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Some Concepts of the Statistical Learning Framework

▶ Training data S

– S = {(x1, y1) , . . . , (xn, yn)} contains n i.i.d. copies of a random variable (X,Y) with
distribution D, where y ∈ Y ⊆ R.

– Define Z = (X ,Y) for later use.
▶ Hypothesis class H
H = {h : X → Y} is a class of predictors.

▶ Loss function ℓ

ℓ : H×Z → R+ measures the error of h ∈ H with respect to a sample z ∈ Z.
▶ An example: linear regression
X = Rd, Y = R, H =

{
x 7→ 〈w, x〉 : w ∈ Rd

}
, ℓ(h, (x, y)) = (h(x)− y)2.
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Empirical Risk Minimization

▶ Define F = ℓ ◦ H = {z 7→ ℓ(h, z) : h ∈ H, z ∈ Z}.
▶ True error (expected error)

LD(h) ≜ LD(f) ≜ E
z∼D

[f(z)], where f ∈ F and f(·) = ℓ(h, ·).
▶ Empirical error

LS(h) ≜ LS(f) ≜ 1
m

∑m
i=1 f (zi), where m is the number of samples in S.

▶ Fix the hypothesis class H, given the training data S, the empirical risk minimization
(ERM) method is defined as

ĥ ∈ argmin
h∈H

1

m

m∑
i=1

ℓ(h, zi).
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Error Analysis

▶ Suppose we get a predictor ĥ by ERM method. How good this predictor is?
– Or, how big the gap between LD(ĥ) and LD(h∗) is? Here h∗ ∈ argmin

h∈H
LD(h).

– It is our final goal today.
▶ LD(ĥ)− LD(h∗) = LD(ĥ)− LS(ĥ)︸ ︷︷ ︸

(1)

+ LS(ĥ)− LS(h
∗)︸ ︷︷ ︸

(2)

+LS(h
∗)− LD(h∗)︸ ︷︷ ︸

(3)

.

– (2): non-positive;
– (3): zero-mean, and its fluctuations can be controlled with the tail bounds;
– (1): not zero-mean because ĥ depends on samples, challenging to control.

▶ We need to bound (1).
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Problem Introduction

▶ To bound (1), define Rep(F , S) = sup
h∈H

(LD(h)− LS(h)), then

LD(ĥ)− LS(ĥ) ≤ Rep(F , S), so:

E
S
(LD(ĥ)− LD(h∗)) ≤ E

S
[Rep(F , S)],

and
LD(ĥ)− LD(h∗) ≤ Rep(F , S) + ϵ(δ,m)

with probability of at least 1− δ over the choice of S, for each δ ∈ (0, 1), where ϵ is
gotten by tail bounds.

▶ Can we bound E
S
[Rep(F , S)] or bound Rep(F , S) with high probability?
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Problem Setting

▶ Consider the task:
– X = R, and Y = ∅.
– ℓ(θ, x) = I(x ≤ θ).

– F = {x → I(x ≤ θ), θ ∈ R}.
▶ Try to upper bound E

S
[Rep(F , S)].

– Method: introduce ”ghost” variables {X
′
1, X

′
2, · · · , X

′
m}, which are independent copies of X,

to replace X.
– Procedure: the next page.
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Procedure for Bounding E
S
[Rep(F , S)]

E
S
[Rep(F , S)]

≜ E
{Xi}

[
sup
θ

(
EI(X ≤ θ)− 1

m

m∑
i=1

I(Xi ≤ θ)

)]

= E
{Xi}

[
sup
θ

(
E

{X′
i}

[
1

m

m∑
i=1

I(X
′

i ≤ θ)

]
− 1

m

m∑
i=1

I(Xi ≤ θ)

)]

≤ E
{Xi,X

′
i}

[
sup
θ

(
1

m

m∑
i=1

[
I(X

′

i ≤ θ)− I(Xi ≤ θ)
])]

= E
{Xi,X

′
i ,σi∼Rad()}

[
sup
θ

(
1

m

m∑
i=1

σi

[
I(X

′

i ≤ θ)− I(Xi ≤ θ)
])]

= (next page)
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Procedure for Bounding E
S
[Rep(F , S)]

(last page)

≤ E
{X′

i ,σi}

[
sup
θ

(
1

m

m∑
i=1

σi

[
I(X

′

i ≤ θ)
])]

+ E
{Xi,σi}

[
sup
θ

(
1

m

m∑
i=1

σi [I(Xi ≤ θ)]

)]

= 2 · E
{Xi,σi}

[
sup
θ

(
1

m

m∑
i=1

σi [I(Xi ≤ θ)]

)]

= 2 · E
{Xi}

[
E

{σi}

[
sup
θ

(
1

m

m∑
i=1

σi [I(Xi ≤ θ)]

)∣∣∣∣∣ {Xi}

]]
≜ 2 · E

{Xi}
[R(F ◦ S)]
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Procedure for Bounding E
S
[Rep(F , S)]

▶ Define R(F ◦ S) = 1
m E

{σi}

[
sup
f∈F

(
∑m

i=1 σif(zi))

]
as Rademacher complexity of F with

respect to S, where zi = (xi, yi) is a sample in S.
▶ Go back to the problem:

2 E
{Xi}

[R(F ◦ S)]

= 2 E
{Xi}

[
E

{σi}

[
sup
θ∈R

(
1

m

m∑
i=1

σi [I(Xi ≤ θ)]

)∣∣∣∣∣ {Xi}

]]

= 2 E
{Xi}

[
E

{σi}

[
max

θ∈{θ1,··· ,θm+1}

(
1

m

m∑
i=1

σi [I(Xi ≤ θ)]

)∣∣∣∣∣ {Xi}

]]

≤ 2

√
2 log(m+ 1)√

m
← a property of Rademacher complexity, introduced later
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Definition

▶ Define Rademacher complexity of F with respect to S:

R(F ◦ S) ≜ 1

m
E

{σi}

[
sup
f∈F

(
m∑
i=1

σif(zi)

)]
,

where zi = (xi, yi) is a sample in S, m is the number of samples, σi is a random variable
such that σi = 1 w.p. 1

2 and σi = −1 w.p. 1
2 .

▶ More generally, given a set of vectors A ⊆ Rm, define Rademacher complexity of A:

R(A) ≜ 1

m
E

{σi}

[
sup
a∈A

(
m∑
i=1

σiai

)]
=

1

m
E
σ

[
sup
a∈A

(< σ, a >)

]
.
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Theorem

▶ Lemma 1. E
S
[Rep(F , S)] ≤ 2E

S
[R(F ◦ S)] .

– The proof procedure is almost the same as the one in the section ”Introducing Rademacher
Complexity With a Simple Example”, but a little more complicated.
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Theorem

▶ Theorem 2. For any h ∈ H,

E
S

[
LD(ĥ)− LD(h)

]
≤ 2E

S
[R(F ◦ S)] .

Furthermore, for ∀δ ∈ (0, 1), with probability of at least 1− δ over the choice of S,

LD(ĥ)− LD(h∗) ≤ 2E
S
[R(F ◦ S)] /δ.

– Remind that ĥ ∈ argmin
h∈H

LS(h) and h∗ ∈ argmin
h∈H

LD(h).

– The first inequality follows because LD(h) = E
S
LS(h) ≥ E

S
LS(ĥ) for ∀h and Lemma 1.

– The second inequality follows from the first inequality by relying on Markov’s inequality.
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Theorem

▶ Theorem 3. Assume that for all z and h ∈ H we have that |ℓ(h, z)| ≤ c. For ∀δ ∈ (0, 1),
with probability of at least 1− δ over the choice of S,

LD(h)− LS(h) ≤ 2E
S′
R (F ◦ S′) + c

√
2 ln(2/δ)

m
,

LD(h)− LS(h) ≤ 2R (F ◦ S) + 4c

√
2 ln(4/δ)

m
,

LD(ĥ)− LD(h) ≤ 2R (F ◦ S) + 5c

√
2 ln(8/δ)

m
.

– Remind that ĥ ∈ argmin
h∈H

LS(h) .

– We will prove the first inequality. Please refer to Theorem 26.5 in [2] for the others.
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Proof of Theorem 3

▶ Recall the bounded differences inequality we have learned in week 2 from Richard:
Let f : Rm → R be a function of m variables such that

∣∣f(x)− f
(
x\k)∣∣ ≤ b for some

b > 0 for all x, x′ ∈ Rm, then with probability of at least 1− δ we have

|f (X)− E [f (X)]| ≤ b

√
ln

(
2

δ

)
m/2.

▶ For the first inequality, note that Rep(F , S) = suph∈H (LD(h)− LS(h)) satisfies the
bounded differences condition with the constant 2c/m, then

Rep(F , S) ≤ ERep(F , S) + c

√
2 ln(2/δ)

m
≤ 2E

S′
R (ℓ ◦ H ◦ S′) + c

√
2 ln(2/δ)

m
.
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Remark

▶ Why we introduce Rademacher complexity?
We need to derive generalization bound. From Lemma 1 to Theorem 3, we see that
those generalization errors can be bounded by something related to Rademacher
complexity, so we can bound Rademacher complexity instead.

▶ Is Rademacher complexity easier to bound?
Yes. There are many properties of Rademacher complexity to use, which will be
introduced in the next subsection.
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Properties

▶ Property 4. For any A ⊂ Rm, scalar c ∈ R, and vector a0 ∈ Rm, we have

R ({ca+ a0 : a ∈ A}) ≤ |c|R(A).

That is, linear transformation linearly changes the Rademacher complexity of a set.
▶ Property 5. Let A be a subset of Rm and let A′ =

{∑N
j=1 αja

(j) : N ∈ N,∀j,a(j) ∈ A,

αj ≥ 0, ‖α‖1 = 1} . Then , R (A′) = R(A).

That is, the convex hull of A has the same Rademacher complexity as A.
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Properties

▶ Property 6. (Massart) Let A = {a1, . . . ,aN} be a finite set of vectors in Rm. Define
a = 1

N

∑N
i=1 ai. Then,

R(A) ≤ max
a∈A
‖a− a‖

√
2 log(N)

m
,

or,

R(A) ≤ max
a∈A
‖a‖

√
2 log(N)

m
.

▶ Property 7. (Contraction Inequality) For each i ∈ [m], let ϕi : R→ R be a ρ−Lipschitz
function, let ϕ(a) ≜ (ϕ1 (a1) , . . . , ϕm (am)) and ϕ ◦A ≜ {ϕ(a) : a ∈ A}, then

R(ϕ ◦A) ≤ ρR(A).
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Proof for Property 6 (The Second Inequality)

▶ Let Wa = 1
m

∑m
i=1 σiai, then R(A) = E [supa∈A Wa].

▶ exp

(
tE
[
sup
a∈A

Wa

])
≤ E

[
exp

(
t sup
a∈A

Wa

)]
= E

[
sup
a∈A

exp (tWa)

]
≤
∑
a∈A

E [exp (tWa)] .

▶ σi is a bounded random variable, thus is sub-Gaussian with parameter 22/4 = 1. So, Wa

is sub-Gaussian with parameter maxa∈A ‖a‖2/m2. (P24 in Richard’s slides)
▶ By the definition of sub-Gaussian,

E [exp (tWa)] ≤ exp

(
t2 maxa∈A ‖a‖2

2m2

)
.

▶ Plugging the above formula into the overall bound, taking logs, and optimizing over t
yields the result.
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Properties

▶ Property 8. (example) Let H2 = {x 7→ 〈w, x〉 : ‖w‖2 ≤ 1} and S = (x1, . . . , xm) be
vectors in a Hilbert space, then

R (H2 ◦ S) ≤
maxi ‖xi‖2√

m
.

▶ Property 9. (example) Let H1 = {x 7→ 〈w, x〉 : ‖w‖1 ≤ 1} and S = (x1, . . . , xm) be
vectors in Rn, then

R (H1 ◦ S) ≤ max
i
‖xi‖∞

√
2 log(2n)

m
.
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Proof for Property 8

mR (H2 ◦ S) = E
σ

[
sup

w:∥w∥≤1

m∑
i=1

σi 〈w,xi〉

]
= E

σ

[
sup

w:∥w∥≤1

〈
w,

m∑
i=1

σixi

〉]

≤ E
σ

[∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
2

]
= E

σ


∥∥∥∥∥

m∑
i=1

σixi

∥∥∥∥∥
2

2

 1
2


≤

E
σ

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
2

2

 1
2

=

∑
i ̸=j

〈xi,xj〉E
σ
[σiσj ] +

m∑
i=1

〈xi,xi〉E
σ

[
σ2
i

] 1
2

=

(
m∑
i=1

‖xi‖22

) 1
2

≤
(
mmax

i
‖xi‖22

) 1
2

.
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Proof for Property 9

(The first inequality follows from Holder’s and Jensen’s inequality. )

mR (H1 ◦ S) ≤ E
σ

[∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
∞

]
= E

σ

[
max
j∈[n]

∣∣∣∣∣
m∑
i=1

σixij

∣∣∣∣∣
]

≜ E
σ

[
max
j∈[n]

|< σ,vj >|
]
← let vj = (x1j , · · · ,xmj)

T

= E
σ

[
max
j∈[n]

[max(< σ,vj >,< σ,−vj >)]

]
≜ E

σ

[
max
v∈V

< σ,v >

]
← let V = (v1, · · · ,vn,−v1, · · · ,−vn)

T

= mR(V ).

Note that max
v∈V
||v − v̂||2 = max

v∈V
||v||2 ≤

√
m max

i
||xi||∞, we get the result by Property 6.
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Example 1

▶ See the example in the section ”Introducing Rademacher Complexity With a Simple
Example”.

▶ In this example, we transfer R(F ◦ S) = R({x→ I(x ≤ θ), θ ∈ R} ◦ S) to Rademacher
complexity of a finite set, then use Property 6 to get the result.
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Example 2: Problem Setting

Consider the hard-SVM algorithm:
▶ Consider a distribution D over X ×{±1}, such that ∃w∗ with P(x,y)∼D [y 〈w⋆,x〉 ≥ 1] = 1

(separability assumption holds), and ||x||2 ≤ R w.p. 1, where x ∈ X .
▶ Consider the hard-SVM problem:

argmin
w

||x||22 s.t. yi 〈w, xi〉 ≥ 1,∀i.

▶ Define ws is the output of this problem. Please give an upper bound on

P
(x,y)∼D

[y 6= sign (〈wS ,x〉)] .
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Example 2: Deriving bound by Rademacher Complexity

▶ Let B = ||w∗||2 and consider the hypothesis class H = {w : ||w||2 ≤ B}. By the
algorithm of hard-SVM, we know that ws ∈ H.

▶ Consider the loss function to be ramp loss

ℓ(w, (x, y)) = min{1,max{0, 1− y〈w,x〉}},

then |ℓ| ≤ 1 and ℓ is 1-Lipschitz.
▶ By Property 8, R(H ◦ S) ≤ BR√

m
;

and then by Property 7, R(ℓ ◦ H ◦ S) ≤ BR√
m

.
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Example 2: Deriving bound by Rademacher Complexity

▶ Then by Theorem 3,

LD(ws)− LS(ws) ≤ 2E
S′
R (ℓ ◦ H ◦ S′) + 1 ·

√
2 ln(2/δ)

m

with probability of at least 1− δ over the choice of S.
▶ By the algorithm of hard-SVM, LS(ws) = 0.
▶ By the definition of ramp loss, we can see

P
(x,y)∼D

[y 6= sign (〈wS ,x〉)] ≤ LD(ws).

▶ Above all,

P
(x,y)∼D

[y 6= sign (〈wS ,x〉)] ≤ 2
BR√
m

+

√
2 ln(2/δ)

m
.

Examples 31 / 48



Example 3: Problem Setting

Consider a feed-forward neural network:
▶ A feed-forward neural network with depth ι (ι− 1 hidden layers) is given by the function

f ι
nn : Rd → R defined as

f (ι)
nn(x) := l(ι) ◦ · · · ◦ l(1)(x) ≡ l(ι)

(
· · · l(2)

(
l(1)(x)

)
· · ·
)
,

where each layer l(k) : Rdk−1 → Rdk is a map:

l(k)(x) := σ(k)
(
w(k)x+ b(k)

)
, σ(k) is λ− Lipschitz.

▶ Calculate the Rademacher complexity for the network class:

A(ι)
nn :=

{
x ∈ Rd → f (ι)

nn(x) :
∥∥∥w(k)

∥∥∥
∞
≤ ω,

∥∥∥b(k)∥∥∥
∞
≤ β ∀k, σ(ι)(x) = x

}
.
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Example 3: Solution

▶ Let σ : R→ R be γ-Lipschitz. Define

L′ :=

x ∈ Rd → σ

 m∑
j=1

wj lj(x) + b

 ∈ R : |b| ≤ β, ‖w‖1 ≤ ω, l1, . . . , lm ∈ L

 ,

where L is a class of functions from Rd to R that includes the zero function. Let us first
prove

R(L′ ◦ {x1, . . . , xn}) ≤ γ

(
β√
n
+ 2ωR(L ◦ {x1, . . . , xn})

)
.

▶ To prove this, define

F :=
{
x ∈ Rd →

∑m
i=1 wj lj(x) ∈ R : ‖w‖1 ≤ ω, l1, . . . , lm ∈ L

}
G :=

{
x ∈ Rd → b ∈ R : |b| ≤ β

} .
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Example 3: Solution

Proof Sketch
▶ Firstly, get R(L′ ◦ {x1, . . . , xn}) ≤ γ (Rad (F ◦ {x1, . . . , xn}) + Rad (G ◦ {x1, . . . , xn}))

by Property 6.
▶ Secondly, get R(F ◦ {x1, . . . , xn}) ≤ ωR(conv(L − L) ◦ {x1, . . . , xn}), where
L − L ≜ {l − l′ : l ∈ L, l′ ∈ L}, by Property 4 and the condition that 0 zero function is
in L.

▶ Then, get ωR(conv(L − L) ◦ {x1, . . . , xn}) = 2ωR(L ◦ {x1, . . . , xn}) by Property 5
and symmetry.

▶ Finally, get nR(G ◦ {x1, . . . , xn})) = E supb:|b|≤β b
∑n

i=1 σi ≤ βE |
∑n

i=1 σi| ≤ β
√
n by

Jensen’s inequality.

Examples 34 / 48



Example 3: Solution

With R(L′ ◦ {x1, . . . , xn}), let’s derive R
(
A(ι)

nn ◦ {x1, . . . , xn}
)

.
▶ Use the result for R(L′ ◦ {x1, . . . , xn}) recursively for each layer (note that γ = 1 for the

last layer and γ = λ for the others) and Property 7, we find

R
(
A(ι)

nn ◦ {x1, . . . , xn}
)
≤ β√

n
+2ω

(
βλ√
n

ι−3∑
k=0

(2ωλ)k + (2ωλ)ι−2 R(H1 ◦ {x1, . . . , xn})

)
,

where H1 = {x 7→ 〈w, x〉 : ‖w‖1 ≤ 1}.
▶ Then use Property 9 to get the result.
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Example 3: Comments

▶ Please refer to lecture notes 3 of reference [4] for detailed proof.
▶ This result cannot explain the practice and the success of deep learning. For example, in

the limit of an infinite number of layers, it would have to be 2ωλ < 1, which is a
restrictive requirement not needed in practice).

▶ Please refer to other papers for more reasonable bound under other assumptions. Also see
Appendix B of reference [3] for the usage of Rademacher complexity in deriving network’s
generalization bound.
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Covering Number: Motivation

▶ In Property 9 and Example 1, instead of calculating Rademacher complexity directly, we
solve equivalent problems where only finite hypothesis classes are involved and Property 6
can be used to easily derive bound.

▶ We can apply the same idea in a general sense. For a set with infinity many points, we
can isolate finitely points of interest, bound the Rademacher complexity of this finite
subset, and bound the difference between Rademacher complexity of the original set and
the new finite set.

▶ Covering number is the concept to measure cardinality of the finite set of interest.
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Covering Number: Definition

▶ Definition. Covering Number
Suppose A ⊆ Rm and is equiped with a metric ρ. The set C ⊆ A is a ε -cover of (A, ρ) if
for every x ∈ A there exists y ∈ C such that ρ(x, y) ≤ ε. The set C ⊆ A is a minimal ε
-cover if there is no other ε -cover with lower cardinality. The cardinality of any minimal
ε-cover is the ε -covering number, denoted by Cov(A, ρ, ε).

▶ For a ∈ A where A is a function class, define the following norms on A:

‖a‖p,x :=
(
1
n

∑n
i=1 |a (xi)|p

)1/p for any p ∈ [1,∞),

‖a‖∞,x := maxi |a (xi)| .

▶ Property 10 If 1 ≤ p ≤ q, then

Cov (A, ‖ · ‖q,x, ε) ≤ Cov (A, ‖ · ‖p,x, ε) .
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Covering Number: Theorem

▶ Theorem 11 (Chaining)
For any x = {x1, . . . , xm} ∈ Xm and supa∈A ‖a‖2,x ≤ cx we have

R(A ◦ x) ≤ 12√
m

∫ cx/2

0

dν
√
log Cov (A, ‖ · ‖2,x, ν).
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Proof of Theorem 11

▶ Let ϵj = 2−jcx for j = 1, . . . ,m be successively finer resolutions.
▶ For each j = 0, . . . ,m, let Cj be an ϵj -cover of A.
▶ Fix any a ∈ A.
▶ Let gj ∈ Cj be such that ‖a− gj‖ ≤ ϵj ; take g0 = 0. Note that gj ’s depend on a.
▶ Let us decompose a as follows:

a = a− gm + g0︸︷︷︸
=0

+

m∑
j=1

(gj − gj−1) .

▶ Let us bound some norms:

∗ ‖a− gm‖ ≤ ϵm

∗ ‖gj − gj−1‖ ≤ ‖gj − a‖+ ‖a− gj−1‖ ≤ ϵj + ϵj−1 = 3ϵj ( since 2ϵj = ϵj−1)
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Proof of Theorem 11

R(A) = E
[
sup
a∈A
〈σ, a〉

]
[ definition ]

= E

sup
a∈A
〈σ, a− gm〉+

m∑
j=1

〈σ, gj − gj−1〉

 [ decompose a]

≤ ϵm + E

sup
a∈A

m∑
j=1

〈σ, gj − gj−1〉

 [ Cauchy-Schwartz ]

≤ ϵm +

m∑
j=1

E
[
sup
a∈A
〈σ, gj − gj−1〉

]
[ push sup inside ]

≤ ϵm +

m∑
j=1

E

[
sup

gj∈Cj ,gj−1∈Cj−1

〈σ, gj − gj−1〉

]
[ refine dependence ]
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Proof of Theorem 11

≤ ϵm +

m∑
j=1

(3ϵj)

√
2 log (|Cj | |Cj−1|)

m
[Massart’s lemma (Property 6)]

≤ ϵm +

m∑
j=1

(6ϵj)

√
log |Cj |

m
[ since |Cj | ≥ |Cj−1|]

= ϵm +

m∑
j=1

12 (ϵj − ϵj+1)

√
log |Cj |

m
[ since ϵj = 2 (ϵj − ϵj+1)

≤ 12

∫ cx/2

0

√
log Cov (A, ‖ · ‖2,x, ν)

m
dϵ [ bound sum with integral ]
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Covering Number: Examples

▶ Let A∞ :=
{
x ∈ Rd → w⊤x : w ∈ Rd, ‖w‖∞ ≤ 1

}
. Then, for any x = {x1, . . . , xn},

please prove
R(A∞ ◦ x) ≤ 12γ

maxi ‖xi‖1√
n

√
d,

where γ :=
∫ 1/2

0
dν
√

log(3/ν).
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Covering Number: Examples

Proof:
▶ With Theorem 11 and Property 10, we have

R(A∞ ◦ x) ≤
12√
n

∫ cx/2

0

dν
√
log Cov (A∞, ‖ · ‖∞,x, ν).

▶ By Holder’s inequality, a(x) = w⊤x ≤ ‖w‖∞‖x‖1 ≤ ‖x‖1, so

cx = sup
a∈A∞

‖a‖2,x = sup
a∈A∞

√√√√ 1

n

n∑
i=1

a (xi)
2 ≤

√√√√ 1

n

n∑
i=1

‖xi‖21 ≤ c

with c := maxi ‖xi‖1.
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Covering Number: Examples

Proof (cont’d):
▶ Now let’s calculate covering number. Also by Holder’s, we get

‖a− b‖∞,x = max
i
|a (xi)− b (xi)| = max

i

∣∣∣(wa − wb)
⊤
xi

∣∣∣ ≤ c ‖wa − wb‖∞ ;

hence, to find an ν -cover, it suffices to find a finite set C such that for any wa, there
exists w ∈ C with ‖wa − w‖∞ ≤ ν/c.

▶ For a hypercube with side length 2, divide it into small cubes with side length 2ν/c.

▶ Define C to be the set of vertices of the cubes.
▶ Then, any wa ∈

{
w ∈ Rd : ‖w‖∞ ≤ 1

}
must land in one of these cubes, and each

coordinate is at most ν/c away from one of the vertices.
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Covering Number: Examples

Proof (cont’d):
▶ There are at most (dc/νe+ 1)d vertices, so

Cov (A∞, ‖ · ‖∞,x, ν) ≤ (dc/νe+ 1)d ≤ (c/ν + 2)d ≤ (3c/ν)d.

▶ Finally,

R(A∞ ◦ x) ≤
12
√
d√

n

∫ c/2

0

dν
√

log(3c/ν)

=
12c
√
d√

n

∫ 1/2

0

dν
√

log(3/ν).
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