Minimax regret upper bounds of UCBVI for RL

Group Study and Seminar Series (Summer 20)

Yingru Li

The Chinese University of Hong Kong, Shenzhen, China

July 30, 2020
Azar, M. G., Osband, I., \& Munos, R. (2017). Minimax regret bounds for reinforcement learning. ICML (pp. 263-272).

Outline

Background

Algorithm

Theorem

Background

Finite-horizon episodic RL problems

- Initial state x_{1} (could be a r.v.)
- Transition probabilities at time step $h: p(y \mid x, a)$
- Reward at time step $h: r(x, a)$
- Unknown transition probabilities and reward function
- Objective: quickly learn a policy π^{\star} maximizing over $\pi:=\left\{\pi_{1}, \pi_{2}, \cdots, \pi_{H}\right\}$

$$
V_{1}^{\pi}(s):=\mathbb{E}\left[\sum_{h=1}^{H} r\left(s_{h}, \pi_{h}\left(s_{h}\right)\right) \mid s_{1}=s\right]
$$

episode

- Data: K episodes of length H (actions, states, rewards)
- Learner: 'the data on previous $K-1$ episodes' $\mapsto \pi_{K}$
- Performance of the learner: how close π_{K} is from the optimal policy π^{\star} or regret up to the K-th episode (time $T=K H$):

$$
\operatorname{Regret}(K)=\sum_{k=1}^{K}\left(V_{1}^{\star}\left(x_{k, 1}\right)-V_{1}^{\pi_{k}}\left(x_{k, 1}\right)\right)
$$

Algorithm Principle: Optimism face of uncertainty

- Estimate the unknown system parameters (here $p(\cdot \mid \cdot, \cdot)$ and $r(\cdot, \cdot)$) and build an optimistic reward estimate to trigger exploration.
- Estimate: find confidence balls containing the true model w.h.p.
- Optimistic reward estimate: find the model within the confidence balls leading to the highest value.

Best model within

Outline

Background

Algorithm

Theorem

Algorithm

UCBVI: Upper Confidence Bound Value Iteration

- UCBVI is an extension of Value Iteration, guaranteeing that the resulting value function is a (high-probability) upper confidence bound (UCB) on the optimal value function V^{*}.
- At the beginning of episode k, it computes state-action values using empirical transition kernel and reward function.
- In step h of backward induction (to update $Q_{k, h}(s, a)$ for any (s, a)), it adds a bonus $b_{k, h}(s, a)$ to the value, and ensures that $Q_{k, h} \leq Q_{k-1, h}$.
- Two variants of UCBVI, depending on the choice of bonus $b_{k, h}$
- UCBVI-CH using Chernoff-Hoeffding bound
- UCBVI-BF using Bernstein-Freedman bound
- As more data gathered, the upper confidence bound on the optimal value of initial state get close to the true optimal value.

UCBVI algorithm

Variables to be maintained by the algorithm: for known deterministic reward function

- $\hat{p}=\left(\hat{p}\left(s^{\prime} \mid s, a\right), s, s^{\prime} \in \mathcal{S}, a \in \mathcal{A}_{s}\right)$: estimated transition probabilities
- $Q=\left(Q_{h}(s, a), h \leq H, s \in \mathcal{S}, a \in \mathcal{A}_{s}\right)$: estimated Q-function
- $b=\left(b_{h}(s, a), h \leq H, s \in \mathcal{S}, a \in \mathcal{A}_{s}\right): Q$-value bonus
- $N=\left(N(s, a), s \in \mathcal{S}, a \in \mathcal{A}_{s}\right):$ number of visits to (s, a) so far
- $N^{\prime}=\left(N_{h}(s, a), h \leq H, s \in \mathcal{S}, a \in \mathcal{A}_{s}\right):$ number of visits in the h-step of episodes to (s, a) so far

UCBVI

Algorithm. UCB-VI

Input: Initial state distribution ν_{0}, precision δ
Initialise the variables \hat{p}, N, and N^{\prime}
For episode $k=1,2, \ldots$

1. Optimistic reward:
a. Compute the bonus: $b \leftarrow \operatorname{bonus}\left(N, N^{\prime}, \hat{p}, Q, \delta\right)$
b. Estimate the Q-function: $Q \leftarrow$ bellmanOpt (Q, b, \hat{p})
2. Initialise the state $s(0) \sim \nu_{0}$
3. for $h=1, \ldots, H$, select action

$$
a \in \arg \max _{a^{\prime} \in \mathcal{A}_{s(h-1)}} Q_{h}\left(s(h-1), a^{\prime}\right)
$$

4. Observe the transition and update \hat{p}, N, and N^{\prime}

UCBVI algorithm: bonus

- UCBVI-CH:

$$
b_{h}(s, a)=\frac{7 H}{\sqrt{N(s, a)}} \log (5 S A T / \delta)
$$

- UCBVI-BF:

$$
\begin{aligned}
b_{h}(s, a) & =\sqrt{\frac{8 L}{N(s, a)} \operatorname{Var} \widehat{p}(\cdot \mid s, a)\left(V_{h+1}(Y)\right)+\frac{14 H L}{3 N(s, a)}} \\
& +\sqrt{\frac{8}{N(s, a)} \sum_{y} \widehat{p}(y \mid s, a) \min \left\{\frac{10^{4} H^{3} S^{2} A L^{2}}{N_{h+1}^{\prime}(y)}, H^{2}\right\}}
\end{aligned}
$$

where $L=\log (5 S A T / \delta)$.

UCBVI algorithm: Optimistic Bellman operator

bellmanOpt (Q, b, \hat{p}) applies Dynamic Programming with a bonus.

- Initialization: $V_{H+1}(s)=0$ for all (s, a)
- For step $h=H, \ldots, 1$:
- for all (s, a) never visited: $Q_{h}(s, a)=H$
- for all (s, a) visited at least once so far:

$$
Q_{h}(s, a) \leftarrow \min \left(Q_{h}(s, a), H, r(s, a)+\sum_{y} \hat{p}(y \mid s, a) V_{h+1}(y)+b_{h}(s, a)\right)
$$

$-V_{h}(s)=\max _{a \in \mathcal{A}} Q_{h}(s, a)$

- Q-values $Q_{1}, Q_{2}, \cdots, Q_{H}$

Outline

Background

Algorithm

Theorem

UCBVI: Regret guarantees

Regret up to time $T=K H: \operatorname{Regret}(K)=\sum_{k=1}^{K}\left(V_{1}^{\star}\left(x_{k, 1}\right)-V_{1}^{\pi_{k}}\left(x_{k, 1}\right)\right)$
Theorem 1.
For any $\delta>0$, the regret of $\operatorname{UCBVI-CH}(\delta)$ is bounded w.p. at least $1-\delta$ by:

$$
\operatorname{Regret}^{U C B V I-C H}(K) \leq 20 H L \sqrt{S A T}+250 H^{2} S^{2} A L^{2}
$$

with $L=\log (5 H S A T / \delta)$.

- For $T \geq H S^{3} A$ and $S A \geq H$, the regret upper bound scales as $\tilde{\mathcal{O}}(H \sqrt{S A T})$

UCBVI: Regret guarantees

Regret up to time $T=K H: \operatorname{Regret}(K)=\sum_{k=1}^{K}\left(V_{1}^{\star}\left(x_{k, 1}\right)-V_{1}^{\pi_{k}}\left(x_{k, 1}\right)\right)$

Theorem 2.

Consider a parameter $\delta>0$. Then the regret of $\operatorname{UCBVI-BF}(\delta)$ is bounded w.p. $1-\delta$, by

$$
\text { Regret }^{U C B V I-B F}(K) \leq 30 H L \sqrt{S A K}+2500 H^{2} S^{2} A L^{2}+4 H^{3 / 2} \sqrt{K L}
$$

where $L=\ln (5 H S A T / \delta)$

- For $T \geq H^{3} S^{3} A$ and $S A \geq H$, the regret upper bound scales as $\tilde{\mathcal{O}}(\sqrt{H S A T})$
- Achieve regret minimax lower bound

Sketch of proof

Some notations:

- π_{k} is the policy applied by UCBVI in the k-th episode
- $V_{k, h}$ is the optimistic value function computed by UCBVI in the h-step of the k-th episode
- V_{h}^{π} is the value function from step h under π
- $P^{\pi}=\left(p\left(s^{\prime} \mid s, \pi(s)\right)\right)_{s, s^{\prime}}$
- $\hat{P}_{k}^{\pi}=\left(\hat{p}_{k}\left(s^{\prime} \mid s, \pi(s)\right)\right)_{s, s^{\prime}}$ where \hat{p}_{k} is the estimated transitions in episode k

Claim 1: by construction with high probability, $V_{k, h} \geq V_{h}^{\star}$. Then:

$$
\operatorname{Regret}(K) \leq \widetilde{\operatorname{Regret}}(K)=\sum_{k=1}^{K}\left(V_{k, 1}\left(x_{k, 1}\right)-V^{\pi_{k}}\left(x_{k, 1}\right)\right)
$$

Sketch of proof: Key error decomposition

- Let $\tilde{\Delta}_{k, h}=V_{k, h}-V_{h}^{\pi_{k}}$, so that $\widetilde{\operatorname{Regret}}(K)=\sum_{k=1}^{K} \tilde{\Delta}_{k, 1}\left(x_{k, 1}\right)$
- Backward induction on h to bound $\tilde{\Delta}_{k, 1}$: introduce $\tilde{\delta}_{k, h}=\tilde{\Delta}_{k, h}\left(x_{k, h}\right)$ then

$$
\begin{equation*}
\tilde{\delta}_{k, h} \leq\left(\hat{P}_{k}^{\pi_{k}}-P^{\pi_{k}}\right) \tilde{\Delta}_{k, h+1}\left(x_{k, h}\right)+\tilde{\delta}_{k, h+1}+\epsilon_{k, h}+b_{k, h}+e_{k, h} \tag{1}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\epsilon_{k, h}=P^{\pi_{k}} \tilde{\Delta}_{k, h+1}\left(x_{k, h}\right)-\tilde{\Delta}_{k, h+1}\left(x_{k, h+1}\right) \\
e_{k, h}=\left(\hat{P}_{k}^{\pi_{k}}-P^{\pi_{k}}\right) V_{h+1}^{\star}\left(x_{k, h}\right)
\end{array}\right.
$$

- Concentration + Martingale difference (Azuma-Hoeffding or Bernstein-Freedman) + bounding bonus

Key error decomposition: How and why?

- By algorithm,

$$
V_{k, h}(x)=\max _{a} Q_{k, h}(x, a) \equiv \min \left\{Q_{k-1, h}(x, a), H, r_{h}(x, a)+\left[\hat{P}_{k} V_{k, h+1}\right](x, a)+b_{k, h}(x, a)\right\},
$$

- and we define empirical optimistic bellman operator

$$
\left[\mathcal{T}_{k, h} V_{k, h+1}\right](x)=\max _{a}\left\{r_{h}(x, a)+\left[\hat{P}_{k} V_{k, h+1}\right](x, a)+b_{k, h}(x, a)\right\}, \quad \forall x
$$

- Then, we can also write $V_{k, h}(x)=\min \left\{V_{k-1, h}(x), H,\left[\mathcal{T}_{k, h} V_{k, h+1}\right](x)\right\}$.

Key error decomposition: How and why?

- For simplicity, ignore the subscript k.
- With $\pi\left(x_{h}\right)=a_{h}, b_{h}=b_{h}\left(x_{h}, \pi\left(x_{h}\right)\right), n_{h}=N\left(x_{h}, \pi\left(x_{h}\right)\right)$ we have the following important decomposition

$$
\begin{aligned}
& \tilde{\delta}_{h}=V_{h}\left(x_{h}\right)-V_{h}^{\pi}\left(x_{h}\right)=\left[\mathcal{T}_{h} V_{h+1}\right]\left(x_{h}\right)-\left[\mathcal{T}_{h}^{\pi} V_{h+1}^{\pi}\right]\left(x_{h}\right)=\left[\hat{P}^{\pi} V_{h+1}\right]\left(x_{h}\right)+b_{h}-\left[P^{\pi} V_{h+1}^{\pi}\right]\left(x_{h}\right) \\
&=b_{h}+ \\
& \underbrace{\left[\left(\hat{P}^{\pi}-P^{\pi}\right) V_{h+1}\right]\left(x_{h}\right)}
\end{aligned}
$$

Two dependent random variable, could be bound as $\left\|\hat{P}^{\pi}-P^{\pi}\right\|_{1}\left\|V_{h+1}\right\|_{\infty}$, bad bound

$$
\begin{aligned}
& +\left[P^{\pi}\left(V_{h+1}-V_{h+1}^{\pi}\right)\right]\left(x_{h}\right) \\
=b_{h} & +\underbrace{\left[\left(\hat{P}^{\pi}-P^{\pi}\right) V_{h+1}^{*}\right]\left(x_{h}\right)}_{e_{h}}+\underbrace{\left[\left(\hat{P}^{\pi}-P^{\pi}\right)\left(V_{h+1}-V_{h+1}^{*}\right)\right]\left(x_{h}\right)}_{(a)} \\
+ & \underbrace{\left[P^{\pi}\left(V_{h+1}-V_{h+1}^{\pi}\right)\right]\left(x_{h}\right)-\left[V_{h+1}-V_{h+1}^{\pi}\right]\left(x_{h+1}\right)}_{\text {Martingale difference } \epsilon_{h}}+\underbrace{\left[V_{h+1}-V_{h+1}^{\pi}\right]\left(x_{h+1}\right)}_{\tilde{\delta}_{h+1}}
\end{aligned}
$$

Key error decomposition: bounding (a)

$$
\begin{aligned}
(a) & =\sum_{y \in \mathcal{S}}\left(\hat{P}^{\pi}\left(y \mid x_{h}\right)-P^{\pi}\left(y \mid x_{h}\right)\right)\left(V_{h+1}(y)-V_{h+1}^{*}(y)\right) \\
& \leq \sum_{y \in \mathcal{S}}\left[2 \sqrt{\frac{p_{h}(y)\left(1-p_{h}(y)\right) L}{n_{h}}}+\frac{4 L}{3 n_{h}}\right] \tilde{\Delta}_{h+1}(y) \\
& \leq 2 \sqrt{L} \underbrace{\sum_{y \in \mathcal{S}} \sqrt{\frac{p_{h}(y)}{n_{h}}} \tilde{\Delta}_{h+1}(y)}_{(b)}+\frac{4 S L}{3 n_{h}}
\end{aligned}
$$

Key error decomposition: bounding (b)

- Typical set:

$$
\begin{aligned}
& {[y]_{k, x, a}:=\left\{y \mid y \in \mathcal{S}, N_{k}(x, a) P(y \mid x, a) \geq \mathcal{O}(1) \cdot L H^{2}\right\}} \\
& (b)=\underbrace{\sum_{y \in[y]_{h}} \sqrt{\frac{p_{h}(y)}{n_{h}}} \tilde{\Delta}_{h+1}(y)}_{(c)}+\underbrace{\sum_{y \notin[y]_{h}} \sqrt{\frac{p_{h}(y)}{n_{h}}} \tilde{\Delta}_{h+1}(y)}_{(d)}
\end{aligned}
$$

- Now we define another Martingale difference sequence under the typical set,

$$
\begin{gathered}
\tilde{\Delta}_{\mathrm{typ}, k, h+1}(y) \equiv \sqrt{\frac{\mathbb{I}_{k, h}(y)}{n_{k, h} p_{k, h}(y)}} \tilde{\Delta}_{k, h+1}(y), \forall y \in \mathcal{S}, \\
\bar{\varepsilon}_{k, h} \equiv\left[P_{h}^{\pi_{k}} \tilde{\Delta}_{\mathrm{typ}, k, h+1}\right]\left(x_{k, h}\right)-\tilde{\Delta}_{\mathrm{typ}, k, h+1}\left(x_{k, h+1}\right),
\end{gathered}
$$

Key error decomposition: bounding (c) and (d)

Then the term (c) can be bounded as,

$$
\begin{align*}
(c) & =\sum_{y \in[y]_{h}} P^{\pi}\left(y \mid x_{h}\right) \sqrt{\frac{1}{n_{h} p_{h}(y)}} \tilde{\Delta}_{h+1}(y)=\bar{\varepsilon}_{h}+\sqrt{\frac{\mathbb{I}\left(x_{h+1} \in[y]_{h}\right)}{n_{h} p_{h}\left(x_{h+1}\right)}} \tilde{\delta}_{h+1} \\
& \leq \bar{\varepsilon}_{h}+\mathcal{O}(1) \cdot \sqrt{\frac{1}{L H^{2}}} \tilde{\delta}_{h+1}, \tag{2}
\end{align*}
$$

$$
\begin{equation*}
(d)=\sum_{y \notin[y]_{h}} \sqrt{\frac{p_{h}(y) n_{h}}{n_{h}^{2}}} \tilde{\Delta}_{h+1}(y) \leq \mathcal{O}(1) \cdot \frac{S \sqrt{L H^{2}}}{n_{h}} \tag{3}
\end{equation*}
$$

Then, we deduce,

$$
(b) \leq \mathcal{O}(1) \cdot \frac{S \sqrt{L H^{2}}}{n_{h}}+\mathcal{O}(1) \cdot \sqrt{\frac{1}{L H^{2}}} \tilde{\delta}_{h+1}+\bar{\varepsilon}_{h}
$$

Key error decomposition: Implications

Then we have,

$$
(a) \leq \underbrace{\frac{S H L}{n_{h}}+\frac{S L}{n_{h}}}_{\equiv c_{4}, h}+\frac{1}{H} \tilde{\delta}_{h+1}+2 \sqrt{L} \bar{\varepsilon}_{h}
$$

Combine with the above,

$$
\begin{aligned}
\tilde{\delta}_{h} & \leq \varepsilon_{h}+2 \sqrt{L} \bar{\varepsilon}_{h}+b_{h}+c_{1, h}+c_{4, h}+\left(1+\frac{1}{H}\right) \tilde{\delta}_{h+1} \\
& \leq e \sum_{i=h}^{H-1}\left(\varepsilon_{i}+2 \sqrt{L} \bar{\varepsilon}_{i}+c_{1, i}+c_{4, i}+b_{i}\right)
\end{aligned}
$$

Implications on regret

Corollary 3.
Let $k \in[K]$ and $h \in[H]$. With high probability,

$$
\operatorname{Regret}(k)=\sum_{i=1}^{k} \delta_{i, 1} \leq \sum_{i=1}^{k} \tilde{\delta}_{i, 1} \leq e \sum_{i=1}^{k} \sum_{j=1}^{H-1}\left[\varepsilon_{i, j}+2 \sqrt{L} \bar{\varepsilon}_{i, j}+b_{i, j}+c_{1, i, j}+c_{4, i, j}\right]
$$

