Variance-reduced Q-learning is minimax optimal

Ziniu Li
liziniu1997@gmail.com
(incoming Ph.D. student at SDS)
The Chinese University of Hong Kong, Shenzhen, China

July 9, 2020

Summer Seminar of CUHK, Shenzhen
Mainly based on:
Wainwright, Martin J. "Variance-reduced Q-learning is minimax optimal." arXiv preprint arXiv:1906.04697 (2019).

Target

- We will briefly talk about the complexity of sequential decision-making, but mainly focus on the sample complexity under a generative model.
- We will illustrate the famous method called Q-learning and demonstrate the effectiveness of the variance-reduction technique.
- We will briefly explain the proof ideas for Q-learning and variance-reduced Q-learning.

Markov Decision Process

- Consider an infinite-horizon Markov Decision Process $\mathcal{M}^{*}=\left(\mathcal{S}, \mathcal{A}, P, R, \gamma, d_{0}\right)$ [3].
- \mathcal{S} and \mathcal{A} are the state and action space, respectively.
- P determines the transition probability of s_{t+1} conditioned on s_{t} and a_{t}.
- R is the reward function, which is often assumed to be deterministic and is bounded within the range $[0,1]$.
$-\gamma \in[0,1)$ is a discount factor.
- d_{0} specifies the initial state distribution.

Markov Decision Process

- The decision process is characterized as follows:
- At the beginning of the epoch, the environment resets to some initial state s_{0} according to d_{0};
- The agent observes the state s_{0} and select an action a_{0} to perform;
- The environment transits to s_{1} according to P and sends a reward signal r_{0} to the agent.
- This process repeats until some terminal signal is released, after which the environment resets to some initial state again.

Markov Decision Process

- The above action selection procedure can be described as a policy, which maps the state space to the action space.
- The goal of an intelligent agent is to maximize its payoff by searching the optimal policy π^{*} with maximal cumulative rewards.

$$
\pi^{*}=\underset{\pi}{\arg \max } \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, a_{t}\right)\right]
$$

- Though the above decision-making procedure seems endless, the effective planning horizon is $1 /(1-\gamma)$.

$$
\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, a_{t}\right)\right] \leq \frac{1}{1-\gamma} \cdot r_{\max }
$$

Complexity of MDP

- With the knowledge of P and R, we can efficiently solve an (infinite-horizon) MDP with methods like value iteration, policy iteration, and linear programming [3].
- The computation complexity of the above methods mainly depends on $|\mathcal{S}|$ and $|\mathcal{A}|$ and $1 /(1-\gamma)$.
- The above methods often can find an ϵ-optimal solution with the speed of $\mathcal{O}\left(\gamma^{t}\right)$;
- Thus, the number of iteration to find an ϵ-optimal solution is about $\mathcal{O}\left(\frac{\log (1 / \epsilon)}{1-\gamma}\right)$.
- At each iteration, the above methods use P to perform the expected Bellman update (define later), and this computation complexity linearly scales up to the whole space size (i.e., $|\mathcal{S}| \times|\mathcal{A}|)$.

Reinforcement Learning

- In reinforcement learning (RL), we cannot have access to the transition kernel P but we can interact with environments to collect information. Accordingly, we cannot directly apply the above methods since we cannot perform the expected Bellman update.

- Typically, we need exploration (e.g., take new actions) to discover potential high reward states and exploitation (e.g., take the best known action) to maintain a good performance.

Complexity of RL

- The PAC(provably approximation correct) complexity of RL is (informally) defined as: how many interactions/samples (m) do we need to find an good policy (with the optimality gap $\epsilon)$ with high probability (at least $1-\delta$)?
- Unfortunately, it's very challenging to analyze the complexity of RL methods, which does not only depend on $|\mathcal{S}|,|\mathcal{A}|$ and $1 /(1-\gamma)$, but also the intrinsic difficulty of MDP.
- For example, solving a motion planning task with many obstacles is much harder than the one with a simple structure even both MDPs have the same state and action spaces.
- Detailed analysis of the complexity of RL is beyond this talk. And we will focus on an intermediate problem defined later.

RL with a Generative Model

- Let us introduce the generative model \mathcal{M}. Importantly, we can directly reset it to any state s_{t}, after which we can take an action a_{t} and observe the next state $s_{t+1} \sim p_{a_{t}}\left(\cdot \mid s_{t}\right)$ and the reward $r\left(s_{t}, a_{t}\right)$.
- Compared to the pure MDP problem, we still do not known P in advance.
- Compared to the pure RL problem, we can go to any s_{t} without the planning from an initial state s_{0}.
- Example: a perfect simulator (e.g., some video game simulators), where we can load (reset) the state s_{t} from RAM.
- Luckily, the complexity of RL with a generative model is shown to only depend on $|\mathcal{S}|,|\mathcal{A}|$, and $1 /(1-\gamma)$.

Bellman Optimality Equation

- The state-action value function (or Q-function) for an infinite-horizon MDP is defined as:

$$
\theta^{\pi}(x, u)=\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r\left(x_{k}, u_{k}\right) \mid x_{0}=x, u_{0}=u\right] \quad \text { where } u_{k}=\pi\left(x_{k}\right) \text { for all } k \geq 1
$$

where we replace the state s_{t} with x_{t} and the action a_{t} with u_{t}.

- The Bellman Optimality Equation is defined as:

$$
\theta^{\pi}(x, u)=r(x, u)+\mathbb{E}_{x^{\prime}}\left[\max _{u^{\prime} \in \mathcal{U}} \theta^{\pi}\left(x^{\prime}, u^{\prime}\right)\right] \quad \text { where } x^{\prime} \sim P_{u}(\cdot \mid x)
$$

where $P_{u}(\cdot \mid x)$ denotes the transition kernel based on current state x and current action u.

- Define the optimal state-value function $\theta^{*}=\max _{\pi} \theta^{\pi}$. It can be proved only θ^{*} is the solution to the above equation [3].

Bellman Operator

- The expected (population) Bellman operator \mathcal{T} is a mapping from $\mathbb{R}^{|\mathcal{X}| \times|\mathcal{U}|}$ to itself:

$$
\mathcal{T}(\theta)(x, u):=r(x, u)+\gamma \mathbb{E}_{x^{\prime}}\left[\max _{u^{\prime} \in \mathcal{U}} \theta\left(x^{\prime}, u^{\prime}\right)\right] \quad \text { where } x^{\prime} \sim P_{u}(\cdot \mid x)
$$

- Similarly, we can define the empirical (sampling-based) Bellman operator $\hat{\mathcal{T}}$:

$$
\hat{\mathcal{T}}(\theta)(x, u):=r(x, u)+\gamma \max _{u^{\prime} \in \mathcal{U}} \theta\left(x^{\prime}, u^{\prime}\right) \quad \text { where } x^{\prime} \sim P_{u}(\cdot \mid x)
$$

- By construction, we have $\mathbb{E}[\hat{\mathcal{T}}(\theta)]=\mathcal{T}(\theta)$ and $\theta^{*}=\mathcal{T}\left(\theta^{*}\right)$

Properties of Bellman Operator

- $\left(\gamma\right.$-contractive) For any $\theta_{1}, \theta_{2} \in \mathbb{R}^{|\mathcal{X}| \times|\mathcal{U}|}$ and define $\|\theta\|_{\infty}=\max _{(x, u)}|\theta(x, u)|$, we have

$$
\left\|\mathcal{T}\left(\theta_{1}\right)-\mathcal{T}\left(\theta_{2}\right)\right\|_{\infty} \leq \gamma\left\|\theta_{1}-\theta_{2}\right\|_{\infty}
$$

- (orthant ordering) If $\theta_{1} \preceq \theta_{2}$ (i.e., θ_{1} is no larger than θ_{2} elementwise), we have

$$
\mathcal{T}\left(\theta_{1}\right) \preceq \mathcal{T}\left(\theta_{2}\right)
$$

- Note the above properties also hold for $\hat{\mathcal{T}}$ (because $\hat{\mathcal{T}}$ is a special case of \mathcal{T}).

Properties of Bellman Operator

- Since \mathcal{T} is γ-contractive, we can repeatedly apply on \mathcal{T} on θ_{k} to get a contractive sequence $\left\{\theta_{k}\right\}$.

$$
\begin{equation*}
\theta_{k+1}:=\left(1-\lambda_{k}\right) \theta_{k}+\lambda_{k} \mathcal{T}\left(\theta_{k}\right) \tag{1}
\end{equation*}
$$

where $\left\{\lambda_{k}: \lambda_{k} \in(0,1]\right\}$ is some sequence of stepsize.

- By γ-contractive, we can show that the optimal gap $\Delta_{k}=\theta_{k}-\theta^{*}$ decays with a linear rate (i.e., $\mathcal{O}\left(\gamma^{t}\right)$). Thus $\theta \mapsto \theta^{*}$ if we know P to perform \mathcal{T}.

$$
\begin{aligned}
& \Delta_{k+1}=\left(1-\lambda_{k}\right) \Delta_{k}+\lambda_{k}\left\{\mathcal{T}\left(\Delta_{k}+\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right\} \\
&\left\|\Delta_{k+1}\right\|_{\infty} \stackrel{\left(\lambda_{k}=1\right)}{\leq} \gamma\left\|\Delta_{k}\right\|_{\infty} \leq \gamma^{t}\left\|\Delta_{1}\right\|_{\infty}
\end{aligned}
$$

- In the next part, we show the generative model only admits $\hat{\mathcal{T}}$, which results in sampling noise when updating.

Q-learning

- The (synchronous) Q-learning takes a stochastic approximation (SA) approach to the Bellman optimality equation with $\hat{\mathcal{T}}$:

$$
\begin{equation*}
\theta_{k+1}=\left(1-\lambda_{k}\right) \theta_{k}+\lambda_{k} \hat{\mathcal{T}}_{k}\left(\theta_{k}\right) \tag{2}
\end{equation*}
$$

- We can rewrite the above update rule as:

$$
\theta_{k+1}=\left(1-\lambda_{k}\right) \theta_{k}+\lambda_{k}\left\{\mathcal{T}\left(\theta_{k}\right)+E_{k}\right\}
$$

where $E_{k}=\hat{\mathcal{T}}\left(\theta_{k}\right)-\mathcal{T}\left(\theta_{k}\right)$ is a zero-mean noise matrix.

- Thus, we can view the above update rule as the expected Bellman update with some noise.

Noise in Q-learning

- Recall the Q-learning update rule (we will introduce θ^{*} and $\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)$ to "center"):

$$
\theta_{k+1}-\theta^{*}=\left(1-\lambda_{k}\right)\left(\theta_{k}-\theta^{*}\right)+\lambda_{k} \hat{\mathcal{T}}_{k}\left(\theta_{k}\right)-\lambda_{k} \hat{\mathcal{T}}_{k}\left(\theta^{*}\right)+\lambda_{k} \hat{\mathcal{T}}_{k}\left(\theta^{*}\right)-\lambda_{k} \mathcal{T}\left(\theta^{*}\right)
$$

- Similarly, let's consider the update rule from the view of the optimal gap $\Delta_{k}=\theta_{k}-\theta^{*}$:

$$
\begin{equation*}
\Delta_{k+1}=\left(1-\lambda_{k}\right) \Delta_{k}+\underbrace{\lambda_{k}\left\{\hat{\mathcal{T}}_{k}\left(\theta^{*}+\Delta_{k}\right)-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)\right\}}_{\gamma \text {-contractive }}+\underbrace{\lambda_{k} W_{k}}_{\text {noise }} \tag{3}
\end{equation*}
$$

Here $W_{k}=\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)$ is a zero-mean random (noise) matrix.

- In this way, Δ_{k} decays over iteration with the sampling noise.

Q-learning with Oracle Variance Reduction

- Let's consider the following update rule:

$$
\theta_{k+1}=\left(1-\lambda_{k}\right) \theta_{k}+\lambda_{k}\left(\hat{\mathcal{T}}_{k}\left(\theta_{k}\right)-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)+\mathcal{T}\left(\theta^{*}\right)\right)
$$

Note that $\mathbb{E}\left[\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)\right]=\mathcal{T}\left(\theta^{*}\right)$.

- Again, let's define the error matrix $\Delta_{k}=\theta_{k}-\theta^{*}$, we find that

$$
\Delta_{k+1}=\left(1-\lambda_{k}\right) \Delta_{k}+\lambda_{k}\left\{\hat{\mathcal{T}}\left(\theta^{*}+\Delta_{k}\right)-\hat{\mathcal{T}}\left(\theta^{*}\right)\right\}
$$

- Compared to the previous one (see Equation (3)), the noise term $W_{k}=\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)$ vanishes.

Variance-reduced Q-learning

- Though the above method is not implementable because of the unknown θ^{*}, we can use a matrix $\bar{\theta}$ as a surrogate of θ^{*}.
- Let's consider the following control variate:

$$
\tilde{\mathcal{T}}_{N}(\bar{\theta})=\frac{1}{N} \sum_{i \in D} \hat{\mathcal{T}}_{i}(\bar{\theta})
$$

where D is a collection of N i.i.d samples.

- By construction, $\tilde{\mathcal{T}}_{N}(\bar{\theta})$ is an unbiased approximation to $\mathcal{T}(\bar{\theta})$, with the variance controlled by N.

Variance-reduced Q-learning

- Let's define an operator \mathcal{V}_{k} on $\mathbb{R}^{|\mathcal{X}| \times|\mathcal{U}|}$ via

$$
\mathcal{V}_{k}\left(\theta ; \lambda, \bar{\theta}, \tilde{\mathcal{T}}_{N}\right)=(1-\lambda) \theta+\lambda\left\{\hat{\mathcal{T}}_{k}(\theta)-\hat{\mathcal{T}}_{k}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})\right\}
$$

- By construction, we show that \mathcal{V}_{k} is also unbiased:

$$
\mathbb{E}\left[\hat{\mathcal{T}}_{k}(\theta)-\hat{\mathcal{T}}_{k}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})\right]=\mathcal{T}(\theta)
$$

- This variance-reduced operator is similar to the one used in SVRG [2].

Why variance-reduced?

- Why $\mathcal{V}_{k}\left(\theta ; \lambda, \bar{\theta}, \tilde{\mathcal{T}}_{N}\right)=(1-\lambda) \theta+\lambda\left\{\hat{\mathcal{T}}_{k}(\theta)-\hat{\mathcal{T}}_{k}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})\right\}$ is variance-reduced?
- If $\bar{\theta}$ is close to θ and $\theta^{*}, \hat{\mathcal{T}}_{k}(\theta)$ has the close direction with $\hat{\mathcal{T}}_{k}(\bar{\theta})$, and $\tilde{\mathcal{T}}_{N}(\bar{\theta})$ is very close to $\mathcal{T}(\theta)$ by choosing a large N. In this way, we "recover" the expected Bellman update.

Why variance-reduced?

- You may want to understand VRQL from the perspective of the optimality gap. If we follow the previous stepups, we have

$$
\Delta_{k+1}=\left(1-\lambda_{k}\right) \Delta_{k}+\lambda_{k}\left\{\hat{\mathcal{T}}_{k}\left(\theta^{*}+\Delta_{k}\right)-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)\right\}+W_{k}
$$

where $W_{k}=\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)-\hat{\mathcal{T}}_{k}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})$.

- However, note that $\mathbb{E}\left[W_{k}\right] \neq 0$ (the expectation is taken over the stochastic process of $\hat{\mathcal{T}}_{k}$).
- Correspondingly, W_{k} can not be viewed as a zero-mean noise term. In contrast, we also need to "center" $\hat{\mathcal{T}}_{k}(\bar{\theta})$ and consider the (shifted) fixed point by $\hat{\mathcal{V}}_{k}$ (we will formally analyze this later).

Sing Epoch of Variance-Reduced Q-learning

- Sing Epoch of variance-reduced Q-learning (VRQL) is outlined below:

```
Function RunEpoch(\overline{0};K,N)
Inputs:
    (a) Epoch length K (b) Recentering matrix }\overline{0}\quad(c)\mathrm{ Recentering sample size N
    (1) Compute }\mp@subsup{\widetilde{\mathcal{T}}}{N}{}(\overline{0}):=\frac{1}{N}\mp@subsup{\sum}{i=1}{N}\mp@subsup{\widehat{\mathcal{T}}}{i}{}(\overline{0})
    (2) Initialize }\mp@subsup{0}{1}{}=\overline{0}\mathrm{ .
    (3) For }k=1,\ldots,K, compute the variance-reduced update (11)
    0}\mp@subsup{0}{k+1}{}=\mp@subsup{\mathcal{V}}{k}{}(\mp@subsup{0}{k}{};\mp@subsup{\lambda}{k}{},\overline{0},\mp@subsup{\widetilde{\mathcal{T}}}{N}{})\quad\mathrm{ with stepsize }\mp@subsup{\lambda}{k}{}=\frac{1}{1+(1-\gamma)k}
```

 (12)
 Output: Return θ_{K+1}.

Overall Algorithm

- The overall algorithm runs by repeatedly calling the sub-procedure of RunEpoch.

```
Algorithm: Variance-reduced Q-learning
Inputs: (a) Number of epochs M (b) Epoch length K (c) Recentering sizes {N N
(1) Initialize \(\bar{\theta}_{0}=0\).
(2) For epochs \(m=1, \ldots, M: \quad \bar{\theta}_{m}=\operatorname{RunEpoch}\left(\bar{\theta}_{m-1} ; K, N_{m}\right)\).
```

- All input parameters: M-number of epochs, K-epoch length, $\left\{N_{m}\right\}_{m=1}^{M}$-centering sizes and $\left\{\lambda_{k}\right\}_{k=1}^{K}$-stepsizes.
- The total number of matrix samples required by VRQL is $K M+\sum_{m=1}^{M} N_{m}$.

Experimental Comparison

- We can compare VRQL (red line) and ordinary Q-learning (blue line) under two MDPs with different γ (this figure from [7]).

(a)

Parameter Choice

- Given a tolerance parameter $\delta \in(0,1)$, let's choose the epoch length K and centering sizes $\left\{N_{m}\right\}_{m=1}^{M}$ so as to ensure that the final guarantees hold with probability as least $1-\delta$.

$$
\begin{align*}
K & =c_{1} \frac{\log \left(\frac{8 M D}{(1-\gamma) \delta}\right)}{(1-\gamma)^{3}} \tag{4}\\
N_{m} & =c_{2} 4^{m} \frac{\log (8 M D / \delta)}{(1-\gamma)^{2}}
\end{align*}
$$

where $D=|\mathcal{X}| \times|\mathcal{U}|$.

- The number of epoch M depends on the convergence rate and the desired accuracy, which will be decided later.

Linear Convergence Over Epochs

Theorem 1.

Given a γ-discounted MDP with optimal Q-function θ^{*} and a given error probability $\delta \in(0,1)$, suppose that we run variance-reduced Q-learning from $\bar{\theta}_{0}=0$ for M epochs using parameters K and $\left\{N_{m}\right\}_{m=1}^{M}$ chosen according to the criteria (4). Then we have

$$
\left\|\bar{\theta}_{M}-\theta^{*}\right\|_{\infty} \leq \frac{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)}{2^{M}}
$$

with probability at least $1-\delta$, where $\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}=\sqrt{\max _{(x, u)} \operatorname{Var}\left(\hat{\mathcal{T}}\left(\theta^{*}\right)(x, u)\right)}$.

Sample Complexity of VRQL

Corollary 1.

Consider a γ-discounted MDP with optimal Q-function θ^{*}, a given error probability $\delta \in(0,1)$ and ℓ_{∞}-error level $\epsilon>0$. Then there are universal constants c, c^{\prime} such that a total of

$$
T\left(\theta^{*}, \delta, \epsilon\right)=\left\{c \frac{\log \left(\frac{8 M D}{(1-\gamma) \delta}\right)}{(1-\gamma)^{3}} \log \left(\frac{b_{0}}{\epsilon}\right)+c^{\prime}\left(\frac{b_{0}}{\epsilon}\right)^{2} \frac{\log (8 M D / \delta)}{(1-\gamma)^{2}}\right\}
$$

matrix samples in the generative model is sufficient to obtain an ϵ-accurate estimate with probability at least $1-\delta$, where b_{0} is defined as

$$
b_{0}=\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)
$$

Proof of Corollary 1

- We first note that to obtain an ϵ-accurate estimate, the following number of epochs M is enough.

$$
M=\left\lceil\log _{2}\left(\frac{b_{0}}{\epsilon}\right)\right\rceil
$$

- By construction, the total number of matrix samples of VRQL is $K M+\sum_{m=1}^{M} N_{m}$. Thus,

$$
\begin{aligned}
K M+\sum_{m=1}^{M} N_{m} & \leq M K+c 4^{M} \frac{\log (8 M D / \delta)}{(1-\gamma)^{2}} \\
& \leq c^{\prime} \frac{\log \left(\frac{8 M D}{(1-\gamma) \delta}\right)}{(1-\gamma)^{3}} \log \left(\frac{b_{0}}{\epsilon}\right)+c\left(\frac{b_{0}}{\epsilon}\right)^{2} \frac{\log (8 M D / \delta)}{(1-\gamma)^{2}}
\end{aligned}
$$

Worst Case Analysis

- Assume that reward function is bounded by $r_{\text {max }}$, i.e., $\max _{(x, u) \in \mathcal{X} \times \mathcal{U}}|r(x, u)| \leq r_{\text {max }}$.
- We can give a worst case bound for b_{0} :

$$
\sup _{\mathcal{M}^{*}} b_{0}=\sup _{\mathcal{M}^{*}}\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma) \leq r_{\max }\left(\frac{2}{1-\gamma}+1\right) \leq \frac{4 r_{\max }}{1-\gamma}
$$

- Applying this bound to Corollary 1, we have

$$
\sup _{\mathcal{M}^{*}} T\left(\theta^{*}, \delta, \epsilon\right) \leq\left\lceil c\left(\frac{r_{\max }^{2}}{\epsilon^{2}}\right) \frac{\log \left(\frac{D}{(1-\gamma) \delta}\right) \log \left(\frac{1}{(1-\gamma) \epsilon}\right)}{(1-\gamma)^{4}}\right\rceil
$$

and the total number of epochs required is $M=c \log \left(\frac{r_{\text {max }}}{1-\gamma}\right)$ for some universal constant c.

Refine our analysis

- In the worst case, we require the following matrix samples:

$$
\sup _{\mathcal{M}^{*}} T\left(\theta^{*}, \delta, \epsilon\right) \leq\left\lceil c\left(\frac{r_{\max }^{2}}{\epsilon^{2}}\right) \frac{\log \left(\frac{D}{(1-\gamma) \delta}\right) \log \left(\frac{1}{(1-\gamma) \epsilon}\right)}{(1-\gamma)^{4}}\right\rceil
$$

- If we do not start with zero vector (zero vector is the worst one), we can further improve this result by a good initial point such that $\bar{\theta}_{0}$ with $\left\|\bar{\theta}_{0}-\theta^{*}\right\|_{\infty} \leq \frac{r_{\max }}{\sqrt{1-\gamma}} \leq \frac{r_{\text {max }}}{1-\gamma}$.

Refined Sample Complexity of VRQL

Proposition 1 (Minimax optimality).

Consider a γ-discounted MDP with optimal Q-function θ^{*}, a given error probability $\delta \in(0,1)$, and a given error tolerance. Then running variance-reduced Q-learning from in initial point $\bar{\theta}_{0}$ such that $\left\|\bar{\theta}_{0}-\theta^{*}\right\|_{\infty} \leq \frac{r_{\max }}{\sqrt{1-\gamma}}$ for a total of $M=c \log \left(\frac{r_{\max }}{\sqrt{(1-\gamma) \epsilon}}\right)$ epochs using K and $\left\{N_{m}\right\}_{m=1}^{M}$ chosen according to the criteria (4), yields a solution $\bar{\theta}_{M}$ such that $\left\|\bar{\theta}_{M}-\theta^{*}\right\| \leq \epsilon$ with probability at least $1-\delta$. And the total number of matrix samples is bounded by

$$
T_{\max }\left(\theta^{*}, \delta, \epsilon\right)=c\left(\frac{r_{\max }^{2}}{\epsilon^{2}}\right) \frac{\log \left(\frac{D}{(1-\gamma) \delta}\right) \log \left(\frac{1}{(1-\gamma) \epsilon}\right)}{(1-\gamma)^{3}}
$$

Lower Bound on Generative Model

Definition 1 ((ϵ, δ)-correct algorithm).
Let θ be the output of some $R L$ algorithm \mathbb{A}. We say that \mathbb{A} is (ϵ, δ)-correct on the class of $\operatorname{MDPs} \mathbb{M}=\left\{\mathcal{M}_{1}^{*}, \mathcal{M}_{2}^{*}, \cdots\right\}$ if $\left\|\theta^{*}-\theta\right\|_{\infty} \leq \epsilon$ with probability at least $1-\delta$ for all $\mathcal{M}^{*} \in \mathbb{M}$.

Theorem 2 (Lower bound on the sample complexity of RL with a generative model[1]).
There exist some constants $\epsilon_{0}, \delta_{0}, c_{1}, c_{2}$ and a class of MDPs \mathbb{M} such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$, $\delta \in\left(0, \delta_{0} /(|\mathcal{S}| \times|\mathcal{A}|)\right)$, and every (ϵ, δ)-correct RL algorithm on the class of MDPs \mathbb{M} the total number of state-transition samples need to be least

$$
T=\left\lceil\frac{|\mathcal{S}| \times|\mathcal{A}|}{c_{1} \epsilon^{2}(1-\gamma)^{3}} \log \frac{|\mathcal{S}| \times|\mathcal{A}|}{c_{2} \delta}\right\rceil
$$

Sample Complexity of Ordinary Q-learning

Theorem 3 (Sublinear Convergence Rate of Q-learning).

Consider the stepsize $\lambda_{k}=\frac{1}{1+(1-\gamma) k}$. Then there exist a universal constant c such that running the empirical Bellman update (see Equation (2)) yields

$$
\begin{aligned}
\mathbb{E}\left[\left\|\theta_{k+1}-\theta^{*}\right\|\right] & \leq \frac{\left\|\theta_{1}-\theta^{*}\right\|_{\infty}}{1+(1-\gamma) k} \\
& +\frac{c}{1-\gamma}\left\{\frac{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty} \sqrt{\log (2 D)}}{\sqrt{1+(1-\gamma) k}}+\frac{\left\|\theta^{*}\right\|_{s p a n} \log (2 e D(1+(1-\gamma) k))}{1+(1-\gamma) k}\right\}
\end{aligned}
$$

where $\left\|\theta^{*}\right\|_{\text {span }}=\max _{(x . u)} \theta^{*}(x, u)-\min _{(x, u)} \theta^{*}(x, u)$, and
$\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}=\sqrt{\max _{(x, u)} \operatorname{Var}\left(\hat{\mathcal{T}}\left(\theta^{*}\right)(x, u)\right)}$.
(Remark) A high probability bound can also be derived by replacing $\log (D)$ with $\operatorname{cog}(D k / \delta)$.

Sample Complexity of Ordinary Q-learning (worst case)

- Let's consider the worst case analysis.

$$
\sup _{\mathcal{M}^{*}}\left\|\theta^{*}\right\|_{\text {span }} \leq \frac{2 r_{\max }}{1-\gamma}, \quad \text { and } \sup _{\mathcal{M}^{*}}\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty} \leq \frac{r_{\max }}{1-\gamma}
$$

- In this way, we claim that ordinary Q-learning requires a total of

$$
\sup _{\mathcal{M}^{*}} T\left(\epsilon, \gamma, \theta^{*}\right)=\mathcal{O}\left(\frac{r_{\max }^{2}}{(1-\gamma)^{5}}\right)
$$

matrix samples to find an ϵ-optimal solution in expectation.

Discussion

- VRQL $\left(\mathcal{O}\left(1 /(1-\gamma)^{4}\right)\right)$ improves the upper bound compared to ordinary Q-learning $\left(\mathcal{O}\left(1 /(1-\gamma)^{5}\right)\right)$ in the worst case.
- Note that model-free methods (e.g., value iteration and q-learning) with the variance-reduction technique can often get better performance [4].
- To match the lower bound $\mathcal{O}\left(1 /(1-\gamma)^{3}\right)$, VRQL requires a good initial point. This is somewhat unsatisfying, because the same kind method of Variance-reduced Value Iteration [4] does not require this to match the lower bound.
- On the other hand, model-based methods do not require variance-reduction to match the lower bound [1].
- Model-based methods first construct a virtual MDP $\hat{\mathcal{M}}$ with collected samples and then learns a (near-) optimal $\hat{\theta}^{*}$ on this recovered MDP.

Why variance-reduction is important for model-free methods?

- Intuitively, model-free methods iteratively interact with the environment to collect samples. As a result, we will waste samples if we do not use $\bar{\theta}$, which contains past information.
- Technically, both model-free and model-based approaches use samples to estimate the expected Bellman update.
- Naive model-free methods require a union bound accuracy for all iterations.
- Model-based methods only need the estimate is accuracy for the optimal $\hat{\theta}^{*}$ on recovered MDP.

Proof Idea of Q-learning

- We start with the simplest case: Q-learning, which will be insightful for analysis of VRQL.
- We can rewrite the update rule of Q-learning (ref to Equation (2)) as:

$$
\begin{aligned}
\theta_{k+1}-\theta^{*} & =\left(1-\lambda_{k}\right)\left(\theta_{k}-\theta^{*}\right)+\lambda_{k}\left\{\hat{\mathcal{H}}_{k}\left(\theta_{k}\right)+W_{k}\right\} \\
\hat{\mathcal{H}}_{k}\left(\theta_{k}\right) & =\hat{\mathcal{T}}_{k}\left(\theta_{k}\right)-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right) \\
W_{k} & =\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)
\end{aligned}
$$

- $\hat{\mathcal{H}}_{k}\left(\theta_{k}\right)$ is $\underline{\gamma}$-contractive with respective to $\left\|\theta_{k}-\theta^{*}\right\|_{\infty}$.
- W_{k} is a $\underline{\theta_{k} \text {-independent }}$ noise term, which is governed by the statistical features (e.g., bounded value and variance) of θ^{*}.

Proof Idea of Q-learning

- Note that W_{k} incurs a stochastic process, which is independent of θ_{k},

$$
P_{k}=\left(1-\lambda_{k-1}\right) P_{k-1}+\lambda_{k-1} W_{k-1}, \quad \text { with initialization } P_{1}=0
$$

- Thanks to the linearity, by properly choosing two real-value series a_{k} (related to γ and $\left\|P_{k}\right\|$) and b_{k} (related to the initial value $\left\|\theta_{1}-\theta^{*}\right\|_{\infty}$), we can show that (see [6] for details)

$$
\left\|\theta_{k}-\theta^{*}\right\|_{\infty} \leq b_{k}+a_{k}+\left\|P_{k}\right\|_{\infty}
$$

Proof Idea of Q-learning

- Futhermore, when $\lambda_{k}=\frac{1}{1+(1-\gamma) k}$, we have (see [6] for details)

$$
\left\|\theta_{k+1}-\theta^{*}\right\|_{\infty} \leq \lambda_{k}\left\{\frac{\left\|\theta_{1}-\theta^{*}\right\|_{\infty}}{\lambda_{1}}+\gamma \sum_{\ell=1}^{k}\left\|P_{\ell}\right\|_{\infty}\right\}+\left\|P_{k+1}\right\|_{\ell}
$$

- Hence, for ordinary Q -learning, we need to bound $\left\|P_{k}\right\|_{\infty}$ to estimate the converge rate.

Proof Idea of Q-learning

- Recall that $W_{k}=\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)$ is a zero-mean random matrix with bounded value $2\left\|\theta^{*}\right\|_{\infty}$ and the maximal variance $\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}^{2}$.
- Hence, we conclude that W_{k} satisfies Bernstein condition [5]. Using the inductive reasoning, we can show that $P_{k}(x, u)$ also satisfies certain Bernstein condition due to the linearity of the following stochastic process.

$$
P_{k}=\left(1-\lambda_{k-1}\right) P_{k-1}+\lambda_{k-1} W_{k-1}, \quad \text { with initialization } P_{1}=0
$$

- Finally, we can apply a union bound to derive high probability bound for $\left\|P_{k}\right\|_{\infty}$.

Proof Idea of VRQL

- The high-level proof procedure of VRQL is similar to the one of ordinary Q-learning.
- The main difference (difficulty) is that the noise term W_{k} is not a zero-mean random matrix!

$$
\begin{aligned}
\theta_{k+1}-\theta^{*} & =\left(1-\lambda_{k}\right)\left(\theta_{k}-\theta^{*}\right)+\lambda_{k}\left\{\hat{\mathcal{H}}_{k}\left(\theta_{k}\right)+W_{k}\right\} \\
\hat{\mathcal{H}}_{k}\left(\theta_{k}\right) & =\hat{\mathcal{T}}_{k}\left(\theta_{k}\right)-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right) \\
W_{k} & =-\hat{\mathcal{H}}_{k}(\bar{\theta})-\mathcal{T}\left(\theta^{*}\right)+\tilde{\mathcal{T}}_{N}(\bar{\theta})
\end{aligned}
$$

where $\hat{\mathcal{H}}_{k}(\bar{\theta})=\hat{\mathcal{T}}_{k}(\bar{\theta})-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)$ is a centered operator.

Proof Idea of VRQL

- To use concentration inequalities, we need to separately "center" each term in W_{k}.

$$
\begin{aligned}
W_{k} & =-\hat{\mathcal{H}}_{k}(\bar{\theta})-\mathcal{T}\left(\theta^{*}\right)+\tilde{\mathcal{T}}_{N}(\bar{\theta}) \\
& =-\hat{\mathcal{H}}_{k}(\bar{\theta})+\underbrace{\tilde{\mathcal{T}}_{N}(\bar{\theta})-\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)}_{\tilde{\mathcal{H}}_{N}(\bar{\theta})}+\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right) \\
& =-\hat{\mathcal{H}}_{k}(\bar{\theta})+\tilde{\mathcal{H}}_{N}(\bar{\theta})+\left\{\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right\}
\end{aligned}
$$

where we define $\tilde{\mathcal{H}}_{N}(\bar{\theta})=\tilde{\mathcal{T}}_{N}(\bar{\theta})-\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)$ as a centered operator.

- Note that only the first term depends on the iteration k, while the last two terms do not.

Proof Idea of VRQL

- To apply concentration inequalities, we need to introduce the population operator for each uncentered term that appeared in W_{k}.
- Let's define the population operator $\mathcal{H}(\theta):=\mathcal{T}(\theta)-\mathcal{T}\left(\theta^{*}\right)$, then

$$
W_{k}=\underbrace{\left\{\mathcal{H}(\bar{\theta})-\hat{\mathcal{H}}_{k}(\bar{\theta})\right\}}_{W_{k}^{\prime}}+\underbrace{\left\{\tilde{\mathcal{H}}_{N}(\bar{\theta})-\mathcal{H}(\bar{\theta})\right\}}_{W^{o}}+\underbrace{\left\{\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right\}}_{W^{\dagger}}
$$

- Again, we observe that only the first term W_{k}^{\prime} is important for the induced stochastic process while the last two terms are independent over iteration k.
- Thus, we can similarly apply previous results by replacing W_{k} with W_{k}^{\prime} to get P_{k}^{\prime}.

Proof Idea of VRQL

- Now, our target becomes to separately bound $\left\|P_{k}^{\prime}\right\|_{\infty}$ (induced by W_{k}^{\prime}), $\left\|W^{o}\right\|_{\infty}$ and $\left\|W^{\dagger}\right\|_{\infty}$.

$$
W_{k}=\underbrace{\left\{\mathcal{H}(\bar{\theta})-\hat{\mathcal{H}}_{k}(\bar{\theta})\right\}}_{W_{k}^{\prime}}+\underbrace{\left\{\tilde{\mathcal{H}}_{N}(\bar{\theta})-\mathcal{H}(\bar{\theta})\right\}}_{W^{o}}+\underbrace{\left\{\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right\}}_{W^{\dagger}}
$$

- Bounding $\left\|P_{k}^{\prime}\right\|_{\infty}$ is also based on inductive reasoning of Bernstein inequalities.
- Bounding $\left\|W^{o}\right\|_{\infty}$ can directly use Hoeffding's inequality.
- Bounding $\left\|W^{\dagger}\right\|_{\infty}$ can smartly use Bernstein inequality since we know the variance.

Proof of Theorem 1

- At a high-level argument, we prove Theorem 1 via an inductive argument.

$$
\left\|\bar{\theta}_{M}-\theta^{*}\right\|_{\infty} \leq \frac{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)}{2^{M}}
$$

- (Base case) Given the initialization $\bar{\theta}_{0}=0$, we prove that $\bar{\theta}_{1}$ satisfies such a bound with probability at least $1-\frac{\delta}{M}$.
- (Inductive step) In this step, we prove, with probability at least $1-\frac{\delta}{M}, \bar{\theta}_{m+1}$ satisfies such a bound with the assumption that it holds for $\bar{\theta}_{m}$.
- (Union bound) Finally, by taking a union bound over all M epochs of the algorithm we guarantee the bound holds uniformly for all $m=1, \cdots M$ with probability at least $1-\delta$.

Proof of Theorem 1 - Base Case

- For the given initialization $\bar{\theta}_{0}=0$, we have $\hat{\mathcal{T}}_{k}\left(\bar{\theta}_{0}\right)=r$ and $\tilde{\mathcal{T}}_{k}\left(\bar{\theta}_{0}\right)=r$. Consequently, $\hat{\mathcal{T}}_{k}\left(\bar{\theta}_{0}\right)-\tilde{\mathcal{T}}_{k}\left(\bar{\theta}_{0}\right)=0$, so that the update rule reduces to the case of ordinary Q-learning with stepsize $\lambda_{k}=\frac{1}{1+(1-\gamma) k}$.
- According to the prior work [6], there is a universal constant $c^{\prime}>0$ such that after M iterations, we have

$$
\left\|\theta_{K+1}-\theta^{*}\right\|_{\infty} \leq \frac{\left\|\theta^{*}\right\|_{\infty}}{(1-\gamma)^{K}}+c^{\prime}\left\{\frac{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty} \sqrt{\log (2 D M K / \delta)}}{(1-\gamma)^{3 / 2} \sqrt{K}}+\frac{\left\|\theta^{*}\right\|_{\infty} \log \left(\frac{2 e D M K}{\delta}(1+(1-\gamma) K)\right)}{(1-\gamma)^{2} K}\right\}
$$

- Choosing $K=c \frac{\log \left(\frac{8 M D}{\delta(1-\gamma-\gamma}\right)}{(1-\gamma)^{3}}$ for a sufficient large constant c suffices to ensure that

$$
\left\|\theta_{K+1}-\theta^{*}\right\| \leq \frac{1}{2}\left\{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)\right\} \text { with probability at least } 1-\frac{\delta}{M}
$$

Proof of Theorem 1 - Inductive Step

- For this step, we assume that the input $\bar{\theta}_{m}$ to epoch m satisfies the bound

$$
\left\|\bar{\theta}_{m}-\theta^{*}\right\|_{\infty} \leq \underbrace{\frac{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)}{2^{m}}}_{=: b_{m}}
$$

- Our target is to prove that $\left\|\bar{\theta}_{m+1}-\theta^{*}\right\|_{\infty} \leq b_{m+1}=\frac{b_{m}}{2}$.
- It turns out that if we can prove

$$
\begin{equation*}
\left\|\bar{\theta}_{K+1}-\theta^{*}\right\|_{\infty} \leq c b_{m}\left\{\frac{1}{1+(1-\gamma) K}+\frac{1}{1-\gamma} \sqrt{\frac{\log (8 M D K / \delta)}{1+(1-\gamma) K}}+\sqrt{4^{m} \frac{\log (8 M D / \delta)}{(1-\gamma)^{2} N_{m}}}\right\} \tag{5}
\end{equation*}
$$

, K and N_{m} defined in Equation (4) are sufficient to prove the inductive step.

Proof of Theorem 1 - Inductive Step

- Recall the update rule of VRQL

$$
\theta_{k+1}=(1-\lambda) \theta+\lambda_{k}\left\{\hat{\mathcal{T}}_{k}(\theta)-\hat{\mathcal{T}}_{k}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})\right\}
$$

- Let's introduce the auxiliary recentered operators:

$$
\hat{\mathcal{H}}_{k}(\theta):=\hat{\mathcal{T}}_{k}(\theta)-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)
$$

- Thus, we can rewrite the VRQL update rule as

$$
\begin{aligned}
\theta_{k+1}-\theta_{*} & =\left(1-\lambda_{k}\right)\left(\theta_{k}-\theta^{*}\right)+\lambda_{k}\{\underbrace{\hat{\mathcal{T}}_{k}\left(\theta_{k}\right)-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)}_{\hat{\mathcal{H}}_{k}\left(\theta_{k}\right)} \underbrace{-\hat{\mathcal{T}}_{k}(\bar{\theta})+\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)}_{\hat{\mathcal{H}}_{k}(\bar{\theta})}+\tilde{\mathcal{T}}_{N}(\bar{\theta})-\mathcal{T}\left(\theta^{*}\right)\} \\
& =\left(1-\lambda_{k}\right)\left(\theta_{k}-\theta^{*}\right)+\lambda_{k}\left\{\hat{\mathcal{H}}_{k}\left(\theta_{k}\right)-\hat{\mathcal{H}}_{k}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})-\mathcal{T}\left(\theta^{*}\right)\right\}
\end{aligned}
$$

Proof of Theorem 1 - Inductive Step

- Continue to the last page, let $W_{k}=-\hat{\mathcal{H}}_{k}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})-\mathcal{T}\left(\theta^{*}\right)$, we have

$$
\begin{align*}
\theta_{k+1}-\theta_{*} & =\left(1-\lambda_{k}\right)\left(\theta_{k}-\theta^{*}\right)+\lambda_{k}\{\hat{\mathcal{H}}_{k}\left(\theta_{k}\right) \underbrace{-\hat{\mathcal{H}}_{k}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})-\mathcal{T}\left(\theta^{*}\right)}_{W_{k}}\} \tag{6}\\
& =\left(1-\lambda_{k}\right)\left(\theta_{k}-\theta^{*}\right)+\lambda_{k}\left\{\hat{\mathcal{H}}_{k}\left(\theta_{k}\right)+W_{k}\right\}
\end{align*}
$$

- We can view W_{k} as a random noise sequence, which defines the following auxiliary stochastic progress:

$$
P_{k}:=\left(1-\lambda_{k-1}\right) P_{k-1}+\lambda_{k-1} W_{k-1}, \quad \text { with initialization } P_{1}=0
$$

Proof of Theorem 1 - Inductive Step

- Note that the operator $\hat{\mathcal{H}}_{k}(\theta):=\hat{\mathcal{T}}_{k}(\theta)-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)$ is monotonic respect to the orthant ordering and γ-contractive with respect to the ℓ_{∞}-norm.

Corollary 2.
[Adapted from the paper [6]] For all iterations $k=1,2, \cdots$, we have

$$
\left\|\theta_{k+1}-\theta^{*}\right\|_{\infty} \leq \frac{2}{1+(1-\gamma) k}\left\{\left\|\theta_{1}-\theta^{*}\right\|_{\infty}+\sum_{\ell=1}^{k}\left\|P_{\ell}\right\|_{\infty}\right\}+\left\|P_{k+1}\right\|_{\infty}
$$

Proof of Theorem 1 - Inductive Step

- In order to derive a concrete result based on Corollary 2, we need to obtain high-probability upper bounds on the terms $\left\|P_{\ell}\right\|_{\infty}$.
- Note that P_{k} relies on the stochastic process induced by W_{k} :

$$
W_{k}=-\hat{\mathcal{H}}_{k}(\bar{\theta})+\underbrace{\tilde{\mathcal{T}}_{N}(\bar{\theta})-\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)}_{\tilde{\mathcal{H}}_{N}(\bar{\theta})}+\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)=-\hat{\mathcal{H}}_{k}(\bar{\theta})+\tilde{\mathcal{H}}_{N}(\bar{\theta})+\left\{\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right\}
$$

where $\tilde{H}_{N}(\theta):=\tilde{\mathcal{T}}_{N}(\theta)-\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)$.

- Let's define the population operator $\mathcal{H}(\theta):=\mathcal{T}(\theta)-\mathcal{T}\left(\theta^{*}\right)$ to center, then

$$
W_{k}=\underbrace{\left\{\mathcal{H}(\bar{\theta})-\hat{\mathcal{H}}_{k}(\bar{\theta})\right\}}_{W_{k}^{\prime}}+\underbrace{\left\{\tilde{\mathcal{H}}_{N}(\bar{\theta})-\mathcal{H}(\bar{\theta})\right\}}_{W^{o}}+\underbrace{\left\{\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right\}}_{W^{\dagger}}
$$

Proof of Theorem 1 - Inductive Step

- Continue to the last page,

$$
W_{k}=\underbrace{\left\{\mathcal{H}(\bar{\theta})-\hat{\mathcal{H}}_{k}(\bar{\theta})\right\}}_{W_{k}^{\prime}}+\underbrace{\left\{\tilde{\mathcal{H}}_{N}(\bar{\theta})-\mathcal{H}(\bar{\theta})\right\}}_{W^{o}}+\underbrace{\left\{\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right\}}_{W^{\dagger}}
$$

- We note that W^{o} and W^{\dagger} are independent of k, thus using inductive reasoning, we can prove that (the original paper states that $P_{k} \preceq W^{o}+W^{\dagger}+P_{k}^{\prime}$. However, this inequality is ill-conditioned for the base case $(k=2)$.)

$$
P_{k} \preceq W^{o}+W^{\dagger}+P_{k}^{\prime}
$$

Proof of Theorem 1 - Inductive Step

- Thus, we can decompose the error bound of $\left\|P_{\ell}\right\|_{\infty}$ in Corollary 2 into that (note that $\left.\left\|\theta_{1}-\theta^{*}\right\| \leq b\right)$

$$
\begin{equation*}
\left\|\theta_{K+1}-\theta^{*}\right\|_{\infty} \leq \frac{2 b}{1+(1-\gamma) K}+3\left\{\frac{\left\|W^{o}\right\|_{\infty}+\left\|W^{\dagger}\right\|_{\infty}}{1-\gamma}\right\}+\left\{\frac{2 \sum_{\ell=1}^{K}\left\|P_{\ell}^{\prime}\right\|_{\infty}}{1+(1-\gamma) K}+\left\|P_{K+1}^{\prime}\right\|_{\infty}\right\} \tag{7}
\end{equation*}
$$

- In the next, we will bound the noise terms W^{o} and W^{\dagger}, and the stochastic process $\left\{P_{k}^{\prime}\right\}_{k \geq 1}$ separately.

Proof of Theorem 1 - Inductive Step: Bounding the recentering terms

Lemma 1 (High probability bounds on recentering terms).
Fix an arbitrary $\delta \in(0,1)$.
(a) If $\left\|\bar{\theta}-\theta^{*}\right\|_{\infty} \leq b_{m}$, then there is a universal constant c such that (Note that the origin paper does not consider the constant c, but it should be! And this constant does not change the final result.)

$$
\left\|W^{o}\right\|_{\infty} \leq c 4 b_{m} \sqrt{\frac{\log (8 M D / \delta)}{N}} \quad \text { with prob. at least } 1-\frac{\delta}{3 M}
$$

(b) There is a universal constant c such that

$$
\left\|W^{\dagger}\right\|_{\infty} \leq c\left\{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)\right\} \sqrt{\frac{\log (8 M D / \delta)}{N}} \text { with prob. at least } 1-\frac{\delta}{3 M}
$$

Proof of Lemma 1 - Bounding W^{o}

- Recall the definition of W^{o} :

$$
W^{o}=\tilde{\mathcal{H}}_{N}(\bar{\theta})-\mathcal{H}(\bar{\theta})=\left\{\tilde{\mathcal{T}}_{N}(\bar{\theta})-\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)\right\}-\left\{\mathcal{T}(\bar{\theta})-\mathcal{T}\left(\theta^{*}\right)\right\}
$$

- Thus, each entry of W^{o} is a zero mean, i.i.d. sum of N random variables bounded in absolute value by $2 b_{m}$.
- By Hoeffding's inequality, we have

$$
\left\|W^{o}\right\|_{\infty} \leq c 4 b_{m} \sqrt{\frac{\log (8 M D / \delta)}{N}} \quad \text { with prob. at least } 1-\frac{\delta}{3 M}
$$

Proof of Lemma 1 - Bounding W^{\dagger}

- Recall the definition of W^{\dagger} :

$$
W^{\dagger}=\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)
$$

- Note that W^{\dagger} is a sum of N i.i.d. terms, each of which is bounded in absolute value by $\left\|\theta^{*}\right\|_{\infty}$ and has the variance $\sigma^{2}\left(\theta^{*}\right)$.
- By Bernstein's inequality, there is a universal constant c such that with prob. $1-\frac{\delta}{3 M}$, we have

$$
\left\|\tilde{\mathcal{T}}_{N}(\theta)^{*}-\mathcal{T}\left(\theta^{*}\right)\right\|_{\infty} \leq c\left\{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty} \sqrt{\frac{\log (8 M D / \delta)}{N}}+\frac{\left\|\theta^{*}\right\|_{\infty} \log (8 M D / \delta)}{N}\right\}
$$

Proof of Lemma 1 - Bounding W^{\dagger}

- Note that our choice of $N \geq c \frac{4^{m} \log (8 M D / \delta)}{(1-\gamma)^{2}}$, we further have

$$
\begin{aligned}
\left\|\tilde{\mathcal{T}}_{N}(\theta)^{*}-\mathcal{T}\left(\theta^{*}\right)\right\|_{\infty} & \leq c\left\{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty} \sqrt{\frac{\log (8 M D / \delta)}{N}}+\frac{\left\|\theta^{*}\right\|_{\infty} \log (8 M D / \delta)}{N}\right\} \\
& =c \sqrt{\frac{\log (8 M D / \delta)}{N}}\left\{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty} \sqrt{\frac{\log (8 M D / \delta)}{N}}\right\} \\
& \leq c \sqrt{\frac{\log (8 M D / \delta)}{N}}\left\{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)\right\}
\end{aligned}
$$

Proof of Theorem 1 - Inductive Step: Bounding the stochastic process

Lemma 2 (High probability on noise).
There is a universal constant $c>0$ such that for any $\delta \in(0,1)$

$$
\left\{\frac{2 \sum_{\ell=1}^{K}\left\|P_{\ell}^{\prime}\right\|_{\infty}}{1+(1-\gamma) K}+\left\|P_{K+1}^{\prime}\right\|_{\infty}\right\} \leq \frac{c b_{m}}{1-\gamma} \sqrt{\frac{2 \log (8 M D K / \delta)}{1+(1-\gamma) K}}
$$

with probability as least $1-\frac{\delta}{3 M}$.

Proof of Theorem 1 - Inductive Step

- Applying the bounds of Lemma 1 and 2 into Equation (7): there are universal constant c, c^{\prime} such that

$$
\begin{aligned}
\frac{\left\|\theta_{K+1}-\theta^{*}\right\|_{\infty}}{b_{m}} \leq & \frac{2}{1+(1-\gamma) K}+c^{\prime}\left\{1+\frac{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)}{b_{m}}\right\} \sqrt{\frac{\log (8 M D / \delta)}{(1-\gamma)^{2} N}} \\
& +\frac{c}{1-\gamma} \sqrt{\frac{\log (8 M D K / \delta)}{1+(1-\gamma) K}}
\end{aligned}
$$

with probability at least $1-\frac{\delta}{M}$.

Proof of Theorem 1 - Inductive Step

- Recall that $b_{m}=\frac{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)}{2^{m}}$, we conclude that

$$
\left\{1+\frac{\left\|\sigma\left(\theta^{*}\right)\right\|_{\infty}+\left\|\theta^{*}\right\|_{\infty}(1-\gamma)}{b_{m}}\right\} \sqrt{\frac{\log (8 M D / \delta)}{(1-\gamma)^{2} N}} \leq c^{\prime \prime} \sqrt{\frac{4^{m} \log (8 M D / \delta)}{(1-\gamma)^{2} N}}
$$

- Putting together the pieces, with probability at least $1-\frac{\delta}{M}$, we have

$$
\frac{\left\|\theta_{K+1}-\theta^{*}\right\|_{\infty}}{b_{m}} \leq c\left\{\frac{1}{1+(1-\gamma) K}+\sqrt{\frac{4^{m} \log (8 M D / \delta)}{(1-\gamma)^{2} N}}+\frac{1}{1-\gamma} \sqrt{\frac{\log (8 M D K / \delta)}{1+(1-\gamma) K}}\right\}
$$

- By our choice of N_{m} and K, we complete the desired claim in Equation (5).

Proof of Lemma 2

- We prove Lemma 2 by two steps. In the first step, we prove by induction that the MGF of $P_{k}^{\prime}(x, u)$ is bounded by

$$
\begin{equation*}
\log \mathbb{E}\left[e^{s P_{k}^{\prime}(x, u)}\right] \leq \frac{b_{m}^{2} s^{2} \lambda_{k-1}}{8} \quad \text { for all } s \in \mathbb{R} \tag{8}
\end{equation*}
$$

- Combining the Chernoff bounding technique and the union bound, we find that there is a universal constant c such that

$$
\operatorname{Pr}\left[\left\|P_{\ell}^{\prime}\right\|_{\infty} \geq c b_{m} \sqrt{\lambda_{k-1}} \sqrt{\log 8 K M D / \delta}\right] \leq \frac{\delta}{3 K M}
$$

Proof of Lemma 2

- Taking a union bound over all K iterations, we find that

$$
\frac{2 \sum_{\ell=1}^{K}\left\|P_{\ell}^{\prime}\right\|_{\infty}}{1+(1-\gamma) K}+\left\|P_{K+1}^{\prime}\right\|_{\infty} \leq \frac{c b_{m}}{1+(1-\gamma) K} \sqrt{\log (8 K M D / \delta)}\left\{\sum_{\ell=1}^{K} \sqrt{\lambda_{\ell-1}}+\sqrt{\lambda_{K}}\right\}
$$

with probability at least $1-\frac{\delta}{3 M}$.

- From the proof of Corollary 3 in the paper [6], we have

$$
\sum_{\ell=1}^{K} \sqrt{\lambda_{\ell-1}}+\sqrt{\lambda_{K}} \leq c \frac{\sqrt{1+(1-\gamma) k}}{1-\gamma}
$$

- Putting together these pieces yields the claim bound Lemma 2.

Proof of Equation (8)

- Recall the stochastic process $\left\{P_{k}^{\prime}\right\}_{k \geq 1}$ evolves the recursion $P_{k+1}^{\prime}=\left(1-\lambda_{k}\right) P_{k}^{\prime}+\lambda_{k} W_{k}^{\prime}$, where

$$
W_{k}^{\prime}:=\mathcal{H}(\bar{\theta})-\hat{\mathcal{H}}_{k}(\bar{\theta})=\left\{\mathcal{T}(\theta)-\mathcal{T}\left(\theta^{*}\right)\right\}-\left\{\hat{\mathcal{T}}_{k}(\bar{\theta})-\hat{\mathcal{T}}_{k}\left(\theta^{*}\right)\right\}
$$

- Similarly, we see that each entry of W_{k}^{\prime} is a zero-mean random variable with the absolute value by $b_{m}:=\left\|\bar{\theta}-\theta^{*}\right\|$.
- Using the Hoeffding inequality, we have that

$$
\log \mathbb{E}\left[e^{s W_{k}^{\prime}(x, u)}\right] \leq \frac{s^{2} b_{m}^{2}}{8} \quad \text { for all } s \in \mathbb{R}
$$

Proof of Equation (8) - Base case

- We will use the above bound to prove the following claim (ref to Equation (8)) by induction.

$$
\log \mathbb{E}\left[e^{s P_{k}^{\prime}(x, u)}\right] \leq \frac{b_{m}^{2} s^{2} \lambda_{k-1}}{8} \quad \text { for all } s \in \mathbb{R}
$$

- Base case ($\mathbf{k}=\mathbf{1}$): The case $k=1$ is trivial since $P_{1}^{\prime}=0$ by definition.
- Base case ($\mathbf{k}=\mathbf{2}$): When $k=2$, we have $P_{2}^{\prime}=\lambda_{1} W_{1}^{\prime}$, and hence

$$
\log \mathbb{E}\left[e^{s P_{2}^{\prime}(x, u)}\right]=\log \mathbb{E}\left[e^{s \lambda_{1} W_{1}^{\prime}(x, u)}\right] \leq \frac{s^{2} \lambda_{1}^{2} b_{m}^{2}}{8} \leq \frac{s^{2} \lambda_{1} b_{m}^{2}}{8}
$$

where the last inequality follows from the fact that $\lambda_{k}=\frac{1}{1+(1-\gamma)} \leq 1$.

Proof of Equation (8) - Inductive step

- Now we assume that Equation (8) holds for some iteration $k \geq 2$, and we verify that it holds for iteration $k+1$.

$$
\begin{aligned}
\log \mathbb{E}\left[e^{s P_{k+1}^{\prime}(x, u)}\right] & =\log \mathbb{E}\left[e^{s\left(1-\lambda_{k}\right) P_{k}^{\prime}(x, u)}\right]+\log \mathbb{E}\left[e^{s \lambda_{k} P_{k}^{\prime}(x, u)}\right] \\
& \leq \frac{s^{2}\left(1-\lambda_{k}\right)^{2} \lambda_{k-1} b_{m}^{2}}{8}+\frac{s^{2}\left(1-\lambda_{k}\right)^{2} b_{m}^{2}}{8}
\end{aligned}
$$

- We can show that (details not given) based on the definition that $\lambda_{k}=\frac{1}{1+(1-\gamma) k}$

$$
\left(1-\lambda_{k}\right) \lambda_{k-1} \leq \lambda_{k}
$$

- Consequently, we can prove that

$$
\frac{s^{2}\left(1-\lambda_{k}\right)^{2} \lambda_{k-1} b_{m}^{2}}{8}+\frac{s^{2}\left(1-\lambda_{k}\right)^{2} b_{m}^{2}}{8} \leq \frac{s^{2}\left(1-\lambda_{k}\right) \lambda_{k} b_{m}^{2}}{8}+\frac{s^{2}\left(1-\lambda_{k}\right)^{2} b_{m}^{2}}{8}=\frac{s^{2} \lambda_{k} b_{m}^{2}}{8}
$$

Proof of Proposition 1 - Base case

- Again, at a high level, the proof is based on the stated condition $\left(\left\|\theta_{0}-\theta^{*}\right\|_{\infty} \leq \frac{r_{\text {max }}}{\sqrt{1-\gamma}}\right)$ to show that

$$
\begin{equation*}
\left\|\bar{\theta}_{m}-\theta^{*}\right\|_{\infty} \leq \frac{1}{2^{m}} \frac{r_{\max }}{\sqrt{1-\gamma}} \quad \text { for all } m=1, \cdots, M \tag{9}
\end{equation*}
$$

- The base case $(k=0)$ holds trivially and we will focus on the inductive step.
- By hypothesis, for $k \geq 1$ we have (with a little abuse of b_{m})

$$
\left\|\bar{\theta}-\theta^{*}\right\|_{\infty} \leq b_{m}:=\frac{1}{2^{m}} \frac{r_{\max }}{\sqrt{1-\gamma}}
$$

Proof of Proposition 1 - Inductive Step

- In this case, our analysis involves two operators

$$
\hat{\mathcal{J}}_{k}(\theta):=\hat{\mathcal{T}}_{k}(\theta)-\hat{\mathcal{T}}_{k}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta}) \text { and } \mathcal{J}(\theta):=\mathcal{T}(\theta)-\mathcal{T}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})
$$

- Note that the variance-reduced Q-learning updates can be written as

$$
\begin{equation*}
\theta_{k+1}=\left(1-\lambda_{k}\right) \theta_{k}+\lambda_{k} \hat{\mathcal{J}}_{k}\left(\theta_{k}\right) \tag{10}
\end{equation*}
$$

- Note that \mathcal{J} is γ-contractive, thus it has a unique fixed point, which we denote by $\hat{\theta}$.
- Since $\mathcal{J}(\theta)=\mathbb{E}\left[\hat{\mathcal{J}}_{k}(\theta)\right]$ by construction, it is natural to analyze the convergence of θ_{k} to $\hat{\theta}$.

$$
\left\|\theta_{K+1}-\theta^{*}\right\|_{\infty} \leq\left\|\theta_{K+1}-\hat{\theta}\right\|_{\infty}+\left\|\hat{\theta}-\theta^{*}\right\|_{\infty}
$$

Proof of Proposition 1 - Inductive Step

Lemma 3.
After $K=c_{1} \frac{\log \left(\frac{8 M D}{(1-\gamma) \delta}\right)}{(1-\gamma)^{3}}$ iterations, we are guaranteed that

$$
\left\|\theta_{K+1}-\hat{\theta}\right\|_{\infty} \leq \frac{b_{m}}{4}+\frac{1}{4}\left\|\hat{\theta}-\theta^{*}\right\|_{\infty}
$$

with probability at least $1-\frac{\delta}{2 M}$.
Lemma 4.
Given a sample size $N_{m}=c_{2} 4^{m} \frac{\log (M D / \delta)}{(1-\gamma)^{2}}$, we have

$$
\left\|\hat{\theta}-\theta^{*}\right\|_{\infty} \leq \frac{b_{m}}{5}
$$

with probability at least $1-\frac{\delta}{2 M}$.

Proof of Proposition 1 - Inductive Step

- Combining Lemma 4 and Lemma 4, we have

$$
\begin{aligned}
\left\|\theta_{K+1}-\theta^{*}\right\|_{\infty} & \leq\left\{\frac{b_{m}}{4}+\frac{1}{4}\left\|\hat{\theta}-\theta^{*}\right\|_{\infty}\right\}+\left\|\hat{\theta}-\theta^{*}\right\|_{\infty} \\
& \leq \frac{b_{m}}{2}
\end{aligned}
$$

- Thus, we verify the claim of Equation (9). The computation of total samples is similar to what we have done:

$$
K M+\sum_{m=1}^{M} N_{m}
$$

- For VQRL, we have that the $K=c \log \frac{r_{\text {max }}}{\epsilon \sqrt{1-\gamma}}$. It is clear that the discount complexity is reduced.

Proof of Lemma 3

- We rewrite Equation (9) as subtracting the fixed point of $\hat{\theta}$ of \mathcal{J} :

$$
\theta_{k+1}-\hat{\theta}=\left(1-\lambda_{k}\right)\left(\theta_{k}-\hat{\theta}\right)+\lambda_{k}\left(\hat{\mathcal{J}}_{k}\left(\theta_{k}\right)-\hat{\mathcal{J}}_{k}(\hat{\theta})\right)+\lambda_{k} \underbrace{\left(\hat{\mathcal{J}}_{k}(\hat{\theta})-\mathcal{J}(\hat{\theta})\right)}_{E_{k}}
$$

- We can similarly to apply Corollary 2 (see also Equation (6)). In this case, the noise term is given by (with a little abuse of notation, we previously use W_{k} to denote the noise term):

$$
E_{k}:=\hat{\mathcal{J}}_{k}(\hat{\theta})-\mathcal{J}(\hat{\theta})=\left\{\hat{\mathcal{T}}_{k}(\hat{\theta})-\hat{\mathcal{T}}_{k}(\bar{\theta})\right\}-\left\{\mathcal{T}_{k}(\hat{\theta})-\mathcal{T}_{k}(\bar{\theta})\right\}
$$

- Consequently, we have $\left\|E_{k}\right\|_{\infty} \leq 2\|\hat{\theta}-\bar{\theta}\|_{\infty}$.

Proof of Lemma 3

- By applying Corollary 1 from the paper [6], we have

$$
\left\|\theta_{K+1}-\hat{\theta}\right\|_{\infty} \leq \frac{2}{1+(1-\gamma) K}\left\{\|\bar{\theta}-\hat{\theta}\|_{\infty}+\sum_{\ell=1}^{K}\left\|P_{\ell}\right\|_{\infty}\right\}+\left\|P_{K+1}\right\|_{\ell}
$$

where the auxiliary stochastic process evolves as $P_{k}=\left(1-\lambda_{k-1}\right) P_{k-1}+\lambda_{k-1} E_{k-1}$.

- Following the same line of argument as in the proof of Lemma 2, we find that

$$
\left\|\theta_{K+1}-\hat{\theta}\right\|_{\infty} \leq c\left\{\frac{\|\bar{\theta}-\hat{\theta}\|_{\infty}}{1+(1-\gamma) K}+\frac{\|\bar{\theta}-\hat{\theta}\|_{\infty}}{(1-\gamma)^{3 / 2} \sqrt{K}}\right\} \sqrt{\log (8 M D / \delta)}
$$

with probability at least $1-\frac{\delta}{2 M}$.

Proof of Lemma 3

- With the choice of $K=c_{1} \frac{\log \left(\frac{8 M D}{(1-\gamma-\gamma \delta)}\right)}{(1-\gamma)^{3}}$, we are guaranteed that

$$
\left\|\theta_{K+1}-\hat{\theta}\right\|_{\infty} \leq \frac{1}{4}\|\bar{\theta}-\hat{\theta}\|_{\infty} \leq \frac{1}{4}\left\|\bar{\theta}-\theta^{*}\right\|_{\infty}+\frac{1}{4}\left\|\hat{\theta}-\theta^{*}\right\|_{\infty}
$$

Proof of Lemma 4

- Note that $\hat{\theta}$ is the fixed point of the operator $\mathcal{J}(\theta):=\mathcal{T}(\theta)-\mathcal{T}(\bar{\theta})+\tilde{\mathcal{T}}_{N}(\bar{\theta})$, and hence can be viewed as a fixed point of the population Bellman operator defined with perturbed reward function \tilde{r} with each entry $\tilde{r}(x, u)=r(x, u)+[\tilde{\mathcal{T}}(\bar{\theta})-\mathcal{T}(\bar{\theta})](x, u)$.
- The following lemma guarantees that this perturbation is relatively small.

Lemma 5 (Bounds on perturbed reward).
For any matrix $\bar{\theta}$ such that $\left\|\bar{\theta}-\theta^{*}\right\|_{\infty} \leq b_{m}$, we have

$$
|\tilde{r}-r| \preceq c\left(b_{m} \mathbf{1}+\sigma\left(\theta^{*}\right)\right) \sqrt{\frac{\log (8 M D / \delta)}{N}}+c^{\prime}\left\|\theta^{*}\right\|_{\infty} \frac{\log (8 M D / \delta)}{N} \mathbf{1}
$$

with probability at least $1-\frac{\delta}{8 M}$, where 1 denotes the unit vector.

Proof of Lemma 4

- We still need a lemma that provides elementwise upper bounds on the absolute difference $\left|\theta^{*}-\hat{\theta}\right|$ in terms of the absolute difference $|\tilde{r}-r|$.
- Let's define $\mathbb{P}^{\pi^{*}}$ as the linear operator defined by the policy π^{*} that is optimal with respect to θ^{*}, and similarly let $P^{\hat{\pi}}$ be the linear operator defined by the policy $\hat{\pi}$ that is optimal with respect to $\hat{\theta}$.

Lemma 6 (Elementwise bounds).
We have the elementwise upper bound:

$$
\left|\theta^{*}-\hat{\theta}\right| \preceq \max \left\{\left(\mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1}|\tilde{r}-r|,\left(\mathbb{I}-\gamma \mathbb{P}^{\hat{\pi}}\right)^{-1}|\tilde{r}-r|\right\}
$$

Proof of Lemma 4 - Upper bounding $\left(\mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1}|\tilde{r}-r|$

- Based on Lemma 5, we have

$$
\begin{gathered}
\left.\left(\mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1}|\tilde{r}-r| \preceq c\left(\frac{b_{m}}{1-\gamma}+\| \mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1} \sigma\left(\theta^{*}\right) \|_{\infty}\right) \sqrt{\frac{\log (8 M D / \delta)}{N}} \mathbf{1} \\
+c^{\prime} \frac{\left\|\theta^{*}\right\|_{\infty}}{1-\gamma} \frac{\log (8 M D / \delta)}{N} \mathbf{1}
\end{gathered}
$$

where we have used the fact that $\left\|\left(\mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1} u\right\|_{\infty} \leq \frac{\|u\|_{\infty}}{1-\gamma}$ for any vector u.

- According to Lemma 8 in [1], we have

$$
\left\|\left(\mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1} \sigma\left(\theta^{*}\right)\right\|_{\infty} \leq \frac{4}{(1-\gamma)^{3 / 2}} \leq \frac{4\left(2^{m}\right)}{1-\gamma} b_{m}
$$

where the last step follows our notation that $b_{m}=\frac{1}{2^{m}} \frac{1}{\sqrt{1-\gamma}}$.

Proof of Lemma 4 - Upper bounding $\left(\mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1}|\tilde{r}-r|$

- Similarly, we also have that

$$
\frac{\left\|\theta^{*}\right\|_{\infty}}{1-\gamma} \leq \frac{1}{(1-\gamma)^{2}} \leq \frac{2^{m} b_{m}}{(1-\gamma)^{3 / 2}}
$$

- Putting together pieces yields the elementwise bound

$$
\left(\mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1}|\tilde{r}-r| \preceq b_{m} \Phi(N, m, \gamma) \mathbf{1}
$$

where we define the non-negative scalar

$$
\Phi(N, m, \gamma):=c^{\prime}\left\{\frac{2^{m}}{1-\gamma} \sqrt{\frac{\log (8 M D / \delta)}{N}}+\frac{2^{m}}{(1-\gamma)^{3 / 2}} \frac{\log (8 M D / \delta)}{N}\right\}
$$

Proof of Lemma 4 - Upper bounding $\left(\mathbb{I}-\gamma \mathbb{P}^{\hat{\pi}}\right)^{-1}|\tilde{r}-r|$

- The only difference with the previous derivation is the term regarding $\sigma\left(\theta^{*}\right)$.
- Again, according to [1] we are guaranteed that

$$
\left.\| \mathbb{I}-\gamma \mathbb{P}^{\hat{\pi}}\right)^{-1} \sigma(\hat{\theta}) \|_{\infty} \leq \frac{4}{(1-\gamma)^{3 / 2}}
$$

- Moreover, we have $\sigma\left(\theta^{*}\right) \preceq \sigma(\hat{\theta})+\left|\hat{\theta}-\theta^{*}\right|$.
- Combining the pieces, we are guaranteed to have the elementwise bound

$$
\left(\mathbb{I}-\gamma \mathbb{P}^{\hat{\tilde{}}}\right)^{-1}|\tilde{r}-r| \preceq b_{m} \Phi(N, m, \gamma) \mathbf{1}+c \frac{\left|\hat{\theta}-\theta^{*}\right|}{1-\gamma} \sqrt{\frac{\log (8 M D / \delta)}{N}}
$$

Proof of Lemma 4 - Upper bounding $\left(\mathbb{I}-\gamma \mathbb{P}^{\hat{\pi}}\right)^{-1}|\tilde{r}-r|$

- Combining the previous bounds with Lemma 6, we find

$$
\left|\hat{\theta}-\theta^{*}\right| \preceq b_{m} \Phi(N, m, \gamma) \mathbf{1}+c \frac{\left|\hat{\theta}-\theta^{*}\right|}{1-\gamma} \sqrt{\frac{\log (8 M D / \delta)}{N}}
$$

- Our choice of N ensures that $\frac{c}{1-\gamma} \sqrt{\frac{\log (8 M D / \delta)}{N}} \leq \frac{1}{2}$, so that we have established the upper bound $\left\|\hat{\theta}-\theta^{*}\right\|_{\infty} \leq 2 b_{m} \Phi(N, m, \gamma)$.
- Finally, we see that our choice of N ensures that $\|\Phi(N, m, \gamma)\|_{\infty} \leq \frac{1}{10}$, so that we complete the proof of Lemma 6.

Proof of Lemma 5

- Starting with the definition of \tilde{r} we have

$$
\begin{aligned}
|\tilde{r}-r| & =\left|\tilde{\mathcal{T}}_{N}(\bar{\theta})-\mathcal{T}(\bar{\theta})\right| \\
& \leq\left|\left(\tilde{\mathcal{T}}_{N}(\bar{\theta})-\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)\right)-\left(\mathcal{T}(\bar{\theta})-\mathcal{T}\left(\theta^{*}\right)\right)\right|+\left|\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right|
\end{aligned}
$$

- By definition, the random matrix $\left(\tilde{\mathcal{T}}_{N}(\bar{\theta})-\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)\right)$ is the sum of N i.i.d terms, with each entry are uniformly bounded by $\gamma\left\|\bar{\theta}-\theta^{*}\right\|_{\infty} \leq b_{m}$. Consequently, with a combination of Hoeffding's inequality and the union bound, we find that

$$
\left\|\left(\tilde{\mathcal{T}}_{N}(\bar{\theta})-\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)\right)-\left(\mathcal{T}(\bar{\theta})-\mathcal{T}\left(\theta^{*}\right)\right)\right\|_{\infty} \leq 4 b_{m} \sqrt{\frac{\log (8 M D / \delta)}{N}}
$$

with probability at least $1-\frac{\delta}{4 M}$.

Proof of Lemma 5

- Turning to the term $\left|\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right|$, by a Bernstein inequality, we have

$$
\left|\tilde{\mathcal{T}}_{N}\left(\theta^{*}\right)-\mathcal{T}\left(\theta^{*}\right)\right| \leq c\left\{\sigma\left(\theta^{*}\right) \sqrt{\frac{\log (8 M D / \delta)}{N}}+\left\|\theta^{*}\right\|_{\infty} \frac{\log (8 M D / \delta)}{N}\right\}
$$

- Combing the pieces yields the claim in Lemma 5.

Proof of Lemma 6

- In this proof, we make use of the function $|u|_{+}=\max \{u, 0\}$, applied elementwise to a vector u.
- Note that we have $|u|=\max \left\{|u|_{+},|-u|_{+}\right\}$by definition, thus it suffices to prove that two elementwise bounds:

$$
\left|\theta^{*}-\hat{\theta}\right|_{+} \preceq\left(\mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1}|\tilde{r}-r| \quad \text { and }\left|\theta^{*}-\hat{\theta}\right|_{+} \preceq\left(\mathbb{I}-\gamma \mathbb{P}^{\hat{\pi}}\right)^{-1}|\tilde{r}-r|
$$

- Recall that θ^{*} and $\hat{\theta}$ are the optimal Q-functions for the reward functions r and \tilde{r}, respectively. By this optimality, we have

$$
\hat{\theta}=\tilde{r}+\gamma \mathbb{P}^{\hat{\pi}} \hat{\theta} \succeq \tilde{r}+\gamma \mathbb{P}^{\pi^{*}} \hat{\theta} \quad \text { and } \theta^{*}=r+\gamma \mathbb{P}^{\pi^{*}} \theta^{*} \succeq r+\gamma \mathbb{P}^{\hat{\pi}} \theta^{*}
$$

Proof of Lemma 6 - The first term

- Using these relations, we can rewrite that

$$
\begin{aligned}
\theta^{*}-\hat{\theta}=(r-\tilde{r})+\gamma \mathbb{P}^{\pi^{*}} \theta^{*}-\mathbb{P}^{\hat{\theta}} \hat{\theta} & \leq|\tilde{r}-r|+\gamma \mathbb{P}^{\pi^{*}}\left(\theta^{*}-\hat{\theta}\right) \\
& \leq|\tilde{r}-r|+\gamma \mathbb{P}^{\pi^{*}}\left|\theta^{*}-\hat{\theta}\right|_{+}
\end{aligned}
$$

- Since the RHS is non-negative, the above inequality implies that

$$
\left|\theta^{*}-\hat{\theta}\right|_{+} \leq|\tilde{r}-r|+\gamma \mathbb{P}^{\pi^{*}}\left|\theta^{*}-\hat{\theta}\right|_{+}
$$

- Rearranging, we have that

$$
\left|\theta^{*}-\hat{\theta}\right|_{+} \preceq\left(\mathbb{I}-\gamma \mathbb{P}^{\pi^{*}}\right)^{-1}|\tilde{r}-r|
$$

Proof of Lemma 6 - The second term

- Using the same reasoning, we have that

$$
\begin{aligned}
\hat{\theta}-\theta^{*} & =(r-\tilde{r})+\gamma \mathbb{P}^{\hat{\pi}} \hat{\theta}-\gamma \mathbb{P}^{\pi^{*}} \theta^{*} \\
& \preceq|\tilde{r}-r|+\gamma \mathbb{P}^{\hat{\pi}}\left(\hat{\theta}-\theta^{*}\right) \\
& \preceq|\tilde{r}-r|+\gamma \mathbb{P}^{\hat{\pi}}\left|\hat{\theta}-\theta^{*}\right|_{+}
\end{aligned}
$$

- Therefore, we can prove that

$$
\left|\hat{\theta}-\theta^{*}\right|_{+} \preceq\left(\mathbb{I}-\gamma \mathbb{P}^{\hat{\pi}}\right)^{-1}|\tilde{r}-r|
$$

References I

[1] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J. Kappen. Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model. Machine Learning, 91(3):325-349, 2013.
[2] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Proceedings of the 27th Annual Conference on Neural Information Processing Systems, pages 315-323, 2013.
[3] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics. Wiley, 1994.
[4] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and faster algorithms for solving markov decision processes. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 770-787, 2018.

References II

[5] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge University Press, 2019.
[6] Martin J. Wainwright. Stochastic approximation with cone-contractive operators: sharp bounds for q-learning. arXiv, 1905.06265, 2019.
[7] Martin J. Wainwright. Variance-reduced q-learning is minimax optimal. arXiv, 1906.04697, 2019.

Acknowledgement

The presenter appreciates insightful comments and instructions from Yingru Li, Hao Liang, and Tian Xu.

