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Finite-horizon episodic RL problems

▶ Initial state x1 (could be a r.v.)
▶ Transition probabilities at time step h : p (y | x, a)
▶ Reward at time step h : r(x, a)

▶ Unknown transition probabilities and reward function
▶ Objective: quickly learn a policy π⋆ maximizing over π := {π1, π2, · · · , πH}

V π
1 (s) := E

[
H∑

h=1

r (sh, πh(sh)) | s1 = s

]
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▶ Data: K episodes of length H (actions, states, rewards)
▶ Learner: ‘the data on previous K − 1 episodes’ 7→ πK

▶ Performance of the learner: how close πK is from the optimal policy π⋆ or regret up to
the K-th episode (time T = KH):

Regret(K) =

K∑
k=1

(V ⋆
1 (xk,1)− V πk

1 (xk,1))
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Algorithm Principle: Optimism face of uncertainty

▶ Estimate the unknown system parameters (here p(· | ·, ·) and r(·, ·)) and build an
optimistic reward estimate to trigger exploration.

▶ Estimate: find confidence balls containing the true model w.h.p.
▶ Optimistic reward estimate: find the model within the confidence balls leading to the

highest value.
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UCBVI: Upper Confidence Bound Value Iteration

▶ UCBVI is an extension of Value Iteration, guaranteeing that the resulting value function
is a (high-probability) upper confidence bound (UCB) on the optimal value
function V ∗.

– At the beginning of episode k, it computes state-action values using empirical transition
kernel and reward function.

– In step h of backward induction (to update Qk,h(s, a) for any (s, a)) , it adds a bonus
bk,h(s, a) to the value, and ensures that Qk,h ≤ Qk−1,h.

▶ Two variants of UCBVI, depending on the choice of bonus bk,h

– UCBVI-CH using Chernoff-Hoeffding bound
– UCBVI-BF using Bernstein-Freedman bound

▶ As more data gathered, the upper confidence bound on the optimal value of initial state
get close to the true optimal value.
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UCBVI algorithm

Variables to be maintained by the algorithm: for known deterministic reward function
▶ p̂ = (p̂ (s′ | s, a) , s, s′ ∈ S, a ∈ As) : estimated transition probabilities
▶ Q = (Qh(s, a), h ≤ H, s ∈ S, a ∈ As) : estimated Q-function
▶ b = (bh(s, a), h ≤ H, s ∈ S, a ∈ As) : Q-value bonus
▶ N = (N(s, a), s ∈ S, a ∈ As) : number of visits to (s, a) so far
▶ N ′ = (Nh(s, a), h ≤ H, s ∈ S, a ∈ As) : number of visits in the h-step of episodes to

(s, a) so far

Algorithm 8 / 23



UCBVI
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UCBVI algorithm: bonus

▶ UCBVI-CH:
bh(s, a) =

7H√
N(s, a)

log(5SAT/δ)

▶ UCBVI-BF:

bh(s, a) =

√
8L

N(s, a)
Var p̂(· | s, a) (Vh+1(Y )) +

14HL

3N(s, a)

+

√√√√ 8

N(s, a)

∑
y

p̂(y | s, a)min

{
104H3S2AL2

N ′
h+1(y)

,H2

}

where L = log(5SAT/δ).
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UCBVI algorithm: Optimistic Bellman operator

bellmanOpt(Q, b, p̂) applies Dynamic Programming with a bonus.
▶ Initialization: VH+1(s) = 0 for all (s, a)
▶ For step h = H, . . . , 1 :

– for all (s, a) never visited: Qh(s, a) = H

– for all (s, a) visited at least once so far:
Qh(s, a)← min

(
Qh(s, a), H, r(s, a) +

∑
y p̂(y | s, a)Vh+1(y) + bh(s, a)

)
– Vh(s) = maxa∈A Qh(s, a)

▶ Q-values Q1, Q2, · · · , QH
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UCBVI: Regret guarantees

Regret up to time T = KH : Regret(K) =
∑K

k=1 (V
⋆
1 (xk,1)− V πk

1 (xk,1))

Theorem 1.
For any δ > 0, the regret of UCBVI-CH(δ) is bounded w.p. at least 1− δ by:

RegretUCBV I−CH(K) ≤ 20HL
√
SAT + 250H2S2AL2

with L = log(5HSAT/δ).

▶ For T ≥ HS3A and SA ≥ H, the regret upper bound scales as Õ(H
√
SAT )
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UCBVI: Regret guarantees

Regret up to time T = KH : Regret(K) =
∑K

k=1 (V
⋆
1 (xk,1)− V πk

1 (xk,1))

Theorem 2.
Consider a parameter δ > 0. Then the regret of UCBVI-BF(δ) is bounded w.p. 1− δ, by

RegretUCBV I−BF (K) ≤ 30HL
√
SAK + 2500H2S2AL2 + 4H3/2

√
KL

where L = ln(5HSAT/δ)

▶ For T ≥ H3S3A and SA ≥ H, the regret upper bound scales as Õ(
√
HSAT )

▶ Achieve regret minimax lower bound
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Sketch of proof

Some notations:
▶ πk is the policy applied by UCBVI in the k-th episode
▶ Vk,h is the optimistic value function computed by UCBVI in the h -step of the k -th

episode
▶ V π

h is the value function from step h under π
▶ Pπ = (p (s′ | s, π(s)))s,s′
▶ P̂π

k = (p̂k (s
′ | s, π(s)))s,s′ where p̂k is the estimated transitions in episode k

Claim 1: by construction with high probability, Vk,h ≥ V ⋆
h . Then:

Regret(K) ≤ R̃egret(K) =

K∑
k=1

(Vk,1 (xk,1)− V πk (xk,1))
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Sketch of proof: Key error decomposition

▶ Let ∆̃k,h = Vk,h − V πk

h , so that R̃egret(K) =
∑K

k=1 ∆̃k,1 (xk,1)

▶ Backward induction on h to bound ∆̃k,1 : introduce δ̃k,h = ∆̃k,h (xk,h) then

δ̃k,h ≤
(
P̂πk

k − Pπk

)
∆̃k,h+1 (xk,h) + δ̃k,h+1 + ϵk,h + bk,h + ek,h (1)

where {
ϵk,h = Pπk∆̃k,h+1 (xk,h)− ∆̃k,h+1 (xk,h+1)

ek,h =
(
P̂πk

k − Pπk

)
V ⋆
h+1 (xk,h)

▶ Concentration + Martingale difference (Azuma-Hoeffding or Bernstein-Freedman) +
bounding bonus
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Key error decomposition: How and why?

▶ By algorithm,

Vk,h(x) = max
a

Qk,h(x, a) ≡ min
{
Qk−1,h(x, a),H, rh(x, a) + [P̂kVk,h+1](x, a) + bk,h(x, a)

}
,

▶ and we define empirical optimistic bellman operator

[Tk,hVk,h+1](x) = max
a

{rh(x, a) + [P̂kVk,h+1](x, a) + bk,h(x, a)}, ∀x.

▶ Then, we can also write Vk,h(x) = min {Vk−1,h(x),H, [Tk,hVk,h+1](x)}.
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Key error decomposition: How and why?

▶ For simplicity, ignore the subscript k.
▶ With π(xh) = ah, bh = bh(xh, π(xh)), nh = N(xh, π(xh)) we have the following

important decomposition

δ̃h = Vh(xh)− V π
h (xh) = [ThVh+1](xh)− [T π

h V π
h+1](xh) = [P̂πVh+1](xh) + bh − [PπV π

h+1](xh)

= bh + [(P̂π − Pπ)Vh+1](xh)︸ ︷︷ ︸
Two dependent random variable, could be bound as ∥P̂π−Pπ∥1∥Vh+1∥∞, bad bound

+ [Pπ(Vh+1 − V π
h+1)](xh)

= bh + [(P̂π − Pπ)V ∗
h+1](xh)︸ ︷︷ ︸

eh

+ [(P̂π − Pπ)(Vh+1 − V ∗
h+1)](xh)︸ ︷︷ ︸

(a)

+ [Pπ(Vh+1 − V π
h+1)](xh)− [Vh+1 − V π

h+1](xh+1)︸ ︷︷ ︸
Martingale difference ϵh

+ [Vh+1 − V π
h+1](xh+1)︸ ︷︷ ︸

δ̃h+1
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Key error decomposition: bounding (a)

(a) =
∑
y∈S

(
P̂π(y|xh)− Pπ(y|xh)

) (
Vh+1(y)− V ∗

h+1(y)
)

(I)

≤
∑
y∈S

2√ph(y)(1− ph(y))L

nh
+

4L

3nh

 ∆̃h+1(y)

≤ 2
√
L
∑
y∈S

√
ph(y)

nh
∆̃h+1(y)︸ ︷︷ ︸

(b)

+
4SL

3nh
,
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Key error decomposition: bounding (b)

▶ Typical set:
[y]k,x,a := {y|y ∈ S, Nk(x, a)P (y|x, a) ≥ O(1) · LH2}

▶

(b) =
∑

y∈[y]h

√
ph(y)

nh
∆̃h+1(y)︸ ︷︷ ︸

(c)

+
∑

y/∈[y]h

√
ph(y)

nh
∆̃h+1(y)︸ ︷︷ ︸

(d)

▶ Now we define another Martingale difference sequence under the typical set,

∆̃typ,k,h+1(y) ≡

√
Ik,h(y)

nk,hpk,h(y)
∆̃k,h+1(y),∀y ∈ S,

ε̄k,h ≡ [Pπk

h ∆̃typ,k,h+1](xk,h)− ∆̃typ,k,h+1(xk,h+1),
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Key error decomposition: bounding (c) and (d)

Then the term (c) can be bounded as,

(c) =
∑

y∈[y]h

Pπ(y|xh)

√
1

nhph(y)
∆̃h+1(y) = ε̄h +

√
I(xh+1 ∈ [y]h)

nhph(xh+1)
δ̃h+1

≤ ε̄h +O(1) ·
√

1

LH2
δ̃h+1, (2)

(d) =
∑

y/∈[y]h

√
ph(y)nh

n2
h

∆̃h+1(y) ≤ O(1) · S
√
LH2

nh
(3)

Then, we deduce,

(b) ≤ O(1) · S
√
LH2

nh
+O(1) ·

√
1

LH2
δ̃h+1 + ε̄h, (4)Theorem 21 / 23



Key error decomposition: Implications

Then we have,

(a) ≤ SHL

nh
+

SL

nh︸ ︷︷ ︸
≡c4,h

+
1

H
δ̃h+1 + 2

√
Lε̄h

Combine with the above,

δ̃h ≤ εh + 2
√
Lε̄h + bh + c1,h + c4,h + (1 +

1

H
)δ̃h+1

≤ e

H−1∑
i=h

(
εi + 2

√
Lε̄i + c1,i + c4,i + bi

)
,
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Implications on regret

Corollary 3.
Let k ∈ [K] and h ∈ [H]. With high probability,

Regret(k) =

k∑
i=1

δi,1 ≤
k∑

i=1

δ̃i,1 ≤ e

k∑
i=1

H−1∑
j=1

[
εi,j + 2

√
Lε̄i,j + bi,j + c1,i,j + c4,i,j

]
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