷ ︸
noise

(3)

Here Wk = T̂k(θ∗)− T (θ∗) is a zero-mean random (noise) matrix.

I In this way, ∆k decays over iteration with the sampling noise.

Introduction & Background 16 / 98

Q-learning with Oracle Variance Reduction

I Let’s consider the following update rule:

θk+1 = (1− λk)θk + λk

(
T̂k(θk)−T̂k(θ∗) + T (θ∗)

)

Note that E[T̂k(θ∗)] = T (θ∗).

I Again, let’s define the error matrix ∆k = θk − θ∗, we find that

∆k+1 = (1− λk)∆k + λk

{
T̂ (θ∗ + ∆k)− T̂ (θ∗)

}

I Compared to the previous one (see Equation (3)), the noise term Wk = T̂k(θ∗)− T (θ∗)

vanishes.

Variance Reduction in Q-learning 18 / 98

Variance-reduced Q-learning

I Though the above method is not implementable because of the unknown θ∗, we can use a

matrix θ̄ as a surrogate of θ∗.

I Let’s consider the following control variate:

T̃N (θ̄) =
1

N

∑

i∈D
T̂i(θ̄)

where D is a collection of N i.i.d samples.

I By construction, T̃N (θ̄) is an unbiased approximation to T (θ̄), with the variance controlled

by N .

Variance Reduction in Q-learning 19 / 98

Variance-reduced Q-learning

I Let’s define an operator Vk on R|X |×|U| via

Vk(θ;λ, θ̄, T̃N) = (1− λ)θ + λ
{
T̂k(θ)−T̂k(θ̄)+T̃N (θ̄)

}

I By construction, we show that Vk is also unbiased:

E
[
T̂k(θ)− T̂k(θ̄) + T̃N (θ̄)

]
= T (θ)

I This variance-reduced operator is similar to the one used in SVRG [2].

Variance Reduction in Q-learning 20 / 98

Why variance-reduced?

I Why Vk(θ;λ, θ̄, T̃N) = (1− λ)θ + λ
{
T̂k(θ)−T̂k(θ̄)+T̃N (θ̄)

}
is variance-reduced?

I If θ̄ is close to θ and θ∗, T̂k(θ) has the close direction with T̂k(θ̄), and T̃N (θ̄) is very close

to T (θ) by choosing a large N . In this way, we “recover” the expected Bellman update.

Variance Reduction in Q-learning 21 / 98

Why variance-reduced?

I You may want to understand VRQL from the perspective of the optimality gap. If we follow

the previous stepups, we have

∆k+1 = (1− λk)∆k + λk

{
T̂k(θ∗ + ∆k)− T̂k(θ∗)

}
+Wk

where Wk = T̂k(θ∗)− T (θ∗)−T̂k(θ̄)+T̃N (θ̄).

I However, note that E[Wk] 6= 0 (the expectation is taken over the stochastic process of T̂k).

I Correspondingly, Wk can not be viewed as a zero-mean noise term. In contrast, we also

need to “center” T̂k(θ̄) and consider the (shifted) fixed point by V̂k (we will formally

analyze this later).

Variance Reduction in Q-learning 22 / 98

Sing Epoch of Variance-Reduced Q-learning

I Sing Epoch of variance-reduced Q-learning (VRQL) is outlined below:

3.2.2 A single epoch

Having defined the basic variance-reduced update (11), we now describe how to exploit in a sequence
of epochs. The input to each epoch is a matrix θ, corresponding to our current best guess of the
optimal Q-function θ∗. Epochs are parameterized by their length K, corresponding to the number
of iterations of the variance reduced update, and a second integer N , corresponding to the number
of samples used to compute the Monte Carlo approximation T̃N . We summarize the operation of
an epoch in terms of the following function RunEpoch:

Function RunEpoch(θ;K,N)
Inputs:
(a) Epoch length K (b) Recentering matrix θ (c) Recentering sample size N

(1) Compute T̃N (θ) := 1
N

∑N
i=1 T̂i(θ).

(2) Initialize θ1 = θ.

(3) For k = 1, . . . ,K, compute the variance-reduced update (11):

θk+1 = Vk(θk;λk, θ, T̃N) with stepsize λk = 1
1+(1−γ)k . (12)

Output: Return θK+1.

The choice of stepsize λk = 1
1+(1−γ)k is motivated by our previous work on ordinary Q-learning [37],

where we proved sharp non-asymptotic bounds with this choice. We use this same approach in
analyzing the behavior of the variance-reduced updates (Step (3) in RunEpoch) within each epoch.
(It is worth noting that past work [31, 13] shows that the stepsize choice λk = 1/k leads to very
poor behavior with ordinary Q-learning—in particular, a convergence rate that is exponentially
slow in terms of the discount complexity parameter—and the same statement would apply to our
variance-reduced updates.)

3.2.3 Overall algorithm

We now have the necessary ingredients to specify the variance-reduced Q-learning algorithm. The
overall algorithm is parameterized by three choices: the total number of epochs M ≥ 1 to be run;
the length K of each epoch; and the sequence of recentering samples {Nm}Mm=1 used in the M
epochs. Each epoch is based on a single call to the function RunEpoch. Over all the epochs, the
total number of matrix samples used in any run of the algorithm is given by KM +

∑M
m=1Nm.

Given any choice of the triple (M,K, {Nm}Mm=1), the overall algorithm takes the following form:

Algorithm: Variance-reduced Q-learning
Inputs: (a) Number of epochs M (b) Epoch length K (c) Recentering sizes {Nm}Mm=1

(1) Initialize θ0 = 0.

(2) For epochs m = 1, . . . ,M : θm = RunEpoch(θm−1;K,Nm).

7

Variance Reduction in Q-learning 23 / 98

Overall Algorithm

I The overall algorithm runs by repeatedly calling the sub-procedure of RunEpoch.

3.2.2 A single epoch

Having defined the basic variance-reduced update (11), we now describe how to exploit in a sequence
of epochs. The input to each epoch is a matrix θ, corresponding to our current best guess of the
optimal Q-function θ∗. Epochs are parameterized by their length K, corresponding to the number
of iterations of the variance reduced update, and a second integer N , corresponding to the number
of samples used to compute the Monte Carlo approximation T̃N . We summarize the operation of
an epoch in terms of the following function RunEpoch:

Function RunEpoch(θ;K,N)
Inputs:
(a) Epoch length K (b) Recentering matrix θ (c) Recentering sample size N

(1) Compute T̃N (θ) := 1
N

∑N
i=1 T̂i(θ).

(2) Initialize θ1 = θ.

(3) For k = 1, . . . ,K, compute the variance-reduced update (11):

θk+1 = Vk(θk;λk, θ, T̃N) with stepsize λk = 1
1+(1−γ)k . (12)

Output: Return θK+1.

The choice of stepsize λk = 1
1+(1−γ)k is motivated by our previous work on ordinary Q-learning [37],

where we proved sharp non-asymptotic bounds with this choice. We use this same approach in
analyzing the behavior of the variance-reduced updates (Step (3) in RunEpoch) within each epoch.
(It is worth noting that past work [31, 13] shows that the stepsize choice λk = 1/k leads to very
poor behavior with ordinary Q-learning—in particular, a convergence rate that is exponentially
slow in terms of the discount complexity parameter—and the same statement would apply to our
variance-reduced updates.)

3.2.3 Overall algorithm

We now have the necessary ingredients to specify the variance-reduced Q-learning algorithm. The
overall algorithm is parameterized by three choices: the total number of epochs M ≥ 1 to be run;
the length K of each epoch; and the sequence of recentering samples {Nm}Mm=1 used in the M
epochs. Each epoch is based on a single call to the function RunEpoch. Over all the epochs, the
total number of matrix samples used in any run of the algorithm is given by KM +

∑M
m=1Nm.

Given any choice of the triple (M,K, {Nm}Mm=1), the overall algorithm takes the following form:

Algorithm: Variance-reduced Q-learning
Inputs: (a) Number of epochs M (b) Epoch length K (c) Recentering sizes {Nm}Mm=1

(1) Initialize θ0 = 0.

(2) For epochs m = 1, . . . ,M : θm = RunEpoch(θm−1;K,Nm).

7I All input parameters: M -number of epochs, K-epoch length, {Nm}Mm=1-centering sizes

and {λk}Kk=1-stepsizes.

I The total number of matrix samples required by VRQL is KM +
∑M
m=1Nm.

Variance Reduction in Q-learning 24 / 98

Experimental Comparison

I We can compare VRQL (red line) and ordinary Q-learning (blue line) under two MDPs with

different γ (this figure from [7]).

3.4.1 Illustrations of qualitative behavior

In Figure 1, we provide some plots that illustrate the qualitative behavior of variance-reduced
Q-learning. In panel (a), we plot the log `∞-error versus the number of samples for both VR-
Q-learning (red dashed curves), and ordinary Q-learning (blue solid curves). Due to the epoch
structure of VR-Q-learning, note how the error decreases in distinct quanta.2 For small values of
the discount factor γ, the convergence rate of VR-Q-learning is very similar to that of ordinary
Q-learning. On the other hand, as γ increases towards 1, we start to see the benefits of variance
reduction, as predicted by our theory.

0 5000 10000 15000 20000 25000
Sample size

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Lo
g

er
ro

r

Standard: = 0.85

Var. reduced: = 0.85

Standard: = 0.50

Var. reduced: = 0.50

Log error versus sample size

0 2000 4000 6000 8000
Sample size

5

4

3

2

1

0

1

Lo
g

er
ro

r

Log error versus sample size
Base = 4.00
Base = 2.00
Base = 1.50

(a) (b)

Figure 1. (a) Comparison of the convergence behavior of variance-reduced Q-learning and ordi-
nary Q-learning with rescaled linear stepsize. For each algorithm, the figure plots the log `∞-error
‖θn − θ∗‖∞ versus the number of samples n for two different values of the discount factor
γ ∈ {0.50, 0.85}. As predicted by our theory, the gains from variance-reduction become significant as
γ increases towards 1. (b) Behavior of variance-reduced Q-learning for different choices of the epoch
reduction factor (base). In our proof, we established the result for the choice 2.0, but other choices
are also valid, modulo slightly different choices of the parameters K and {Nm}m≥1.

In Theorem 1, we proved that the algorithm converges at a geometric rate, with contraction
factor 1/2 in terms of the number of epochs. The factor of 2 is a consequence of the term 4m in our
choice (13b) of the recentering sample sizes. More generally, by replacing the factor of 4m with a
term of the form (C2)m for any C > 1, we can prove geometric convergence with contraction factor
1/C. Panel (b) illustrates the qualitative effects of varying the choice of the base parameter C on
the convergence behavior of the algorithm.

3.4.2 Total number of samples used

We now state a corollary that provides an explicit bound on the number of samples required to
return an ε-accurate solution with high probability, as a function of the instance θ∗. We then
specialize this result to the worst-case setting. In stating this result, we introduce the complexity

2We have interpolated the error so as to avoid sharp jumps while conveying the qualitative behavior.

9

Variance Reduction in Q-learning 25 / 98

Parameter Choice

I Given a tolerance parameter δ ∈ (0, 1), let’s choose the epoch length K and centering sizes

{Nm}Mm=1 so as to ensure that the final guarantees hold with probability as least 1− δ.

K = c1
log
(

8MD
(1−γ)δ

)

(1− γ)3

Nm = c24m
log(8MD/δ)

(1− γ)2

(4)

where D = |X | × |U|.
I The number of epoch M depends on the convergence rate and the desired accuracy, which

will be decided later.

Theoretical Guarantees 28 / 98

Linear Convergence Over Epochs

Theorem 1.

Given a γ-discounted MDP with optimal Q-function θ∗ and a given error probability δ ∈ (0, 1),

suppose that we run variance-reduced Q-learning from θ̄0 = 0 for M epochs using parameters K

and {Nm}Mm=1 chosen according to the criteria (4). Then we have

||θ̄M − θ∗||∞ ≤
||σ(θ∗)||∞ + ||θ∗||∞(1− γ)

2M

with probability at least 1− δ, where ||σ(θ∗)||∞ =

√
max(x,u) Var

(
T̂ (θ∗)(x, u)

)
.

Theoretical Guarantees 29 / 98

Sample Complexity of VRQL

Corollary 1.

Consider a γ-discounted MDP with optimal Q-function θ∗, a given error probability δ ∈ (0, 1)

and `∞-error level ε > 0. Then there are universal constants c, c′ such that a total of

T (θ∗, δ, ε) =

c

log
(

8MD
(1−γ)δ

)

(1− γ)3
log

(
b0
ε

)
+ c′

(
b0
ε

)2
log(8MD/δ)

(1− γ)2

matrix samples in the generative model is sufficient to obtain an ε-accurate estimate with

probability at least 1− δ, where b0 is defined as

b0 = ||σ(θ∗)||∞ + ||θ∗||∞(1− γ)

Theoretical Guarantees 30 / 98

Proof of Corollary 1

I We first note that to obtain an ε-accurate estimate, the following number of epochs M is

enough.

M =

⌈
log2

(
b0
ε

)⌉

I By construction, the total number of matrix samples of VRQL is KM +
∑M
m=1Nm. Thus,

KM +

M∑

m=1

Nm ≤MK + c4M
log(8MD/δ)

(1− γ)2

≤ c′
log
(

8MD
(1−γ)δ

)

(1− γ)3
log

(
b0
ε

)
+ c

(
b0
ε

)2
log(8MD/δ)

(1− γ)2

Theoretical Guarantees 31 / 98

Worst Case Analysis

I Assume that reward function is bounded by rmax, i.e., max(x,u)∈X×U |r(x, u)| ≤ rmax.

I We can give a worst case bound for b0:

sup
M∗

b0 = sup
M∗
||σ(θ∗)||∞ + ||θ∗||∞(1− γ) ≤ rmax

(
2

1− γ + 1

)
≤ 4rmax

1− γ

I Applying this bound to Corollary 1, we have

sup
M∗

T (θ∗, δ, ε) ≤

c

(
r2
max

ε2

) log
(

D
(1−γ)δ

)
log
(

1
(1−γ)ε

)

(1− γ)4

and the total number of epochs required is M = c log
(
rmax

1−γ

)
for some universal constant c.

Theoretical Guarantees 32 / 98

Refine our analysis

I In the worst case, we require the following matrix samples:

sup
M∗

T (θ∗, δ, ε) ≤

c

(
r2
max

ε2

) log
(

D
(1−γ)δ

)
log
(

1
(1−γ)ε

)

(1− γ)4

I If we do not start with zero vector (zero vector is the worst one), we can further improve

this result by a good initial point such that θ̄0 with ||θ̄0 − θ∗||∞ ≤ rmax√
1−γ ≤

rmax

1−γ .

Theoretical Guarantees 34 / 98

Refined Sample Complexity of VRQL

Proposition 1 (Minimax optimality).

Consider a γ-discounted MDP with optimal Q-function θ∗, a given error probability δ ∈ (0, 1),

and a given error tolerance. Then running variance-reduced Q-learning from in initial point θ̄0

such that ||θ̄0 − θ∗||∞ ≤ rmax√
1−γ for a total of M = c log

(
rmax√
(1−γ)ε

)
epochs using K and

{Nm}Mm=1 chosen according to the criteria (4), yields a solution θ̄M such that ||θ̄M − θ∗|| ≤ ε
with probability at least 1− δ. And the total number of matrix samples is bounded by

Tmax(θ∗, δ, ε) = c

(
r2
max

ε2

) log
(

D
(1−γ)δ

)
log
(

1
(1−γ)ε

)

(1− γ)3

Theoretical Guarantees 35 / 98

Lower Bound on Generative Model

Definition 1 ((ε, δ)-correct algorithm).

Let θ be the output of some RL algorithm A. We say that A is (ε, δ)-correct on the class of

MDPs M = {M∗1,M∗2, · · · } if ||θ∗ − θ||∞ ≤ ε with probability at least 1− δ for all M∗ ∈M.

Theorem 2 (Lower bound on the sample complexity of RL with a generative model[1]).

There exist some constants ε0, δ0, c1, c2 and a class of MDPs M such that for all ε ∈ (0, ε0),

δ ∈ (0, δ0/(|S| × |A|)), and every (ε, δ)-correct RL algorithm on the class of MDPs M the total

number of state-transition samples need to be least

T =

⌈ |S| × |A|
c1ε2(1− γ)3

log
|S| × |A|
c2δ

⌉

Theoretical Guarantees 37 / 98

Sample Complexity of Ordinary Q-learning

Theorem 3 (Sublinear Convergence Rate of Q-learning).

Consider the stepsize λk = 1
1+(1−γ)k . Then there exist a universal constant c such that running

the empirical Bellman update (see Equation (2)) yields

E [||θk+1 − θ∗||] ≤
||θ1 − θ∗||∞
1 + (1− γ)k

+
c

1− γ

{
||σ(θ∗)||∞

√
log(2D)√

1 + (1− γ)k
+
||θ∗||span log(2eD(1 + (1− γ)k))

1 + (1− γ)k

}

where ||θ∗||span = max(x.u) θ
∗(x, u)−min(x,u) θ

∗(x, u), and

||σ(θ∗)||∞ =

√
max(x,u) Var

(
T̂ (θ∗)(x, u)

)
.

(Remark) A high probability bound can also be derived by replacing log(D) with clog(Dk/δ).
Theoretical Guarantees 39 / 98

Sample Complexity of Ordinary Q-learning (worst case)

I Let’s consider the worst case analysis.

sup
M∗
||θ∗||span ≤

2rmax

1− γ , and sup
M∗
||σ(θ∗)||∞ ≤

rmax

1− γ

I In this way, we claim that ordinary Q-learning requires a total of

sup
M∗

T (ε, γ, θ∗) = O
(

r2
max

(1− γ)5

)

matrix samples to find an ε-optimal solution in expectation.

Theoretical Guarantees 40 / 98

Discussion

I VRQL (O(1/(1− γ)4)) improves the upper bound compared to ordinary Q-learning

(O(1/(1− γ)5)) in the worst case .

I Note that model-free methods (e.g., value iteration and q-learning) with the

variance-reduction technique can often get better performance [4].

I To match the lower bound O(1/(1− γ)3), VRQL requires a good initial point. This is

somewhat unsatisfying, because the same kind method of Variance-reduced Value Iteration

[4] does not require this to match the lower bound.

I On the other hand, model-based methods do not require variance-reduction to match the

lower bound [1].

– Model-based methods first construct a virtual MDP M̂ with collected samples and then learns

a (near-) optimal θ̂∗ on this recovered MDP.

Discussion 42 / 98

Why variance-reduction is important for model-free methods?

I Intuitively, model-free methods iteratively interact with the environment to collect samples.

As a result, we will waste samples if we do not use θ̄, which contains past information.

I Technically, both model-free and model-based approaches use samples to estimate the

expected Bellman update.

– Naive model-free methods require a union bound accuracy for all iterations.

– Model-based methods only need the estimate is accuracy for the optimal θ̂∗ on recovered

MDP.

Discussion 43 / 98

Proof Idea of Q-learning

I We start with the simplest case: Q-learning, which will be insightful for analysis of VRQL.

I We can rewrite the update rule of Q-learning (ref to Equation (2)) as:

θk+1 − θ∗ = (1− λk)(θk − θ∗) + λk

{
Ĥk(θk) +Wk

}

Ĥk(θk) = T̂k(θk)− T̂k(θ∗)

Wk = T̂k(θ∗)− T (θ∗)

I Ĥk(θk) is γ-contractive with respective to ||θk − θ∗||∞.

I Wk is a θk-independent noise term, which is governed by the statistical features (e.g.,

bounded value and variance) of θ∗.

Proofs of VRQL 46 / 98

Proof Idea of Q-learning

I Note that Wk incurs a stochastic process, which is independent of θk,

Pk = (1− λk−1)Pk−1 + λk−1Wk−1, with initialization P1 = 0

I Thanks to the linearity, by properly choosing two real-value series ak (related to γ and

||Pk||) and bk (related to the initial value ||θ1 − θ∗||∞), we can show that (see [6] for

details)

||θk − θ∗||∞ ≤ bk + ak + ||Pk||∞

Proofs of VRQL 47 / 98

Proof Idea of Q-learning

I Futhermore, when λk = 1
1+(1−γ)k , we have (see [6] for details)

||θk+1 − θ∗||∞ ≤ λk
{
||θ1 − θ∗||∞

λ1
+ γ

k∑

`=1

||P`||∞
}

+ ||Pk+1||`

I Hence, for ordinary Q-learning, we need to bound ||Pk||∞ to estimate the converge rate.

Proofs of VRQL 48 / 98

Proof Idea of Q-learning

I Recall that Wk = T̂k(θ∗)− T (θ∗) is a zero-mean random matrix with bounded value

2||θ∗||∞ and the maximal variance ||σ(θ∗)||2∞.

I Hence, we conclude that Wk satisfies Bernstein condition [5]. Using the inductive

reasoning, we can show that Pk(x, u) also satisfies certain Bernstein condition due to the

linearity of the following stochastic process.

Pk = (1− λk−1)Pk−1 + λk−1Wk−1, with initialization P1 = 0

I Finally, we can apply a union bound to derive high probability bound for ||Pk||∞.

Proofs of VRQL 49 / 98

Proof Idea of VRQL

I The high-level proof procedure of VRQL is similar to the one of ordinary Q-learning.

I The main difference (difficulty) is that the noise term Wk is not a zero-mean random matrix!

θk+1 − θ∗ = (1− λk)(θk − θ∗) + λk

{
Ĥk(θk) +Wk

}

Ĥk(θk) = T̂k(θk)− T̂k(θ∗)

Wk = −Ĥk(θ̄)− T (θ∗) + T̃N (θ̄)

where Ĥk(θ̄) = T̂k(θ̄)− T̂k(θ∗) is a centered operator.

Proofs of VRQL 50 / 98

Proof Idea of VRQL

I To use concentration inequalities, we need to separately “center” each term in Wk.

Wk = −Ĥk(θ̄)− T (θ∗) + T̃N (θ̄)

= −Ĥk(θ̄) + T̃N (θ̄)− T̃N (θ∗)︸ ︷︷ ︸
H̃N (θ̄)

+T̃N (θ∗)− T (θ∗)

= −Ĥk(θ̄) + H̃N (θ̄) +
{
T̃N (θ∗)− T (θ∗)

}

where we define H̃N (θ̄) = T̃N (θ̄)− T̃N (θ∗) as a centered operator.

I Note that only the first term depends on the iteration k, while the last two terms do not.

Proofs of VRQL 51 / 98

Proof Idea of VRQL

I To apply concentration inequalities, we need to introduce the population operator for each

uncentered term that appeared in Wk.

I Let’s define the population operator H(θ) := T (θ)− T (θ∗), then

Wk =
{
H(θ̄)− Ĥk(θ̄)

}

︸ ︷︷ ︸
W ′k

+
{
H̃N (θ̄)−H(θ̄)

}

︸ ︷︷ ︸
W o

+
{
T̃N (θ∗)− T (θ∗)

}

︸ ︷︷ ︸
W †

I Again, we observe that only the first term W ′k is important for the induced stochastic

process while the last two terms are independent over iteration k.

I Thus, we can similarly apply previous results by replacing Wk with W ′k to get P ′k.

Proofs of VRQL 52 / 98

Proof Idea of VRQL

I Now, our target becomes to separately bound ||P ′k||∞ (induced by W ′k), ||W o||∞ and

||W †||∞.

Wk =
{
H(θ̄)− Ĥk(θ̄)

}

︸ ︷︷ ︸
W ′k

+
{
H̃N (θ̄)−H(θ̄)

}

︸ ︷︷ ︸
W o

+
{
T̃N (θ∗)− T (θ∗)

}

︸ ︷︷ ︸
W †

– Bounding ||P ′k||∞ is also based on inductive reasoning of Bernstein inequalities.

– Bounding ||W o||∞ can directly use Hoeffding’s inequality.

– Bounding ||W †||∞ can smartly use Bernstein inequality since we know the variance.

Proofs of VRQL 53 / 98

Proof of Theorem 1

I At a high-level argument, we prove Theorem 1 via an inductive argument.

||θ̄M − θ∗||∞ ≤
||σ(θ∗)||∞ + ||θ∗||∞(1− γ)

2M

I (Base case) Given the initialization θ̄0 = 0, we prove that θ̄1 satisfies such a bound with

probability at least 1− δ
M .

I (Inductive step) In this step, we prove, with probability at least 1− δ
M , θ̄m+1 satisfies

such a bound with the assumption that it holds for θ̄m.

I (Union bound) Finally, by taking a union bound over all M epochs of the algorithm we

guarantee the bound holds uniformly for all m = 1, · · ·M with probability at least 1− δ.

Proofs of VRQL 55 / 98

Proof of Theorem 1 - Base Case

I For the given initialization θ̄0 = 0, we have T̂k(θ̄0) = r and T̃k(θ̄0) = r. Consequently,

T̂k(θ̄0)− T̃k(θ̄0) = 0, so that the update rule reduces to the case of ordinary Q-learning

with stepsize λk = 1
1+(1−γ)k .

I According to the prior work [6], there is a universal constant c′ > 0 such that after M

iterations, we have

||θK+1 − θ∗||∞ ≤ ||θ∗||∞
(1−γ)K + c′

{
||σ(θ∗)||∞

√
log(2DMK/δ)

(1−γ)3/2
√
K

+
||θ∗||∞ log(2eDMK

δ (1+(1−γ)K))
(1−γ)2K

}

I Choosing K = c
log(8MD

δ(1−γ))
(1−γ)3 for a sufficient large constant c suffices to ensure that

||θK+1 − θ∗|| ≤
1

2
{||σ(θ∗)||∞ + ||θ∗||∞(1− γ)} with probability at least 1− δ

M

Proofs of VRQL 56 / 98

Proof of Theorem 1 - Inductive Step

I For this step, we assume that the input θ̄m to epoch m satisfies the bound

||θ̄m − θ∗||∞ ≤
||σ(θ∗)||∞ + ||θ∗||∞(1− γ)

2m︸ ︷︷ ︸
=:bm

I Our target is to prove that ||θ̄m+1 − θ∗||∞ ≤ bm+1 = bm
2 .

I It turns out that if we can prove

||θ̄K+1 − θ∗||∞ ≤ cbm
{

1

1 + (1− γ)K
+

1

1− γ

√
log(8MDK/δ)

1 + (1− γ)K
+

√
4m

log(8MD/δ)

(1− γ)2Nm

}

(5)

, K and Nm defined in Equation (4) are sufficient to prove the inductive step.

Proofs of VRQL 57 / 98

Proof of Theorem 1 - Inductive Step

I Recall the update rule of VRQL

θk+1 = (1− λ)θ + λk
{
T̂k(θ)−T̂k(θ̄) + T̃N (θ̄)

}

I Let’s introduce the auxiliary recentered operators:

Ĥk(θ) := T̂k(θ)− T̂k(θ∗)

I Thus, we can rewrite the VRQL update rule as

θk+1 − θ∗ = (1− λk)(θk − θ∗) + λk
{
T̂k(θk)− T̂k(θ∗)︸ ︷︷ ︸

Ĥk(θk)

−T̂k(θ̄) + T̂k(θ∗)︸ ︷︷ ︸
Ĥk(θ̄)

+T̃N (θ̄)− T (θ∗)
}

= (1− λk)(θk − θ∗) + λk
{
Ĥk(θk)− Ĥk(θ̄) + T̃N (θ̄)− T (θ∗)

}

Proofs of VRQL 58 / 98

Proof of Theorem 1 - Inductive Step

I Continue to the last page, let Wk = −Ĥk(θ̄) + T̃N (θ̄)− T (θ∗), we have

θk+1 − θ∗ = (1− λk)(θk − θ∗) + λk

{
Ĥk(θk)−Ĥk(θ̄) + T̃N (θ̄)− T (θ∗)︸ ︷︷ ︸

Wk

}

= (1− λk)(θk − θ∗) + λk

{
Ĥk(θk) +Wk

} (6)

I We can view Wk as a random noise sequence, which defines the following auxiliary

stochastic progress:

Pk := (1− λk−1)Pk−1 + λk−1Wk−1, with initialization P1 = 0

Proofs of VRQL 59 / 98

Proof of Theorem 1 - Inductive Step

I Note that the operator Ĥk(θ) := T̂k(θ)− T̂k(θ∗) is monotonic respect to the orthant

ordering and γ-contractive with respect to the `∞-norm.

Corollary 2.

[Adapted from the paper [6]] For all iterations k = 1, 2, · · · , we have

||θk+1 − θ∗||∞ ≤
2

1 + (1− γ)k

{
||θ1 − θ∗||∞ +

k∑

`=1

||P`||∞
}

+ ||Pk+1||∞

Proofs of VRQL 60 / 98

Proof of Theorem 1 - Inductive Step

I In order to derive a concrete result based on Corollary 2, we need to obtain high-probability

upper bounds on the terms ||P`||∞.

I Note that Pk relies on the stochastic process induced by Wk:

Wk = −Ĥk(θ̄) + T̃N (θ̄)− T̃N (θ∗)︸ ︷︷ ︸
H̃N (θ̄)

+T̃N (θ∗)− T (θ∗) = −Ĥk(θ̄) + H̃N (θ̄) +
{
T̃N (θ∗)− T (θ∗)

}

where H̃N (θ) := T̃N (θ)− T̃N (θ∗).

I Let’s define the population operator H(θ) := T (θ)− T (θ∗) to center, then

Wk =
{
H(θ̄)− Ĥk(θ̄)

}

︸ ︷︷ ︸
W ′k

+
{
H̃N (θ̄)−H(θ̄)

}

︸ ︷︷ ︸
W o

+
{
T̃N (θ∗)− T (θ∗)

}

︸ ︷︷ ︸
W †

Proofs of VRQL 61 / 98

Proof of Theorem 1 - Inductive Step

I Continue to the last page,

Wk =
{
H(θ̄)− Ĥk(θ̄)

}

︸ ︷︷ ︸
W ′k

+
{
H̃N (θ̄)−H(θ̄)

}

︸ ︷︷ ︸
W o

+
{
T̃N (θ∗)− T (θ∗)

}

︸ ︷︷ ︸
W †

I We note that W o and W † are independent of k, thus using inductive reasoning, we can

prove that (the original paper states that Pk �W o +W † + P ′k. However, this inequality is

ill-conditioned for the base case (k = 2).)

Pk �W o +W † + P ′k

Proofs of VRQL 62 / 98

Proof of Theorem 1 - Inductive Step

I Thus, we can decompose the error bound of ||P`||∞ in Corollary 2 into that (note that

||θ1 − θ∗|| ≤ b)

||θK+1 − θ∗||∞ ≤ 2b
1+(1−γ)K + 3

{
||W o||∞+||W †||∞

1−γ

}
+
{

2
∑K
`=1 ||P ′` ||∞

1+(1−γ)K + ||P ′K+1||∞
}

(7)

I In the next, we will bound the noise terms W o and W †, and the stochastic process

{P ′k}k≥1 separately.

Proofs of VRQL 63 / 98

Proof of Theorem 1 - Inductive Step: Bounding the recentering terms

Lemma 1 (High probability bounds on recentering terms).

Fix an arbitrary δ ∈ (0, 1).

(a) If ||θ̄ − θ∗||∞ ≤ bm, then there is a universal constant c such that (Note that the origin

paper does not consider the constant c, but it should be! And this constant does not change the

final result.)

||W o||∞ ≤ c4bm
√

log(8MD/δ)

N
with prob. at least 1− δ

3M

(b) There is a universal constant c such that

||W †||∞ ≤ c {||σ(θ∗)||∞ + ||θ∗||∞(1− γ)}
√

log(8MD/δ)

N
with prob. at least 1− δ

3M

Proofs of VRQL 64 / 98

Proof of Lemma 1 - Bounding W o

I Recall the definition of W o:

W o = H̃N (θ̄)−H(θ̄) =
{
T̃N (θ̄)− T̃N (θ∗)

}
−
{
T (θ̄)− T (θ∗)

}

I Thus, each entry of W o is a zero mean, i.i.d. sum of N random variables bounded in

absolute value by 2bm.

I By Hoeffding’s inequality, we have

||W o||∞ ≤ c4bm
√

log(8MD/δ)

N
with prob. at least 1− δ

3M

Proofs of VRQL 65 / 98

Proof of Lemma 1 - Bounding W †

I Recall the definition of W †:

W † = T̃N (θ∗)− T (θ∗)

I Note that W † is a sum of N i.i.d. terms, each of which is bounded in absolute value by

||θ∗||∞ and has the variance σ2(θ∗).

I By Bernstein’s inequality, there is a universal constant c such that with prob. 1− δ
3M , we

have

||T̃N (θ)∗ − T (θ∗)||∞ ≤ c
{
||σ(θ∗)||∞

√
log(8MD/δ)

N
+
||θ∗||∞ log(8MD/δ)

N

}

Proofs of VRQL 66 / 98

Proof of Lemma 1 - Bounding W †

I Note that our choice of N ≥ c 4m log(8MD/δ)
(1−γ)2 , we further have

||T̃N (θ)∗ − T (θ∗)||∞ ≤ c
{
||σ(θ∗)||∞

√
log(8MD/δ)

N
+
||θ∗||∞ log(8MD/δ)

N

}

= c

√
log(8MD/δ)

N

{
||σ(θ∗)||∞ + ||θ∗||∞

√
log(8MD/δ)

N

}

≤ c
√

log(8MD/δ)

N
{||σ(θ∗)||∞ + ||θ∗||∞(1− γ)}

Proofs of VRQL 67 / 98

Proof of Theorem 1 - Inductive Step: Bounding the stochastic process

Lemma 2 (High probability on noise).

There is a universal constant c > 0 such that for any δ ∈ (0, 1)

{
2
∑K
`=1 ||P ′` ||∞

1 + (1− γ)K
+ ||P ′K+1||∞

}
≤ cbm

1− γ

√
2 log(8MDK/δ)

1 + (1− γ)K

with probability as least 1− δ
3M .

Proofs of VRQL 68 / 98

Proof of Theorem 1 - Inductive Step

I Applying the bounds of Lemma 1 and 2 into Equation (7): there are universal constant c, c′

such that

||θK+1 − θ∗||∞
bm

≤ 2

1 + (1− γ)K
+ c′

{
1 +
||σ(θ∗)||∞ + ||θ∗||∞(1− γ)

bm

}√
log(8MD/δ)

(1− γ)2N

+
c

1− γ

√
log(8MDK/δ)

1 + (1− γ)K

with probability at least 1− δ
M .

Proofs of VRQL 69 / 98

Proof of Theorem 1 - Inductive Step

I Recall that bm = ||σ(θ∗)||∞+||θ∗||∞(1−γ)
2m , we conclude that

{
1 +
||σ(θ∗)||∞ + ||θ∗||∞(1− γ)

bm

}√
log(8MD/δ)

(1− γ)2N
≤ c′′

√
4m log(8MD/δ)

(1− γ)2N

I Putting together the pieces, with probability at least 1− δ
M , we have

||θK+1 − θ∗||∞
bm

≤ c
{

1

1 + (1− γ)K
+

√
4m log(8MD/δ)

(1− γ)2N
+

1

1− γ

√
log(8MDK/δ)

1 + (1− γ)K

}

I By our choice of Nm and K, we complete the desired claim in Equation (5).

Proofs of VRQL 70 / 98

Proof of Lemma 2

I We prove Lemma 2 by two steps. In the first step, we prove by induction that the MGF of

P ′k(x, u) is bounded by

logE[esP
′
k(x,u)] ≤ b2ms

2λk−1

8
for all s ∈ R (8)

I Combining the Chernoff bounding technique and the union bound, we find that there is a

universal constant c such that

Pr
[
||P ′` ||∞ ≥ cbm

√
λk−1

√
log 8KMD/δ

]
≤ δ

3KM

Proofs of VRQL 71 / 98

Proof of Lemma 2

I Taking a union bound over all K iterations, we find that

2
∑K
`=1 ||P ′` ||∞

1 + (1− γ)K
+ ||P ′K+1||∞ ≤

cbm
1 + (1− γ)K

√
log(8KMD/δ)

{
K∑

`=1

√
λ`−1 +

√
λK

}

with probability at least 1− δ
3M .

I From the proof of Corollary 3 in the paper [6], we have

K∑

`=1

√
λ`−1 +

√
λK ≤ c

√
1 + (1− γ)k

1− γ

I Putting together these pieces yields the claim bound Lemma 2.

Proofs of VRQL 72 / 98

Proof of Equation (8)

I Recall the stochastic process {P ′k}k≥1 evolves the recursion P ′k+1 = (1− λk)P ′k + λkW
′
k,

where

W ′k := H(θ̄)− Ĥk(θ̄) = {T (θ)− T (θ∗)} −
{
T̂k(θ̄)− T̂k(θ∗)

}

I Similarly, we see that each entry of W ′k is a zero-mean random variable with the absolute

value by bm := ||θ̄ − θ∗||.
I Using the Hoeffding inequality, we have that

logE
[
esW

′
k(x,u)

]
≤ s2b2m

8
for all s ∈ R

Proofs of VRQL 73 / 98

Proof of Equation (8) - Base case

I We will use the above bound to prove the following claim (ref to Equation (8)) by induction.

logE[esP
′
k(x,u)] ≤ b2ms

2λk−1

8
for all s ∈ R

I Base case (k=1): The case k = 1 is trivial since P ′1 = 0 by definition.

I Base case (k=2): When k = 2, we have P ′2 = λ1W
′
1, and hence

logE[esP
′
2(x,u)] = logE[esλ1W

′
1(x,u)] ≤ s2λ2

1b
2
m

8
≤ s2λ1b

2
m

8

where the last inequality follows from the fact that λk = 1
1+(1−γ) ≤ 1.

Proofs of VRQL 74 / 98

Proof of Equation (8) - Inductive step

I Now we assume that Equation (8) holds for some iteration k ≥ 2, and we verify that it

holds for iteration k + 1.

logE[esP
′
k+1(x,u)] = logE[es(1−λk)P ′k(x,u)] + logE[esλkP

′
k(x,u)]

≤ s2(1− λk)2λk−1b
2
m

8
+
s2(1− λk)2b2m

8

I We can show that (details not given) based on the definition that λk = 1
1+(1−γ)k

(1− λk)λk−1 ≤ λk

I Consequently, we can prove that

s2(1− λk)2λk−1b
2
m

8
+
s2(1− λk)2b2m

8
≤ s2(1− λk)λkb

2
m

8
+
s2(1− λk)2b2m

8
=
s2λkb

2
m

8
Proofs of VRQL 75 / 98

Proof of Proposition 1 - Base case

I Again, at a high level, the proof is based on the stated condition (||θ0 − θ∗||∞ ≤ rmax√
1−γ) to

show that

||θ̄m − θ∗||∞ ≤
1

2m
rmax√
1− γ for all m = 1, · · · ,M (9)

I The base case (k = 0) holds trivially and we will focus on the inductive step.

I By hypothesis, for k ≥ 1 we have (with a little abuse of bm)

||θ̄ − θ∗||∞ ≤ bm :=
1

2m
rmax√
1− γ

Proofs of VRQL 77 / 98

Proof of Proposition 1 - Inductive Step

I In this case, our analysis involves two operators

Ĵk(θ) := T̂k(θ)− T̂k(θ̄) + T̃N (θ̄) and J (θ) := T (θ)− T (θ̄) + T̃N (θ̄)

I Note that the variance-reduced Q-learning updates can be written as

θk+1 = (1− λk)θk + λkĴk(θk) (10)

I Note that J is γ-contractive, thus it has a unique fixed point, which we denote by θ̂.

I Since J (θ) = E[Ĵk(θ)] by construction, it is natural to analyze the convergence of θk to θ̂.

||θK+1 − θ∗||∞ ≤ ||θK+1 − θ̂||∞ + ||θ̂ − θ∗||∞

Proofs of VRQL 78 / 98

Proof of Proposition 1 - Inductive Step

Lemma 3.

After K = c1
log(8MD

(1−γ)δ)
(1−γ)3 iterations, we are guaranteed that

||θK+1 − θ̂||∞ ≤
bm
4

+
1

4
||θ̂ − θ∗||∞

with probability at least 1− δ
2M .

Lemma 4.

Given a sample size Nm = c24m log(MD/δ)
(1−γ)2 , we have

||θ̂ − θ∗||∞ ≤
bm
5

with probability at least 1− δ
2M .

Proofs of VRQL 79 / 98

Proof of Proposition 1 - Inductive Step

I Combining Lemma 4 and Lemma 4, we have

||θK+1 − θ∗||∞ ≤
{
bm
4

+
1

4
||θ̂ − θ∗||∞

}
+ ||θ̂ − θ∗||∞

≤ bm
2

I Thus, we verify the claim of Equation (9). The computation of total samples is similar to

what we have done:

KM +

M∑

m=1

Nm

I For VQRL, we have that the K = clog rmax

ε
√

1−γ . It is clear that the discount complexity is

reduced.

Proofs of VRQL 80 / 98

Proof of Lemma 3

I We rewrite Equation (9) as subtracting the fixed point of θ̂ of J :

θk+1 − θ̂ = (1− λk)(θk − θ̂) + λk

(
Ĵk(θk)− Ĵk(θ̂)

)
+ λk

(
Ĵk(θ̂)− J (θ̂)

)

︸ ︷︷ ︸
Ek

I We can similarly to apply Corollary 2 (see also Equation (6)). In this case, the noise term is

given by (with a little abuse of notation, we previously use Wk to denote the noise term):

Ek := Ĵk(θ̂)− J (θ̂) =
{
T̂k(θ̂)− T̂k(θ̄)

}
−
{
Tk(θ̂)− Tk(θ̄)

}

I Consequently, we have ||Ek||∞ ≤ 2||θ̂ − θ̄||∞.

Proofs of VRQL 81 / 98

Proof of Lemma 3

I By applying Corollary 1 from the paper [6], we have

||θK+1 − θ̂||∞ ≤
2

1 + (1− γ)K

{
||θ̄ − θ̂||∞ +

K∑

`=1

||P`||∞
}

+ ||PK+1||`

where the auxiliary stochastic process evolves as Pk = (1− λk−1)Pk−1 + λk−1Ek−1.

I Following the same line of argument as in the proof of Lemma 2, we find that

||θK+1 − θ̂||∞ ≤ c
{
||θ̄ − θ̂||∞

1 + (1− γ)K
+

||θ̄ − θ̂||∞
(1− γ)3/2

√
K

}
√

log(8MD/δ)

with probability at least 1− δ
2M .

Proofs of VRQL 82 / 98

Proof of Lemma 3

I With the choice of K = c1
log(8MD

(1−γ)δ)
(1−γ)3 , we are guaranteed that

||θK+1 − θ̂||∞ ≤
1

4
||θ̄ − θ̂||∞ ≤

1

4
||θ̄ − θ∗||∞ +

1

4
||θ̂ − θ∗||∞

Proofs of VRQL 83 / 98

Proof of Lemma 4

I Note that θ̂ is the fixed point of the operator J (θ) := T (θ)− T (θ̄) + T̃N (θ̄), and hence

can be viewed as a fixed point of the population Bellman operator defined with perturbed

reward function r̃ with each entry r̃(x, u) = r(x, u) +
[
T̃ (θ̄)− T (θ̄)

]
(x, u).

I The following lemma guarantees that this perturbation is relatively small.

Lemma 5 (Bounds on perturbed reward).

For any matrix θ̄ such that ||θ̄ − θ∗||∞ ≤ bm, we have

|r̃ − r| � c(bm1 + σ(θ∗))

√
log(8MD/δ)

N
+ c′||θ∗||∞

log(8MD/δ)

N
1

with probability at least 1− δ
8M , where 1 denotes the unit vector.

Proofs of VRQL 84 / 98

Proof of Lemma 4

I We still need a lemma that provides elementwise upper bounds on the absolute difference

|θ∗ − θ̂| in terms of the absolute difference |r̃ − r|.
I Let’s define Pπ∗ as the linear operator defined by the policy π∗ that is optimal with respect

to θ∗, and similarly let P π̂ be the linear operator defined by the policy π̂ that is optimal

with respect to θ̂.

Lemma 6 (Elementwise bounds).

We have the elementwise upper bound:

|θ∗ − θ̂| � max
{

(I− γPπ∗)−1|r̃ − r|, (I− γPπ̂)−1|r̃ − r|
}

Proofs of VRQL 85 / 98

Proof of Lemma 4 - Upper bounding (I− γPπ∗)−1|r̃ − r|

I Based on Lemma 5, we have

(I− γPπ∗)−1|r̃ − r| � c
(

bm
1− γ + ||I− γPπ∗)−1σ(θ∗)||∞

)√
log(8MD/δ)

N
1

+ c′
||θ∗||∞
1− γ

log(8MD/δ)

N
1

where we have used the fact that ||(I− γPπ∗)−1u||∞ ≤ ||u||∞1−γ for any vector u.

I According to Lemma 8 in [1], we have

||(I− γPπ∗)−1σ(θ∗)||∞ ≤
4

(1− γ)3/2
≤ 4(2m)

1− γ bm

where the last step follows our notation that bm = 1
2m

1√
1−γ .

Proofs of VRQL 86 / 98

Proof of Lemma 4 - Upper bounding (I− γPπ∗)−1|r̃ − r|

I Similarly, we also have that

||θ∗||∞
1− γ ≤

1

(1− γ)2
≤ 2mbm

(1− γ)3/2

I Putting together pieces yields the elementwise bound

(I− γPπ∗)−1|r̃ − r| � bmΦ(N,m, γ)1

where we define the non-negative scalar

Φ(N,m, γ) := c′
{

2m

1− γ

√
log(8MD/δ)

N
+

2m

(1− γ)3/2

log(8MD/δ)

N

}

Proofs of VRQL 87 / 98

Proof of Lemma 4 - Upper bounding (I− γPπ̂)−1|r̃ − r|

I The only difference with the previous derivation is the term regarding σ(θ∗).

I Again, according to [1] we are guaranteed that

||I− γPπ̂)−1σ(θ̂)||∞ ≤
4

(1− γ)3/2
.

I Moreover, we have σ(θ∗) � σ(θ̂) + |θ̂ − θ∗|.
I Combining the pieces, we are guaranteed to have the elementwise bound

(I− γPπ̂)−1|r̃ − r| � bmΦ(N,m, γ)1 + c
|θ̂ − θ∗|
1− γ

√
log(8MD/δ)

N

Proofs of VRQL 88 / 98

Proof of Lemma 4 - Upper bounding (I− γPπ̂)−1|r̃ − r|

I Combining the previous bounds with Lemma 6, we find

|θ̂ − θ∗| � bmΦ(N,m, γ)1 + c
|θ̂ − θ∗|
1− γ

√
log(8MD/δ)

N

I Our choice of N ensures that c
1−γ

√
log(8MD/δ)

N ≤ 1
2 , so that we have established the upper

bound ||θ̂ − θ∗||∞ ≤ 2bmΦ(N,m, γ).

I Finally, we see that our choice of N ensures that ||Φ(N,m, γ)||∞ ≤ 1
10 , so that we

complete the proof of Lemma 6.

Proofs of VRQL 89 / 98

Proof of Lemma 5

I Starting with the definition of r̃ we have

|r̃ − r| =
∣∣∣T̃N (θ̄)− T (θ̄)

∣∣∣

≤
∣∣∣
(
T̃N (θ̄)− T̃N (θ∗)

)
−
(
T (θ̄)− T (θ∗)

)∣∣∣+
∣∣∣T̃N (θ∗)− T (θ∗)

∣∣∣

I By definition, the random matrix
(
T̃N (θ̄)− T̃N (θ∗)

)
is the sum of N i.i.d terms, with each

entry are uniformly bounded by γ||θ̄ − θ∗||∞ ≤ bm. Consequently, with a combination of

Hoeffding’s inequality and the union bound, we find that

∥∥∥
(
T̃N (θ̄)− T̃N (θ∗)

)
−
(
T (θ̄)− T (θ∗)

)∥∥∥
∞
≤ 4bm

√
log(8MD/δ)

N

with probability at least 1− δ
4M .

Proofs of VRQL 90 / 98

Proof of Lemma 5

I Turning to the term |T̃N (θ∗)− T (θ∗)|, by a Bernstein inequality, we have

|T̃N (θ∗)− T (θ∗)| ≤ c
{
σ(θ∗)

√
log(8MD/δ)

N
+ ||θ∗||∞

log(8MD/δ)

N

}

I Combing the pieces yields the claim in Lemma 5.

Proofs of VRQL 91 / 98

Proof of Lemma 6

I In this proof, we make use of the function |u|+ = max{u, 0}, applied elementwise to a

vector u.

I Note that we have |u| = max{|u|+, | − u|+} by definition, thus it suffices to prove that two

elementwise bounds:

|θ∗ − θ̂|+ � (I− γPπ∗)−1|r̃ − r| and |θ∗ − θ̂|+ � (I− γPπ̂)−1|r̃ − r|

I Recall that θ∗ and θ̂ are the optimal Q-functions for the reward functions r and r̃,

respectively. By this optimality, we have

θ̂ = r̃ + γPπ̂ θ̂ � r̃ + γPπ
∗
θ̂ and θ∗ = r + γPπ

∗
θ∗ � r + γPπ̂θ∗

Proofs of VRQL 92 / 98

Proof of Lemma 6 - The first term

I Using these relations, we can rewrite that

θ∗ − θ̂ = (r − r̃) + γPπ
∗
θ∗ − Pπ̂ θ̂ ≤ |r̃ − r|+ γPπ

∗
(θ∗ − θ̂)

≤ |r̃ − r|+ γPπ
∗ |θ∗ − θ̂|+

I Since the RHS is non-negative, the above inequality implies that

|θ∗ − θ̂|+ ≤ |r̃ − r|+ γPπ
∗ |θ∗ − θ̂|+

I Rearranging, we have that

|θ∗ − θ̂|+ � (I− γPπ∗)−1|r̃ − r|

Proofs of VRQL 93 / 98

Proof of Lemma 6 - The second term

I Using the same reasoning, we have that

θ̂ − θ∗ = (r − r̃) + γPπ̂ θ̂ − γPπ∗θ∗

� |r̃ − r|+ γPπ̂(θ̂ − θ∗)
� |r̃ − r|+ γPπ̂|θ̂ − θ∗|+

I Therefore, we can prove that

|θ̂ − θ∗|+ � (I− γPπ̂)−1|r̃ − r|

Proofs of VRQL 94 / 98

References I

[1] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J. Kappen. Minimax PAC bounds on

the sample complexity of reinforcement learning with a generative model. Machine Learning,

91(3):325–349, 2013.

[2] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In Proceedings of the 27th Annual Conference on Neural Information

Processing Systems, pages 315–323, 2013.

[3] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley Series in Probability and Statistics. Wiley, 1994.

[4] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and

faster algorithms for solving markov decision processes. In Proceedings of the 29th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 770–787, 2018.

Proofs of VRQL 95 / 98

References II

[5] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge

University Press, 2019.

[6] Martin J. Wainwright. Stochastic approximation with cone-contractive operators: sharp

bounds for q-learning. arXiv, 1905.06265, 2019.

[7] Martin J. Wainwright. Variance-reduced q-learning is minimax optimal. arXiv, 1906.04697,

2019.

Proofs of VRQL 96 / 98

Acknowledgement

The presenter appreciates insightful comments and instructions from Yingru Li, Hao Liang, and

Tian Xu.

Acknowledgement 98 / 98

	Introduction & Background
	Variance Reduction in Q-learning
	Theoretical Guarantees
	Sample Complexity of VRQL (Theorem 1)
	Refined Sample Complexity of VRQL (Proposition 1)
	Lower Bound on Generative Model
	Sample Complexity of Ordinary Q-learning

	Discussion
	Proofs of VRQL
	Proof Idea
	Proof of Theorem 1
	Proof of Proposition 1

	References
	Acknowledgement

