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Target

» We will briefly talk about the complexity of sequential decision-making, but mainly focus on

the sample complexity under a generative model.

» We will illustrate the famous method called Q-learning and demonstrate the effectiveness of

the variance-reduction technique.

» We will briefly explain the proof ideas for Q-learning and variance-reduced Q-learning.
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Markov Decision Process

» Consider an infinite-horizon Markov Decision Process M* = (S, A, P, R, ~, dy) [3].

— S and A are the state and action space, respectively.

— P determines the transition probability of s;+1 conditioned on s; and a;.

— R is the reward function, which is often assumed to be deterministic and is bounded within
the range [0, 1].

— v €10,1) is a discount factor.

— dp specifies the initial state distribution.
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Markov Decision Process

» The decision process is characterized as follows:

— At the beginning of the epoch, the environment resets to some initial state so according to do;
— The agent observes the state so and select an action ao to perform;

— The environment transits to s1 according to P and sends a reward signal r to the agent.

— This process repeats until some terminal signal is released, after which the environment resets

to some initial state again.
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Markov Decision Process

» The above action selection procedure can be described as a policy, which maps the state

space to the action space.

» The goal of an intelligent agent is to maximize its payoff by searching the optimal policy 7*

with maximal cumulative rewards.
oo
7" = argmax E.[ g yr(se, ag)]
i t=0

» Though the above decision-making procedure seems endless, the effective planning horizon
is1/(1—7).

= 1
t
Ew[;V T(Stvat)] < ﬁ * Tmax
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Complexity of MDP

» With the knowledge of P and R, we can efficiently solve an (infinite-horizon) MDP with

methods like value iteration, policy iteration, and linear programming [3].

» The computation complexity of the above methods mainly depends on |S| and |.4| and
1/(1=7).
— The above methods often can find an e-optimal solution with the speed of O(+");
— Thus, the number of iteration to find an e-optimal solution is about (9(%).
— At each iteration, the above methods use P to perform the expected Bellman update (define
later), and this computation complexity linearly scales up to the whole space size (i.e.,

[S]x |Al).
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Reinforcement Learning

» In reinforcement learning (RL), we cannot have access to the transition kernel P but we can
interact with environments to collect information. Accordingly, we cannot directly apply the

above methods since we cannot perform the expected Bellman update.

AGENT ENVIRONMENT
- Slate 8 © &
' - Take action @ & A
= GGt reward T

- New state 5" € S

> Typically, we need exploration (e.g., take new actions) to discover potential high reward
states and exploitation (e.g., take the best known action) to maintain a good performance.
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Complexity of RL

» The PAC(provably approximation correct) complexity of RL is (informally) defined as: how
many interactions/samples (m) do we need to find an good policy (with the optimality gap
€) with high probability (at least 1 — §)?

> Unfortunately, it's very challenging to analyze the complexity of RL methods, which does
not only depend on |S|, |A| and 1/(1 — ~), but also the intrinsic difficulty of MDP.
— For example, solving a motion planning task with many obstacles is much harder than the one
with a simple structure even both MDPs have the same state and action spaces.

i

» Detailed analysis of the complexity of RL is beyond this talk. And we will focus on an
intermediate problem defined later.
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RL with a Generative Model

» Let us introduce the generative model M. Importantly, we can directly reset it to any state

st, after which we can take an action a; and observe the next state ;41 ~ pg, (:|s:) and
the reward r(s;, a).
— Compared to the pure MDP problem, we still do not known P in advance.
— Compared to the pure RL problem, we can go to any s; without the planning from an initial
state so.
» Example: a perfect simulator (e.g., some video game simulators), where we can load (reset)
the state s; from RAM.

Al

» Luckily, the complexity of RL with a generative model is shown to only depend on |S],
and 1/(1 — ).
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Bellman Optimality Equation

» The state-action value function (or Q-function) for an infinite-horizon MDP is defined as:

o0
07 (x,u) = E[Z Ver(zg, ug)|zo = =, up = ul where uy, = w(zy,) for all k > 1
k=0
where we replace the state s; with x; and the action a; with u;.

» The Bellman Optimality Equation is defined as :

0™ (x,u) = r(z,u) + Eyp [maa{ 0™ (2", u')] where 2’ ~ P, (-|x)
u’ €
where P, (-|z) denotes the transition kernel based on current state = and current action w.
» Define the optimal state-value function 8* = max, 6™. It can be proved only 6* is the
solution to the above equation [3].
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Bellman Operator

> The expected (population) Bellman operator 7 is a mapping from RI* X1l to jtself:

T(0)(x,u) :==r(z,u) +yE, [n}g&( O(z',u')] where 2’ ~ P, (-|7)

> Similarly, we can define the empirical (sampling-based) Bellman operator 7

T(0)(z,u) :=r(z,u) +~max 0(z',u')  where 2’ ~ P,(-|z)

> By construction, we have E[T(8)] = T(6) and 6* = T(6*)
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Properties of Bellman Operator

> (7-contractive) For any 61, 0> € RI¥*IUl and define ||0]|oc = max(, ) [0(z,w)|, we have
1T (61) = T(02)lc0 <1161 — O2]loc
> (orthant ordering) If 61 < 02 (i.e., 01 is no larger than 05 elementwise), we have
T(01) = T(02)

» Note the above properties also hold for T (because Tisa special case of T).
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Properties of Bellman Operator

» Since T is «-contractive, we can repeatedly apply on 7 on 6 to get a contractive sequence

{0k}
k11 = (1 — )\k)gk + A;ﬂ'(ﬂk) (1)

where {\; : A € (0,1]} is some sequence of stepsize.

» By ~-contractive, we can show that the optimal gap Ax = 0, — 0* decays with a linear rate
(i.e., O(7")). Thus 6 — 6* if we know P to perform T.

Ak+1 = (1 — Ak)Ak + A {T(Ak + 9*) — 7—(0*)}
(Ax=1) .
[Aktilloo < YAk[loo <7 [[A1]]oo

» In the next part, we show the generative model only admits T, which results in sampling
noise when updating.
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Q-learning

» The (synchronous) Q-learning takes a stochastic approximation (SA) approach to the
Bellman optimality equation with T

Ors1 = (1= Xe)Ok + M Te(0k) (2)
» We can rewrite the above update rule as:

9k+1 = (1 - )\k)ﬂk + )\k{T(ek) + Ek}

where Ej, = T (0;) — T (0k) is a zero-mean noise matrix.

» Thus, we can view the above update rule as the expected Bellman update with some noise.
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Noise in Q-learning

> Recall the Q-learning update rule (we will introduce 6* and T(6*) to “center”):
Ops1—0" = (1 — M) (O —0") + Mo T (0r) =M T (0%) + Mo T (07) =\ T(07)

» Similarly, let’s consider the update rule from the view of the optimal gap A, = 0, — 6*:

Aprr = (1= M)Ak + Me{Te (0% + Ag) = Tr(09)} + M Wi (3)
~y-contractive noise

Here Wy = Tr(6*) — T(6*) is a zero-mean random (noise) matrix.

» In this way, Ay decays over iteration with the sampling noise.
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Q-learning with Oracle Variance Reduction

» Let's consider the following update rule:
O = (1= M0k + A (Tal(00)~Ti(0") + T(0))

Note that E[7;(6%)] = T(6%).
» Again, let's define the error matrix Ap = 0, — 0*, we find that

Apsr = (1= M)A+ 3 {T07 + &) = T(67)}
> Compared to the previous one (see Equation (3)), the noise term W = 75.(6*) — T(6*)
vanishes.
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Variance-reduced Q-learning

» Though the above method is not implementable because of the unknown 6*, we can use a
matrix @ as a surrogate of 6*.

» Let's consider the following control variate:
Z 7.0)
€D
where D is a collection of N i.i.d samples.

> By construction, 7'N(§) is an unbiased approximation to 7 (), with the variance controlled
by N.
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Variance-reduced Q-learning

> Let's define an operator Vj, on RI* <1l yia
V03,0, ) = (1 = N0 + A {Ta(®)- T (0)+Tw (9) }
» By construction, we show that V), is also unbiased:
E[7i(0) - 72(0) + T (0)] = T(0)

» This variance-reduced operator is similar to the one used in SVRG [2].
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Why variance-reduced?

> Why Vi(6; 0,0, Tn) = (1 — A8 + A {7}(9)—7}(@)—1—7’1\;(5)} is variance-reduced?

> If @ is close to @ and 0%, T5(0) has the close direction with 7;(9), and Ty (0) is very close
to T () by choosing a large N. In this way, we “recover” the expected Bellman update.

T (6k) Ti(Or)
v
* 4>~ . *
o, 9 gs 0
Expected Bellman Update Q-learning Variance-Reduced Q-learning
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Why variance-reduced?

» You may want to understand VRQL from the perspective of the optimality gap. If we follow
the previous stepups, we have

Art = (L= M)A+ M { TolO" + Ar) = Ta(6) ) + Wi

where Wy, = T(0%) — T(0*)—Tx(0)+Tn (0).
> However, note that E[IV,] # 0 (the expectation is taken over the stochastic process of 7z).

Correspondingly, W can not be viewed as a zero-mean noise term. In contrast, we also
need to “center” 75 (f) and consider the (shifted) fixed point by V; (we will formally
analyze this later).
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Sing Epoch of Variance-Reduced Q-learning

» Sing Epoch of variance-reduced Q-learning (VRQL) is outlined below:

Function RunEpoch(f; K, N)
Inputs:
(a) Epoch length K (b) Recentering matrix 7 (c) Recentering sample size N

(1) Compute 7~—N(§) = % 211\;1 7\:(5)
(2) Initialize 6, = 9.

(3) For k=1,..., K, compute the variance-reduced update (11):

Ok1 = Vi(Ok; Mi., 0, 7~'N) with stepsize A\ = m (12)

Output: Return fx .

Variance Reduction in Q-learning
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Overall Algorithm

» The overall algorithm runs by repeatedly calling the sub-procedure of RunEpoch.

Algorithm: Variance-reduced @-learning
Inputs: (a) Number of epochs M (b) Epoch length K (c) Recentering sizes { Ny, }M_,

(1) Initialize Gy = 0.

(2) For epochs m =1,..., M: 0, = RunEpoch(,,,—1; K, Nyp,).

» All input parameters: M-number of epochs, K-epoch length, {N,,}}_,-centering sizes

and { )\ }H< | -stepsizes.

» The total number of matrix samples required by VRQL is KM + Zﬁf:l Ny,
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Experimental Comparison

> We can compare VRQL (red line) and ordinary Q-learning (blue line) under two MDPs with
different v (this figure from [7]).
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Parameter Choice

> Given a tolerance parameter § € (0,1), let's choose the epoch length K and centering sizes
{N,}M_, so as to ensure that the final guarantees hold with probability as least 1 — 4.

log ((51511471))5)

(1=7)? (4)
log(8MD/5)

(1—7)?

chl

Nm = CQ4m

where D = |X| x |[U|.
» The number of epoch M depends on the convergence rate and the desired accuracy, which

will be decided later.
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Linear Convergence Over Epochs

Theorem 1.

Given a y-discounted MDP with optimal Q-function 8* and a given error probability § € (0, 1),
suppose that we run variance-reduced Q-learning from 6y = 0 for M epochs using parameters K
and {N,,}M_, chosen according to the criteria (4). Then we have

) * 1o (0")]| oo + 10" []oo (1 —
) < LN =)

with probability at least 1 — &, where ||o(0*)]]00 = \/IH&X(LU) Var (7’(9*)(95, u))
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Sample Complexity of VRQL

Corollary 1.
Consider a ~-discounted MDP with optimal Q-function 6*, a given error probability ¢ € (0,1)

and {.-error level € > 0. Then there are universal constants c,c’ such that a total of

10g<78MD) 2
5= d oo \T3) (o) |y (o))" log(8MD/9)
T =y s (8) £ () PR

matrix samples in the generative model is sufficient to obtain an e-accurate estimate with

probability at least 1 — §, where by is defined as
bo = [|o(6)[loc + 116" [|oo(1 =)

Theoretical Guarantees 30/98



Proof of Corollary 1

» We first note that to obtain an e-accurate estimate, the following number of epochs M is

o (2)

» By construction, the total number of matrix samples of VRQL is KM + Z 1 N Thus,

enough.

log(8M D/4)
(1—9)?

€

M
KM+ Ny < MK + 4™

m=1
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Worst Case Analysis

> Assume that reward function is bounded by rmax, i-e., max(g yexxu |7(2, u)| < rmax.

» We can give a worst case bound for by:

" N 2 A7 hax
sup by = 5plJo(6") o+ 16711 =) < e (2 41) <
M M l—n L=~

» Applying this bound to Corollary 1, we have

supT
M*

o[ () el )

and the total number of epochs required is M = clog (’I"j;‘) for some universal constant c.
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Refine our analysis

» In the worst case, we require the following matrix samples:

supT
M*

(0%,6,¢) < C(r?nax> k’g(ﬂ ok )bg(u v))

2 T

» |If we do not start with zero vector (zero vector is the worst one), we can further improve

this result by a good initial point such that 6y with |6y — 0* || < \7&"7 < qmex
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Refined Sample Complexity of VRQL

Proposition 1 (Minimax optimality).
Consider a ~-discounted MDP with optimal Q-function 6*, a given error probability ¢ € (0,1),
and a given error tolerance. Then running variance-reduced Q-learning from in initial point 6,

0. _ O* Tmax — Tmax [
such that ||0y — 0% || < e for a total of M = clog (m€> epochs using K and

{N,,}M_, chosen according to the criteria (4), yields a solution 0y; such that ||y — 6*|| < €
with probability at least 1 — §. And the total number of matrix samples is bounded by

r?nax> log (25 ) g ()

Tmax 9*767 =
.09 =c ( e (1—7)?

Theoretical Guarantees 35/98



Lower Bound on Generative Model

Definition 1 ((¢, 0)-correct algorithm).
Let 0 be the output of some RL algorithm A. We say that A is (e, 0)-correct on the class of
MDPs M = {M35, M5, ---} if||0* — 0|| < € with probability at least 1 — § for all M* € M.

Theorem 2 (Lower bound on the sample complexity of RL with a generative model[1]).

There exist some constants €, 0, ¢1, e and a class of MDPs M such that for all € € (0, ),
0 € (0,00/(|]S| x |A])), and every (e, d)-correct RL algorithm on the class of MDPs M the total

number of state-transition samples need to be least

[ ISEx A S| x | A]
= ’76162(1 —5)3 log )
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Sample Complexity of Ordinary Q-learning

Theorem 3 (Sublinear Convergence Rate of Q-learning).
Consider the stepsize \j, = m Then there exist a universal constant ¢ such that running
the empirical Bellman update (see Equation (2)) yields
ST
1+ (1 -9k

L ¢ ) [100)llecy/10g(2D)  167]lspan log(2eD(1 + (1 = 7)k))
1—~ 1+ (1 -k 1+ (1 -k

E[[10k+1 = 67]]]

where [|0*||span = max(y ) 0% (z,u) — ming, .y 6* (2, u), and

(0] oc = \/max(w,u) Var (T(6%) (. w)).

(Remark) A high probability bound can also be derived by replacing log(D) with clog(Dk/J).
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Sample Complexity of Ordinary Q-learning (worst case)

> Let's consider the worst case analysis.

2T max
1—7’

rmax

sup [[6"|span < and sup [[o(6%)[[cc <
M M

=15
» In this way, we claim that ordinary Q-learning requires a total of

o) — 0 (Tmax_
T , , * — maxr
supT(e7,07) ((1—«0&)

matrix samples to find an e-optimal solution in expectation.
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Discussion

> VRQL (O(1/(1 —~)*)) improves the upper bound compared to ordinary Q-learning
(O(1/(1 —7)?)) in the worst case .

> Note that model-free methods (e.g., value iteration and g-learning) with the
variance-reduction technique can often get better performance [4].

» To match the lower bound O(1/(1 —~)3), VRQL requires a good initial point. This is
somewhat unsatisfying, because the same kind method of Variance-reduced Value lteration
[4] does not require this to match the lower bound.

» On the other hand, model-based methods do not require variance-reduction to match the
lower bound [1].

— Model-based methods first construct a virtual MDP M with collected samples and then learns
a (near-) optimal 6 on this recovered MDP.
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Why variance-reduction is important for model-free methods?

» Intuitively, model-free methods iteratively interact with the environment to collect samples.

As a result, we will waste samples if we do not use 6, which contains past information.

» Technically, both model-free and model-based approaches use samples to estimate the
expected Bellman update.
— Naive model-free methods require a union bound accuracy for all iterations.
— Model-based methods only need the estimate is accuracy for the optimal 0" on recovered
MDP.
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Proof Idea of Q-learning

» We start with the simplest case: Q-learning, which will be insightful for analysis of VRQL.

> We can rewrite the update rule of Q-learning (ref to Equation (2)) as:

O = 0" = (1= M) (0 = 0°) + A { Fu(00) + Wi}
ﬂk:(ek:) = ﬁ(ok) - 7A7€(9*)
Wi = Ti(67) = T(67)
> #,(6)) is y-contractive with respective to ||0), — 0*||oc.

» Wy is a O -independent noise term, which is governed by the statistical features (e.g.,
bounded value and variance) of 6*.
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Proof Idea of Q-learning

» Note that W, incurs a stochastic process, which is independent of 6y,
P,=(1—X—1)Pr—1+ Me—1Wg_1, with initialization P, =0

» Thanks to the linearity, by properly choosing two real-value series a;, (related to + and
[|Px||) and by, (related to the initial value ||#; — 0*||~), we can show that (see [6] for
details)

[0k — 0[]0 < bk + ar + || Prl|oo
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Proof Idea of Q-learning

» Futhermore, when )\, = m we have (see [6] for details)

k
. 01 — 0%||c
11— 0]l SAk{'lAl”MZHPZHW}HWHW
(=1

» Hence, for ordinary Q-learning, we need to bound || P;||~ to estimate the converge rate.

Proofs of VRQL
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Proof Idea of Q-learning

> Recall that W}, = T(6*) — T(6*) is a zero-mean random matrix with bounded value

2]|0*||oo and the maximal variance ||o(6*)]|2.

> Hence, we conclude that W, satisfies Bernstein condition [5]. Using the inductive

reasoning, we can show that Py (x,u) also satisfies certain Bernstein condition due to the

linearity of the following stochastic process.
P, =(1—Ae—1)Pr—1+ Ag—1Wi—1, with initialization P, =0

» Finally, we can apply a union bound to derive high probability bound for || Px||co-
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Proof Idea of VRQL

» The high-level proof procedure of VRQL is similar to the one of ordinary Q-learning.

» The main difference (difficulty) is that the noise term T}, is not a zero-mean random matrix!

Orp1 — 0" = (1 = Xp)(Or — 07) + i {7:[;‘3(91‘3) + Wk}
Hi(0r) = Tr(0r) — Tr(07)
Wi = —H(0) — T(0%) + Ta (0)

where Hy(8) = Tr.(0) — Tr(6*) is a centered operator.
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Proof Idea of VRQL

» To use concentration inequalities, we need to separately “center” each term in Wp.

where we define Hy (A) = T (0) — Tn (%) as a centered operator.

» Note that only the first term depends on the iteration &, while the last two terms do not.
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Proof Idea of VRQL

» To apply concentration inequalities, we need to introduce the population operator for each
uncentered term that appeared in W.

> Let's define the population operator H(6) := T (6) — T (0*), then

Wi = {100) - H1(0) b+ {An (@) - 1) } + {Tw(67) - T(6) }

We wt

Wy

> Again, we observe that only the first term W/ is important for the induced stochastic

process while the last two terms are independent over iteration k.

» Thus, we can similarly apply previous results by replacing W, with W}, to get Py.
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Proof Idea of VRQL

> Now, our target becomes to separately bound || P} ||« (induced by W), ||W°||« and
W loc-

Wi = {4(0) = 7.0)} + {HAn () - 1O} + {Tn(0") - T(0")}

w/ We wt

— Bounding || P || is also based on inductive reasoning of Bernstein inequalities.
— Bounding ||W?||« can directly use Hoeffding's inequality.
— Bounding ||W || can smartly use Bernstein inequality since we know the variance.
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Proof of Theorem 1

» At a high-level argument, we prove Theorem 1 via an inductive argument.

(0l +116"[loo (1 =)
oM

— g
s = 6%]]oo < |

> (Base case) Given the initialization 6y = 0, we prove that 6 satisfies such a bound with
probability at least 1 — %.

» (Inductive step) In this step, we prove, with probability at least 1 — %, 1 satisfies
such a bound with the assumption that it holds for 6,),.

» (Union bound) Finally, by taking a union bound over all M epochs of the algorithm we
guarantee the bound holds uniformly for all m = 1,--- M with probability at least 1 — 6.
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Proof of Theorem 1 - Base Case

> For the given initialization 6y = 0, we have T3 (6y) = r and Tz(fy) = r. Consequently,

Tr(0o) — Tr(6o) = 0, so that the update rule reduces to the case of ordinary Q-learning
1

T+(1-7)k"

» According to the prior work [6], there is a universal constant ¢’ > 0 such that after M

with stepsize A\, =

iterations, we have

« || Hw [|o(0")loo /10g(2DMK/3) | 10%||oo log( 222 (14(1-7) K))
6511 = 0l < HEle 4 { Lo on VR ERNITE) s et

, log (AL, . .
» Choosing K = c% for a sufficient large constant c suffices to ensure that

1
[|0r11 — 0% < 5 {lle(0*)]]so + 110%||oo(1 — )} with probability at least 1 — %
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Proof of Theorem 1 - Inductive Step

» For this step, we assume that the input 6,, to epoch m satisfies the bound

(0|00 + 1167|001 =)
2m

=:by

1 — 0|1 < 12

b’VYL

> Our target is to prove that |61 — 0%[|oo < byng1 = 2.

» It turns out that if we can prove

10511 = 0% ||oo < b { ! ! \/log(8MDK/5) + \/4mlog(8MD/6) }

I+(1-7K 1-7| 1+(1-7K (1=7)*Nm
(5)
, K and N,, defined in Equation (4) are sufficient to prove the inductive step.
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Proof of Theorem 1 - Inductive Step
» Recall the update rule of VRQL
O = (1= N0+ N T (0)—T(0) + Tn (0)}

P Let's introduce the auxiliary recentered operators:

Hi(0) == Ti(0) — T (07)
» Thus, we can rewrite the VRQL update rule as

Orsr — 0x = (1= Xe) Ok — 07) + e { Ta(0k) — Te(0%) =Tw(0) + T (07) + T (0) — T(67)}
ﬂk(ek) 7:11@(5)
= (1= M) (0 — %) + M {Hi(01) — Hi(8) + T (6) — T(6%)}
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Proof of Theorem 1 - Inductive Step

> Continue to the last page, let Wi = —H(0) + Ta(6) — T(6*), we have

Orat— 0 = (1— A)(0p — 0%) + Ak{mwk) —H(8) + T (8) — T(6) }
Wi, (6)

= (1= M), = 07) + M {Ha(00) + Wi}

» We can view W as a random noise sequence, which defines the following auxiliary

stochastic progress:

Py:=(1—Xe—1)Pr—1 + Ap—1 W1, with initialization P, =0
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Proof of Theorem 1 - Inductive Step

> Note that the operator H(0) := T5.(0) — T (6*) is monotonic respect to the orthant
ordering and y-contractive with respect to the ¢,,-norm.

Corollary 2.
[Adapted from the paper [6]] For all iterations k = 1,2,---, we have

k

2
— 0" < — -0 P, P
1111 = 0"loc < 1+(1—7)k{”91 Ol 3 e|oo}+| eilloc

Proofs of VRQL
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Proof of Theorem 1 - Inductive Step

» In order to derive a concrete result based on Corollary 2, we need to obtain high-probability
upper bounds on the terms || Pp||oo-

» Note that Py relies on the stochastic process induced by W:

Wi, = ~Hi(8) + T (0) = T (07) + T (0°) = T(67) = ~Ha(8) + Fn (9) + { T (6) - T(6)}
Hn (0)
where Hy (0) := Tn(0) — T (6%).
> Let's define the population operator H () := T (0) — T (6*) to center, then
Wi = {H(0) - H@ } + {Hn(0) - 1(0) } + {Tw(6") - T(0")}

We wt

Wi
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Proof of Theorem 1 - Inductive Step

» Continue to the last page,

Wi = {H(0) - H@ } + {Hn(0) - 1O) } + {Tw(6") - T(0")}

Wi

We wt

» We note that W and W1 are independent of &, thus using inductive reasoning, we can
prove that (the original paper states that P, < W° + W' + P/. However, this inequality is
ill-conditioned for the base case (k = 2).)

P, <W°+W'4 P
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Proof of Theorem 1 - Inductive Step

» Thus, we can decompose the error bound of || ||« in Corollary 2 into that (note that
161 — 67]] <)

9511 =0"ll < o +3 { I olls } o+ (B + 1Pl )
(7)
» In the next, we will bound the noise terms W° and W1, and the stochastic process
{Plé}k21 separately.
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Proof of Theorem 1 - Inductive Step: Bounding the recentering terms

Lemma 1 (High probability bounds on recentering terms).

Fix an arbitrary 6 € (0,1).
(a) If |0 — 0*||so < by, then there is a universal constant ¢ such that (Note that the origin
paper does not consider the constant c, but it should be! And this constant does not change the

final result.)

log(8MD/5 g
M with prob. at least 1 — ——

o <
HW Hoofcllbm N 3M

(b) There is a universal constant ¢ such that

log(8MD/s 0
log(8M D/3) with prob. at least 1 — —

T < * * _
Wl < (o0l + 161l =)} ) BN 2
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Proof of Lemma 1 - Bounding W°

» Recall the definition of W/°:
W =Hy(0) —H(0) = {Tn(0) — Tn(6)} — {T(6) — T(6")}

» Thus, each entry of W€ is a zero mean, i.i.d. sum of N random variables bounded in
absolute value by 2b,,.

» By Hoeffding's inequality, we have

M with prob. at least 1 — i

Wl < cb ~ 51
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Proof of Lemma 1 - Bounding W'

» Recall the definition of WW1:
Wi =Tn(")—T(6)
» Note that W is a sum of IV i.i.d. terms, each of which is bounded in absolute value by
[0*||s and has the variance o2 (6*).

» By Bernstein's inequality, there is a universal constant ¢ such that with prob. 1 — 3LM, we
have

T (0) ~ T(0") 1 < c{||a(e*>||oo MDD ”9*"°°1°§V(8MD/5)}
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Proof of Lemma 1 - Bounding W'

4™ log(8M D/4§)

> Note that our choice of N > ¢ =)

, we further have

T (6) = T(0 )| < c{|a<e*>||oo E(BMD/O) . 10" o (BMD/ 5)}

~ [log(8MD/s) . . log(8M D/9)
—c N{Ha(e Moo + 118"l N}

log(8M D/4)

<c ~ {lo(0)loo +1167[loo (1 =)}
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Proof of Theorem 1 - Inductive Step: Bounding the stochastic process

Lemma 2 (High probability on noise).

There is a universal constant ¢ > 0 such that for any § € (0,1)

K
{2&1 1Pl oc

cby,  [21og(8MDK/0)
1+ (1—-9)K

Py <

S1-4

with probability as least 1 — ﬁ.
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Proof of Theorem 1 - Inductive Step

> Applying the bounds of Lemma 1 and 2 into Equation (7): there are universal constant ¢, ¢/

such that
|10k +1 — 0"]|oo < 2 vediy o (0*)loo + [[0*[[oc(X =) | [log(8MD/9)
bom 1+(1-9)K b, (1—=7)*N

c log(8M DK/§)

_|_
11—\ 1+(1-vK

with probability at least 1 — %.
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Proof of Theorem 1 - Inductive Step

» Recall that b, = IIU(G*)IIOQJ;LLH*HOO(l—'Y), we conclude that

{1+ 100 loo + 110"[|c(t =) | [log(8MD/5) _ , [4™log(8MD/9)
bm

» Putting together the pieces, with probability at least 1 — %, we have

651 =01l _ { 1 4mlog(8MD/5) | 1 1og(8MDK/5)}
bm - 14+ (1-—

» By our choice of N,,, and K, we complete the desired claim in Equation (5)
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Proof of Lemma 2

> We prove Lemma 2 by two steps. In the first step, we prove by induction that the MGF of
P/ (z,u) is bounded by

< b?n52)\k71

log E[e® 7% (#:1)] forall s € R (8)

» Combining the Chernoff bounding technique and the union bound, we find that there is a
universal constant ¢ such that

0
3KM

Pr |[|P)|lco > cbmr/M_11/10g8SKMD/5| <
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Proof of Lemma 2

» Taking a union bound over all K iterations, we find that

22@:1||1é||oo ’ b / 2: o 1 /N
= = R —+

1+(1

with probability at least 1 — ﬁ

» From the proof of Corollary 3 in the paper [6], we have

ZM+\ﬁ< ;)’“

-7

» Putting together these pieces yields the claim bound Lemma 2.
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Proof of Equation (8)

» Recall the stochastic process { P} }1>1 evolves the recursion P/, = (1 — \x) P}, + AW,
where
Wi i=H(O) ~ F(0) = {T(0) — T(0)} — {Tu(0) - Ta6") }
» Similarly, we see that each entry of W] is a zero-mean random variable with the absolute
value by by, := || — 0%||.
» Using the Hoeffding inequality, we have that

21.2
S;’m for all s € R

log E [esw’;(x’u)} <
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Proof of Equation (8) - Base case

» We will use the above bound to prove the following claim (ref to Equation (8)) by induction.

2 2
log E[esFs(@w)] < O Akt forall se R

> Base case (k=1): The case k = 1 is trivial since P{ = 0 by definition.

> Base case (k=2): When k = 2, we have P, = \; W/, and hence

< s2A3b2, < s2A102,
-8 T 8

]og]E[espé(ma“)] — IOg E[eSAlVV{(z,u)]

where the last inequality follows from the fact that Ay = ﬁ <1.
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Proof of Equation (8) - Inductive step

» Now we assume that Equation (8) holds for some iteration k > 2, and we verify that it
holds for iteration k + 1.

IOgE[esP,;_H(m,u)] _ log]E[es(lfkk)P,;(x,u)] + log]E[es)\kP,;(ac,u)]

S 82(1 — )\}CS)Q)\kflbgn + 82(1 —8)\]@)25%1

» We can show that (details not given) based on the definition that A, = m
(1= A)Ae—1 < g
» Consequently, we can prove that

8 8 - 8 8 8
Proofs of VRQL 75/98
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Proof of Proposition 1 - Base case

Tmax

» Again, at a high level, the proof is based on the stated condition (||6p — 6*||co < ﬁ) to
show that

n 1 max
H%—mggﬁgr forallm=1,---, M (9)

vi=nv
> The base case (k = 0) holds trivially and we will focus on the inductive step.

> By hypothesis, for k > 1 we have (with a little abuse of b,,)

- 1 r
0 —0%|oo < bpp 1= — ——=
L —

2
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Proof of Proposition 1 - Inductive Step
» In this case, our analysis involves two operators
Ji(0) = Ti(0) = Tr(0) + T (6) and T (6) := T(0) — T(9) + T (0)
» Note that the variance-reduced Q-learning updates can be written as
Ors1 = (1 — Xg)O + e Ti(0r) (10)

» Note that J is y-contractive, thus it has a unique fixed point, which we denote by 6.
> Since J(0) = E[J,(6)] by construction, it is natural to analyze the convergence of 6}, to 6.

161 =0 lloo < 11041 — Blloc + 110 — 6%l
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Proof of Proposition 1 - Inductive Step

Lemma 3.

log( AMD_Y .
After K = ¢; w iterations, we are guaranteed that

- by, 1, 4 .
18541~ Blloe < 22 4+ 2110~ 6°]1
with probability at least 1 — ﬁ.
Lemma 4.
Given a sample size N, = ¢ 4’”%, we have
R . bm
10— 07l < 22

with probability at least 1 — ﬁ.
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Proof of Proposition 1 - Inductive Step

» Combining Lemma 4 and Lemma 4, we have

* bm 1.4 * O *
6521 =l < {22 4 310 = [l 4+ 10 07
bin
< Zm
- 2
> Thus, we verify the claim of Equation (9). The computation of total samples is similar to

what we have done:
M

KM+ Y Np
m=1
» For VQRL, we have that the K = clog Ef/‘% It is clear that the discount complexity is
reduced.
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Proof of Lemma 3

> We rewrite Equation (9) as subtracting the fixed point of § of 7
Orpr — 0 = (1= M) (0 — 0) + N (jk(9k) - jk:(é)) + Ak (jk(é) - j(é))
Ey

> We can similarly to apply Corollary 2 (see also Equation (6)). In this case, the noise term is
given by (with a little abuse of notation, we previously use W}, to denote the noise term):

By = Ju(0) = 7(0) = {7u0) - Tu(®) } - {7u(0) - T(0)}
> Consequently, we have ||E|loe < 2/|0 — 0]|sc.
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Proof of Lemma 3

> By applying Corollary 1 from the paper [6], we have

K
. 2 o
0 —Olloo L ————= < |0 — || Pyl P
16141 - 61 —1+u—wK{” e+ 2117 }+HKHW

where the auxiliary stochastic process evolves as P, = (1 — Ap—1)Pr—1 + M\e—1FExk—1.

» Following the same line of argument as in the proof of Lemma 2, we find that

110 — 0]| 116 — 0]
I+ (1=K = (1-yp2V/EK

WKHWMSc{ }l%@MDw)

with probability at least 1 — ﬁ
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Proof of Lemma 3

. . )
» With the choice of K = clﬁ, we are guaranteed that

R 1,- - 1, - 1,4
_ < = _ < = _ p* - _ p*
105c+1 = Blloo < 7118 = blloc < 7118 = 6lloc + 7116 —87[]oc
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Proof of Lemma 4

> Note that 0 is the fixed point of the operator 7 () := T (0) — T(0) + Tx (6), and hence
can be viewed as a fixed point of the population Bellman operator defined with perturbed
reward function 7 with each entry 7#(z,u) = r(z,u) + [7'(5) - T(é)} (z,u).

» The following lemma guarantees that this perturbation is relatively small.

Lemma 5 (Bounds on perturbed reward).

For any matrix 0 such that ||0 — 0*||so < by, we have

log(8M D/4)
N

log(8M D/4)
N

|7 — 7| X c(bpml + o (0")) + 0% |00 1

with probability at least 1 — &, where 1 denotes the unit vector.
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Proof of Lemma 4

» We still need a lemma that provides elementwise upper bounds on the absolute difference

|0* — @] in terms of the absolute difference |7 — r|.

> Let's define P™ as the linear operator defined by the policy 7* that is optimal with respect
to 6%, and similarly let P™ be the linear operator defined by the policy # that is optimal

with respect to 0.

Lemma 6 (Elementwise bounds).

We have the elementwise upper bound:

6" — 8] < max { (1= AP™) 1|7 = 1], (1= 7P*) [ = 11}
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Proof of Lemma 4 - Upper bounding (I —yP™ )~ |7 — 7|

» Based on Lemma 5, we have

log(8MD/5)

1
N

L b, ey
(1= 7Pl = (122 = 2P (6 )

4 161l logsMD/5)
1—v N

where we have used the fact that |[(I—AP™ )~ lu||s < % for any vector w.

» According to Lemma 8 in [1], we have

4 4(2m)

_ T\ —1 * < <
(L =AP™ )" o (0%)]loo < 1—~)32— liv/bm
where the last step follows our notation that by, = 5 11—'y'
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Proof of Lemma 4 - Upper bounding (I — yP™ )~!|7 — 7|

» Similarly, we also have that

[0 1 27by
T=y S0P = U=y

» Putting together pieces yields the elementwise bound
(H - VPW*)_”F - T| = bm(b(N? m)’Y)l

where we define the non-negative scalar

1—7 N (1 —)3/2 N

(N, m, ) ;:c’{ 2™ [log(8MD/s) = 2™ 1og(8MD/5)}
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Proof of Lemma 4 - Upper bounding (I — P%)~!|F — 7|

> The only difference with the previous derivation is the term regarding o (6*).

» Again, according to [1] we are guaranteed that

4

1T — 'Ypﬁ)ilg(émoo < W

> Moreover, we have o(0*) < o(f) + |0 — 0*|.
» Combining the pieces, we are guaranteed to have the elementwise bound

10 — 6% [log(8MD/$)
1—x N

(I—~AP") M7 — 7| 2 by ®(N,m, 7)1 + ¢
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Proof of Lemma 4 - Upper bounding (I — P%)~!|F — 7|

» Combining the previous bounds with Lemma 6, we find

10— 6% [log(8MD/5)
1—7v N

|é—9*| 2 by ®(N,m,y)1+¢

» OQur choice of N ensures that ﬁ\/ w < % so that we have established the upper
bound [|0 — 6*||oe < 26, ® (N, m, 7).

1

> Finally, we see that our choice of IV ensures that [[®(N,m, )|l < 15, S0 that we

complete the proof of Lemma 6.
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Proof of Lemma 5

> Starting with the definition of 7 we have
7= vl =|Tw(®) - 7(0)|
< |(Tw@® = T (0") = (T0) = T(07) | + | T (0") ~ T(6")

> By definition, the random matrix <7~'N(é) - 7~'N(9*)) is the sum of N i.i.d terms, with each

entry are uniformly bounded by || — *||oc < by,. Consequently, with a combination of
Hoeffding's inequality and the union bound, we find that

| (5@ ~ w6 = (7@) - 7)) _ < 0 71%(8% D/o)

with probability at least 1 — ;3.
Proofs of VRQL 90 /98



Proof of Lemma 5

» Turning to the term |Tx (%) — T(6*)|, by a Bernstein inequality, we have

log(8M D/9)

0" || 0o
ey

(@) = T < c {aw*) uz(SMD/é)}

N

» Combing the pieces yields the claim in Lemma 5.
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Proof of Lemma 6

» In this proof, we make use of the function |u|+ = max{u,0}, applied elementwise to a

vector u.

> Note that we have |u| = max{|u|;,| — u|+} by definition, thus it suffices to prove that two

elementwise bounds:
0 — 0. X (T—+P™ ) Hi—r|  and 0" — 0], = (I—AP") " F — 7|

» Recall that #* and 6 are the optimal Q-functions for the reward functions r and 7,
respectively. By this optimality, we have

O=F+P"0=7F+~P" 0  and 0 =r + P 6" = r +~P7H*
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Proof of Lemma 6 - The first term
» Using these relations, we can rewrite that

0 —0 = (r —7) +P™ 0 — P70 < |7 — r| + P (6" — )
< |7 —r[+ AP (0" — 0]

» Since the RHS is non-negative, the above inequality implies that
10" = 0]y < |F—r|+P7 0" — 0]
» Rearranging, we have that

0% =0l < (U= ~P") M7 =
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Proof of Lemma 6 - The second term

» Using the same reasoning, we have that

» Therefore, we can prove that

16— 6%+ < (L—~AP")7 N7 — 7]
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