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Bandit learning and optimization: motivating example

▶ First thought experiment: Clinical trial, Thompson 1933

– Patients with same diseases (e.g. COVID-19) arrive sequentially
– Two available treatments with unknown rewards (e.g. ’Live’ or ’Die’)
– Bandit feedback: after administrating the treatment to a patient, we observe whether she

survives or dies. (only rewards of chosen treatment are observed)
– Goal: design a treatment selection scheme π maximizing the number of patients cured after

treatment
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Stochastic Multi-armed bandit (MAB) problem

Modern definition follows [Robbins, 1952].
▶ Set of actions A, say A = [k] := {1, · · · , k}
▶ A stochastic bandit instance is a collection of distributions ν = (Pa : a ∈ A)

▶ In each round t ∈ {1, . . . , n},
– the learner chooses an action At ∈ A,

– the environment samples a reward Xt ∈ R from distribution PAt and reveals Xt to the
learner.

▶ The interaction between the learner (or policy) and environment (or instance) induces a
probability measure on the sequence of outcomes

Hn = (A1, X1, A2, X2, . . . , An, Xn).
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Stochastic Multi-armed bandit (MAB) problem

▶ The interaction between the learner (or policy) and environment (or instance) induces a
probability measure on the sequence of outcomes Hn = (A1, X1, A2, X2, . . . , An, Xn).

▶ The sequence of outcomes should satisfy the following assumptions:
(a) The conditional distribution of reward Xt given Ht−1, At is PAt

,

– captures the intuition that the environment samples Xt from PAt in round t

(b) The conditional law of action At given Ht−1 is πt (· | Ht−1) , where π1, π2, . . . is a
sequence of probability kernels that characterize the learner. Define poliy π = (πt)

n
t=1.

– captures the fact that the learner cannot use the future observations in current decisions.
▶ Density pνπ (a1, x1, . . . , an, xn) =

∏n
t=1 π (at | a1, x1, . . . , at−1, xt−1)pat

(xt)
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Performance measures of MAB problem - Regret

▶ Recall ν = (Pa : a ∈ A) is a stochastic bandit environment (instance)
▶ Define mean reward of each action for this instance ν: µa(ν) =

∫∞
−∞ xdPa(x)

▶ Then let µ∗(ν) = maxa∈A µa(ν) be the largest mean of all the arms.
▶ The regret of policy π on bandit instance ν is

Rn(π, ν) = nµ∗(ν)− E

[
n∑

t=1

Xt

]
(1)

where the expectation is taken with respect to the probability measure on outcomes
Hn = (A1, X1, A2, X2, . . . , An, Xn) induced by the interaction of π and ν.
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Unstructured bandit (Our focus today)

▶ Unstructured bandit: Playing action a reveals no information about reward distribution
on actions b ̸= a

▶ Example: Class of k-arm bernoulli bandit Ek
B :=

{
(B (µi))i : µ ∈ [0, 1]k

}
; Class of k-arm

gaussian bandit with known var. Ek
N
(
σ2
)
:=
{(

N
(
µi, σ

2
))

i
: µ ∈ [0, 1]k

}
▶ Formal: An environment class E is unstructured if A is finite and there exist sets of

distributions Ma for each a ∈ A such that

E = {ν = (Pa : a ∈ A) : Pa ∈ Ma for all a ∈ A}

or, in short, E = ×a∈AMa.
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Structured bandit

Not our focus today. But for a quick tour.
▶ Let A = {1, 2} and E = {(B(θ),B(1− θ)) : θ ∈ [0, 1]}.
▶ Stochastic linear bandit. Let A ⊂ Rd and θ ∈ Rd and

νθ = (N (⟨a, θ⟩, 1) : a ∈ A) and E =
{
νθ : θ ∈ Rd

}
Notice that even if A is extremely large, the learner can deduce the true environment
(recover θ) by playing just d actions that span Rd.
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Sturctured reward bandit (cont.)

Not our focus today. But for a quick tour.
▶ Lipschitz reward function for actions in continuous action set.
▶ Bounded concave reward (convex loss) function for actions in bounded convex and

compact actions set: Online Convex Optimization framework [Hazan, 2016].
▶ Reward structure gives us opportunities to obtain reward information of unchosen

actions, which is suitable and useful in some practical problems.
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Contextual bandit

Not our focus today. But for a quick tour.
▶ Incorporate context information in the practical problem (e.g. news recommendation):
▶ Context Ct ∈ C at round t: profile and interests of news app user
▶ News to be recommended i ∈ [k]

▶ Reward structure: mean reward r(c, i) is linear in the given feature ψ(c, i) ∈ Rd of
contextual information of users and news, and unknown parameters θ∗:

r(c, i) = ⟨θ∗, ψ(c, i)⟩ , for all (c, i) ∈ C × [k]

▶ Contextual linear bandit: in round t, learner is given the decision set
At := {ψ(Ct, i) : i ∈ [k]} ⊂ Rd, from which it chooses an action At and receives rewards

Xt = ⟨θ∗, At⟩+ ηt, ηt ∼ N (0, 1)
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Applications already deployed in industry

▶ Recommendation (Toutiao News, Tik Tok, Taobao)
▶ Advertisement Placement (Google Ads, Microsoft Decision Services)
▶ Dynamic Pricing (DiDi, Uber, Salesforce)
▶ Online Network Routing (Maps app, DiDi)
▶ Algorithmic Component in AlphaGo (Upper Confidence Tree Search)
▶ Rate Adaptation in 802.11 wireless systems and other applications in cognitive radio

networks, multi-channel communication systems (No idea whether deployed?)
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Minimax regret

▶ Recall that E is a class of stochastic bandit environments (or instances)
▶ Worst-case regret: Rn(π, E) = supν∈E Rn(π, ν)

▶ Let Π be the set of all policies.
▶ Minimax regret:

R∗
n(E) = inf

π∈Π
Rn(π, E) = inf

π∈Π
sup
ν∈E

Rn(π, ν)

▶ A core activity in bandit theory is to understand what makes R∗
n(E) large or small.

Theorem 1.
Let k > 1 and n ≥ k − 1. Then, for any policy π, there exists a k-armed bandit instance ν,

Rn (π, ν) ≥ c
√
(k − 1)n,

where c is a universal constant.
Bandit lower bounds 12 / 50



Minimax regret lower bound - Intuition (1)

▶ Generally, reduce our bandit problem to hypothesis testing:
▶ Fix any policy (or learner) π, then select two bandit problem instances ν and ν′ s.t. the

following hold simultaneously to make life difficult for learner (enlarge regrets)

supERn (π, E) ≥ max {Rn (π, ν) , Rn (π, ν
′)} ≥ 1/2 (Rn (π, ν) +Rn (π, ν

′)) ,

1 Competition: An action, or, more generally, a sequence of actions that is good for one
bandit is not good for the other.

2 Similarity: The instances are ’close’ enough that the policy interacting with either of the two
instances cannot statistically identify the true bandit with reasonable statistical accuracy.
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Minimax regret lower bound - Construction (1)

▶ Fix any policy π ∈ Π. Consider a restricted class Ek
N (1) of k-armed Gaussian bandits with

unit variance and bounded mean vector µ ∈ [0, 1]k

▶ Let ∆ ∈ [0, 1/2] be some constant to be chosen later.
▶ Choose the first Gaussian bandit instance νµ ∈ Ek

N (1) with mean vector:

µ = ( ∆︸︷︷︸
optimal arm in instance νµ

, 0, 0, . . . , 0).

▶ Recall that the interaction of instance νµ and policy π give rise to the distribution Pνµ,π

on the sequence of outcomes A1, X1, · · · , An, Xn.
▶ For brevity, let Pµ := Pνµ,π, and Eµ be expectations under Pµ
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Minimax regret lower bound - Construction (2)

▶ Define Eµ [Tj(n)] = Eµ [
∑n

t=1 I(At = j)] as the expected #times of playing action j up
to round n during the interaction between the environment νµ and learner π

▶ To choose the second instance, let i = argminj>1 Eµ [Tj(n)]

– Since
∑k

j=1 Eµ [Tj(n)] = n, it holds that Eµ [Ti(n)] ≤ n/(k − 1).

▶ The second bandit instance νµ′ ∈ Ek
N (1) with mean vector:

µ′ = (∆, 0, 0, . . . , 0, 2∆︸︷︷︸
µ′
i ̸=µi, optimal arm in instance νµ′

, 0, . . . , 0)

▶ Also we abbreviate Pµ′ := Pνµ′ ,π.
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Minimax regret lower bound - Intuition (2)

Figure: Given a policy and one environment, the evil antagonist picks another environment so that the
policy will suffer a large regret in at least one environment. Let event A = {T1(n) ≤ n/2}

Rn (π, νµ) ≥ Pµ (A)
n∆

2
and Rn (π, νµ′) > Pµ′ (Ac)

n∆

2
.
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Minimax regret lower bound

▶ Recall Rn(π, νµ) = nµ∗(ν)− Eµ [
∑n

t=1Xt] and event A = {T1(n) ≤ n/2}
▶ Prove Rn (π, νµ) ≥ Pµ (A)

n∆
2 :

Rn (π, νµ) = Eµ [Rn (π, νµ) | A]Pµ (A) + Eµ [Rn (π, νµ) | Ac]Pµ (A
c)

≥ Eµ [Rn (π, νµ) | A]Pµ (A) ≥
∆n

2
Pµ (A)

▶ Prove Rn (π, νµ′) > Pµ′ (Ac) n∆
2 :

Rn (π, νµ′) = Eµ′ [Rn (π, νµ′) | A]Pµ′ (A) + Eµ′ [Rn (π, νµ′) | Ac]Pµ′ (Ac)

≥ Eµ′ [Rn (π, νµ′) | Ac]Pµ′ (Ac) >
∆n

2
Pµ (A

c)

▶ Rn (π, νµ) +Rn (π, νµ′) > n∆
2 (Pµ (T1(n) ≤ n/2) + Pµ′ (T1(n) > n/2))
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Minimax regert lower bound

▶ Rn (π, νµ) +Rn (π, νµ′) > n∆
2 (Pµ (T1(n) ≤ n/2) + Pµ′ (T1(n) > n/2))

▶ Recall the Le Cam’s method in reduction to binary testing, we will have similar argument:

Lemma 2 (Bretagnolle-Huber inequality).
Let P and Q be probability measures on the same measurable space (Ω,F), and let A ∈ F be
an arbitrary event. Then,

P (A) +Q (Ac) ≥ 1

2
exp(−D(P,Q)) (2)

where Ac = Ω\A is the complement of A.
▶ Then we have Rn (π, νµ) +Rn (π, νµ′) > n∆

4 exp(−D(Pµ,Pµ′))
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Minimax regret lower bound - Divergence decomposition

Lemma 3 (Divergence decomposition).
Let ν = (P1, . . . , Pk) be the reward distributions associated with one k -armed bandit, and let
ν′ = (P ′

1, . . . , P
′
k) be the reward distributions associated with another k-armed bandit. Fix

some policy π and let Pν = Pνπ and Pν′ = Pν′π be the probability measures on the sequence of
outcomes induced by the n-round interconnection of π and ν (respectively, π and ν′ ). Then,

D(Pν ,Pν′) =

k∑
i=1

Eν [Ti(n)] D (Pi, P
′
i ) (3)
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Minimax regret lower bound - Divergence decomposition (cont.)

▶ Density of Pν is pνπ (a1, x1, . . . , an, xn) =
∏n

t=1 π (at | a1, x1, . . . , at−1, xt−1)pat (xt)

▶ Density of Pν′ is pνπ (a1, x1, . . . , an, xn) =
∏n

t=1 π (at | a1, x1, . . . , at−1, xt−1)p
′
at
(xt)

▶

log
dPν

dPν′
(a1, x1, . . . , an, xn) =

n∑
t=1

log
pat

(xt)

p′at
(xt)

▶

D(Pν ,Pν′) = Eν

[
log

dPν

dPν′
(A1, X1, . . . , An, Xn)

]
=

n∑
t=1

Eν

[
log

pAt
(Xt)

p′At
(Xt)

]
▶

Eν

[
log

pAt
(Xt)

p′At
(Xt)

]
= Eν

[
Eν

[
log

pAt
(Xt)

p′At
(Xt)

| At

]]
= Eν

[
D
(
PAt

, P ′
At

)]
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Minimax regret lower bound - Divergence decomposition (cont.)

▶ Since
∑k

i=1 I {At = i} = 1 a.s., by linearity of expectation

n∑
t=1

Eν

[
D
(
PAt

, P ′
At

)]
=

k∑
i=1

Eν

[
n∑

t=1

I {At = i}D
(
PAt

, P ′
At

)]
=

k∑
i=1

Eν [Ti(n)] D (Pi, P
′
i )

▶ Recall the construction of two instances, only difference is at index i:

µ = ( ∆︸︷︷︸
optimal arm in instance νµ

, 0, 0, . . . , 0)

µ′ = (∆, 0, 0, . . . , 0, 2∆︸︷︷︸
µ′
i ̸=µi, optimal arm in instance νµ′

, 0, . . . , 0)

D (Pµ,Pµ′) = Eµ [Ti(n)] D(N (0, 1),N (2∆, 1)) = Eµ [Ti(n)]
(2∆)2

2
≤ 2n∆2

k − 1
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Minimax regret lower bound

▶ Putting all together, for any fixed policy π ∈ Π:

sup
ν∈Ek

N (1)

Rn(π, ν) ≥ (1/2) (Rn (π, νµ) +Rn (π, νµ′)) ≥ n∆

8
exp

(
−2n∆2

k − 1

)

▶ By choosing ∆ =
√
(k − 1)/4n ≤ 1/2 and lower bounding exp(−1/2),

inf
π∈Π

sup
ν∈E

Rn(π, ν) ≥ inf
π∈Π

sup
ν∈Ek

N (1)

Rn(π, ν) ≥
1

27

√
(k − 1)n
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Minimax regret lower bound - Alternative construction

▶ Constant improvement.
▶ Fix policy π ∈ Π. Let ∆ to be chosen later.
▶ Construct k + 1 instances. For each instance νµ(i) indexed with i ∈ {0, 1, . . . , k}, let the

mean vector µ(i) ∈ Rk be µ(i)
j = I{i = j}∆

µ(0) = (0, · · · , 0, · · · , 0)

µ(i) = (0, · · · , ∆︸︷︷︸
i-arm

, . . . , 0), ∀i ∈ {1, 2, · · · , k}

▶ Further abbreviate the notation Ei[·] = Eµ(i) [·]
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Minimax regret lower bound - Alternative proof

▶ For any fixed policy π ∈ Π, let Ri = Rn

(
π, νµ(i)

)
,

sup
ν∈E

Rn(π, ν) ≥ max{R1, · · · , Rk} ≥ (1/k)

k∑
i=1

Ri =
∆

k

k∑
i=1

(n− Ei [Ti(n)])

▶ Define a random variable Jn denoting the frequency of playing arm j up to round n under
the interaction between policy π and instance νµ(i) :

Pi (Jn = j) = Ei
Tj(n)

n

▶ Then we rewrite,

(1/k)

k∑
i=1

Ri = n∆

(
1− 1

k

k∑
i=1

Pi(Jn = i)

)
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Minimax regret lower bound - Alternative proof

▶ Let event A = {Jn = i}, then by Pinsker’s inequality:

Pi(A)− P0(A) ≤ sup
A

Pi(A)− P0(A) ≤
√

1

2
D(P0,Pi)

▶ Since
∑k

i=1 P0 (Jn = i) = 1, we have

1

k

k∑
i=1

Pi (Jn = i) ≤ 1

k
+

1

k

k∑
i=1

√
1

2
D (P0,Pi)

▶ Then, we have the following important immediate result:

(1/k)

k∑
i=1

Ri ≥ n∆

(
1− 1

k
− 1

k

k∑
i=1

√
1

2
D (P0,Pi)

)
(4)
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Minimax regret lower bound - Alternative proof

▶ By Divergence decomposition, D(P0,Pi) = D(N (0, 1),N (∆, 1))E0[Ti(n)]

▶ we have

(1/k)

k∑
i=1

Ri ≥ n∆

(
1− 1

k
− 1

k

k∑
i=1

√
1

2
D (P0,Pi)

)
= n∆

(
1− 1

k
− 1

k

k∑
i=1

√
∆2

4
E0[Ti(n)]

)

≥ n∆

1− 1

k
− 1

k

∆

2

√√√√k

k∑
i=1

E0[Ti(n)]

 = n∆

(
1− 1

k
− ∆

2k

√
kn

)

▶ Let ∆ = c
√
k/n with some constant c, we get the final result

inf
π∈Π

sup
ν∈E

Rn(π, ν) ≥ inf
π∈Π

max{R1, · · · , Rk} ≥ 1

8

√
kn
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RL hard MDP construction - Intuition
▶ Known deterministic reward r(s = 0) = 0 and r(s = 1) = 1

▶ All actions from the state 0 follow the same law P (0, a) = (1− δ0, δ0) .

▶ In state 1, P (1, a) = (δ1, 1− δ1) for a ̸= a∗ and P (1, a∗) = (δ1 − ϵ, 1− δ1 + ϵ) .

▶ For this simple class of MDP we will distinguish policies in terms of their action upon
s = 1, since this is the only action which can influence the evolution of the MDP.

Figure: A hard-to-learn class of two state MDP. Dotted lines distinguish the unique optimal policy.
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RL hard MDP construction - Intuition

Figure: A hard-to-learn class of two state MDP. Dotted lines distinguish the unique optimal policy.

▶ We define θ1 := δ0
δ0+δ1

to be the average expected reward under the policy a ̸= a∗.

▶ Let δ∗1 := δ1 − ϵ for the distinguished optimal action,
▶ Correspondingly θ∗1 := δ0

δ0+δ∗1
for the average expected reward under the optimal policy a∗
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RL hard MDP construction - Intuition

▶ Assume δ0 ≥ δ1, the agent should obtain expected regret Ω(ϵ/δ0) every timestep it selects
action at ̸= a∗ whilst in state s = 1.

θ∗1 − θ1 =
δ0

δ0 + δ1 − ϵ
− δ0
δ0 + δ1

=
δ0ϵ

(δ0 + δ1) (δ0 + δ1 − ϵ)

>
δ0ϵ

(δ0 + δ1)
2 >

δ0ϵ

(2δ0)
2 =

ϵ

4δ0

▶ All other actions in any other state produce zero regret.
▶ The proportion of the time the agent spends in state s = 1 is lower bounded by θ1.
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RL regret lower bound

Construct A different hard instance by setting a∗ = i ∈ {1, 2, · · · , A} and one additional
uniform instance. Let the regret of policy π on ergodic RL problem under instance Mi be

RT (π,Mi) = θ∗1T − Ei

[
T∑

t=1

r (s1, at)

]

Lemma 4 (Informal).
In the environment of Figure 1, when the optimal action on s1 is a∗ = i ∈ A, for all δ, ϵ > 0

and all learning algorithms π,

1

A

∑
i∈A

RT (π,Mi) ≥ θ1
ϵ

4δ0
T

(
1− 1

A
− 1

A

∑
i∈A

√
1

2
D (Punif , Pi)

)
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1

A

∑
i∈A

RT (π,Mi) ≥ θ1
ϵ

4δ0
T

(
1− 1

A
− 1

A

∑
i∈A

√
1

2
D (Punif , Pi)

)

≥ θ1
ϵ

4δ0
T

1− 1

A
−

√
1

2

ϵ2

δ1

θ1T

A

 for all ϵ

≥ 1

4

ϵθ1T

δ0

1− 1

A
−

√
ϵ2θ1T

2δ1A


≥ 1

4
·
√

δ1A

8θ1T
· θ1T
δ0

(
1− 1

A
− 1

4

)
setting ϵ =

√
δ1A

8θ1T

≥ 1

32
√
2

√
δ1θ1
δ20

AT
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Diameter of MDP

▶ TM
µ (s, s′) for the expected number of time steps to get from state s to s′ in MDP M

under policy µ.
▶ The one-way diameter of an MDP is defined

Dow(M) := max
s

min
µ
TM
µ (s, s̄), where s̄ is any state with optimal value bias.

▶ From construction of the simple two-state MDP, it is clear that Dow = 1
δ0
, since the only

state with optimal value bias is s = 1 and the expected time from s = 0 to s = 1 is 1
δ0
.

We now examine behavior of the remaining free parameters using the definition
θ1 = δ0/ (δ0 + δ1)

▶ (Notice!) For finite horizon MDP with horizon H, Dow = Θ(H)
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▶ For any choice of δ1 > 0,√
δ1θ1
δ20

= Dow

√
δ1θ1 = Dow

√
δ1/Dow

δ1 + 1/Dow
=

√
Dow

1 + 1
δ1Dow

= O(
√
Dow)

▶ Establish a lower bound Ω(
√
DowSAT ) for ergodic RL problem and imply lower bound

Ω(
√
HSAT ) for finite horizon problem.

▶ For finite horizon problem, UCBVI achieves the lower bound under large T and large finite
state-action space.

▶ Jaksch et al. [2010] establish Ω(
√
DSAT ), and design the UCRL2 algorithm achieving

Õ(DS
√
AT ) upper bound, where D(M) := maxs,s′ minµ T

M
µ (s, s′) ≥ Dow is the

diameter of the MDP.
▶ Tossou et al. [2019] design algorithm UCRL-V and close the gap for ergodic RL problem

Õ(
√
DSAT )
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Instance (Gap)-dependent lower bound

▶ Regret for bandit
▶ PAC for bandit
▶ Regret for episodic RL [Simchowitz and Jamieson, 2019]

lim
K→∞

EM [RegretK ]

log T
≳ (1− α)

∑
x,a:gap1(x,a)>0

H2

gap1(x, a)
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Performance measures for RL

▶ Expected Regret: There exists a function FER(S,A,H, T ) such that

E[R(T )] ≤ FER(S,A,H, T )

▶ High Probability Regret: There exists a function FHPR(S,A,H, T, log(1/δ)) such that

P (R(T ) > FHPR(S,A,H, T, log(1/δ))) ≤ δ

▶ Probably approximately correct (PAC): (ε, δ)− PAC : There exists a polynomial function
FPAC(S,A,H, 1/ε, log(1/δ)) such that

P (Nε > FPAC(S,A,H, 1/ε, log(1/δ))) ≤ δ
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Regret bounds

Figure: Return (accumulated reward) at each episode
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Regret bounds

Figure: Optimality gap of the return at each episode

Discussions 39 / 50



Regret bounds

Figure: Bound on sum of differences between optimal and achieved performance (with high probability)
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PAC bounds

Figure: Optimality gap of the return at each episode
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PAC bounds

Figure: Compare optimality gap with fixed threshold ϵ. All episodes that do not achieve ϵ-optimal are
considered as ‘mistakes’.
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PAC bounds

Figure: Bound on #episodes where performance is not ϵ-optimal (with high probability)
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Limitations of the performance measures and beyond

▶ Limitations of PAC bounds

Figure: No guarantee of how bad ‘mistakes’ are

Figure: Allow not converging to optimal

▶ Limitation of Regret bounds

Figure: Only bound the total sum of optimality
gap (errors)

▶ PAC bounds and Regret bounds are not
directly comparable!
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Limitations of the performance measures and beyond

▶ Motivation beyond PAC and regret performance measures:
– (Safety issues) High-stake applications like robotics and healthcare, etc
– Compare algorithms beyond experiments

▶ Uniform PAC [Dann et al., 2017]: For all ε > 0 jointly: bound #episodes where
performance is not ε -optimal (with high probability)

▶ Individual Policy Certificates (IPOC) [Dann et al., 2019]
– IPOC imply both PAC and Regret
– First algorithm achieve both PAC lower bound and Regret lower bound

Discussions 45 / 50



Current construction is not suitable for Long horizon problems

▶ Reward Uniformity The regularity assumption of Dann and Brunskill (2015) is the
standard rh ∈ [0, 1] (and hence

∑H
h=1 rh ∈ [0,H]

)
. To remove the dependence on H

due to reward scaling, we should normalize their cumulative reward to [0,1] by dividing
reward by H. Now compare their assumption (after normalization) to ours:

▶ Standard assumption (e.g., Dann and Brunskill, 2015): rh ∈
[
0, 1

H

]
, and hence∑H

h=1 rh ∈ [0, 1]

▶ More general assumption (e.g., Krishnamurthy et al., 2016): rh ≥ 0, and
∑H

h=1 rh ∈ [0, 1]

▶ It is clear that our assumption is strictly weaker, despite that it might seem more
restrictive at the first glance. (A key subtlety here is on the interpretation of ϵ : only after
normalization does represent the relative suboptimality gap (Kakade, 2003, Chapter
2.2.3).)

▶ In fact, requiring rh ∈
[
0, 1

H

]
effectively imposes a uniformity requirement on rewards, and

cannot model environments with sparse rewards-for which we believe long horizons are
most challenging-in a tight manner.Discussions 46 / 50



Long horizon problems

▶ Asymptotics The other assumption they have is ϵ ∈
[
0, 1

H

]
(after normalization). For

some of our motivating scenarios, such an asymptotic situation is uninteresting: for
example, the horizon of a control task can be, say, H ∼ 106, when we control motors that
respond in millisecond intervals (”flat RL”), but the horizon may reduce significantly if
pre-defined macro actions are available (”hierarchical RL”). In this case, learning a policy
10−6 close to optimal is unnecessary, and to show the advantage of hierarchical RL we are
interested in the regime of ϵ≫ 1/H
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Long horizon problems

▶ The lower bound construction given by Dann and Brunskill [2015] is as follows: the agent
chooses an action in the first step, transitions to either a good state or a bad state with
action-dependent probabilities, and then loops in the good / bad state for the remaining
time steps receiving either +1 or 0 reward per time step. Once we normalize total reward,
the construction is exactly a multi-armed bandit with Bernoulli distributed rewards, which
obviously will not yield any H dependence.

▶ Another type of lower bound constructions in literature utilize lazy Markov chains [Jaksch
et al., 2010] typically there are a good state and a bad state, and under all actions the
agent will stay in its current state and only transition to the other state with small
probabilities. The small probabilities of switching states are set as O

(
1
H

)
; As H increases,

the MDP simply becomes lazier, and can be emulated by sampling episodes from an MDP
with smaller H and adding uninformative ”elapsing” time steps.
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