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Suprema of Subgaussian Processes

Definition 1.

Stochastic process (Uθ)θ∈Θ, indexed by θ ∈ Θ, is a collection of random variables on a common

probability space.

I The index θ can be ’time’.

I We are interested in the case that Θ has some metric structure.

I We will be interested in the behavior of

E sup
θ∈Θ

Uθ
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Subgaussian process

To understand this object, we need

Definition 2.

Stochastic process (Uθ)θ∈Θ is sub-Gaussian with respect to a metric d on θ if Uθ is zero-mean

and

∀θ, θ′ ∈ Θ, λ ∈ R, E exp {λ(Uθ − Uθ′)} ≤ exp {λ2d(θ, θ′)2/2}

I Uθ − Uθ′ is subgaussian with σ = d(θ, θ′)

I The main examples have a linearly parametrized form
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Gaussian process and Rademacher process

I Gaussian process

Let Gθ = 〈g, θ〉, g = (g1, · · · , gn)T , gi ∼ N(0, 1) i.i.d. Take d(θ, θ′) = ‖θ − θ′‖. Then

Gθ −Gθ′ = 〈g, θ − θ′〉 ∼ N(0, ‖θ − θ′‖2)

is trivially subgaussian with respect to the Euclidean distance on Θ.

I Rademacher process

Let Rθ = 〈ε, θ〉, ε = (ε1, · · · , εn)T , ε i.i.d. Rademacher. Again, take d(θ, θ′) = ‖θ − θ′‖.
Then

Rθ −Rθ′ = 〈ε, θ − θ′〉

is subgaussian.
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Relationship between Gaussian and Rademacher Process

Definition 3.

We will call R̂(Θ) = E supθ∈ΘRθ = E supθ∈Θ〈ε, θ〉 the (empirical) Rademacher averages of Θ.

The corresponding expected supremum of the Gaussian process will be called the Gaussian

averages or the Gaussian width of Θ and denoted by Ĝ(Θ).

I Rademacher complexity of Θ is 1
nR̂(Θ) (Qingyan’s present on July 16th)

I Property 1

∀Θ ⊂ Rn, we have

R̂(Θ) . Ĝ(Θ) .
√

log nR̂(Θ)
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Relationship between Gaussian and Rademacher Process

Proof of Property 1(a): R̂(Θ)
a

. Ĝ(Θ)
b

.
√

log nR̂(Θ)

Ĝ(Θ) = E sup
θ∈Θ

n∑
i=1

giθi

= EεEg sup
θ∈Θ

n∑
i=1

εi|gi|θi

≥ Eε sup
θ∈Θ

n∑
i=1

εiE|gi|θi

=

√
2

π
Eε sup

θ∈Θ

n∑
i=1

εiθi

=

√
2

π
R̂(Θ)
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Relationship between Gaussian and Rademacher Process

Proof of Property 1(b): R̂(Θ)
a

. Ĝ(Θ)
b

.
√

log nR̂(Θ)

Ĝ(Θ) = E sup
θ∈Θ

n∑
i=1

giθi

= EεEg sup
θ∈Θ

n∑
i=1

εi|gi|θi

= EgR̂(|g| ·Θ)

≤ Eg max
i
|gi|R̂(Θ) (Lipschitz Property, week 5)

≤
√

2 log 2nR̂(Θ) (Page 56, week 2)
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A few examples

I Example 1: Θ = Bn2
Consider the Rademacher and Gaussian complexity of Euclidean ball Bd2 = {θ|‖θ‖2 ≤ 1}, by

Cauchy-Schwartz inequality, it is easy to have

R̂(Bn2 ) = E sup
‖θ‖2≤1

〈ε, θ〉 = E‖ε‖2 =
√
n

and

Ĝ(Bn2 ) = E sup
‖θ‖2≤1

〈g, θ〉 = E‖g‖2 ≤
√

E‖g‖22 =
√
n

I Actually E‖g‖2 �
√
n

I This is an example for the left inequality R̂(Θ) . Ĝ(Θ)
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A few examples

I Example 2: Θ = Bn1
Consider the Rademacher and Gaussian complexity of Bd1 = {θ|‖θ‖1 ≤ 1}, again by holder’s

inequality, we have

R̂(Bn1 ) = E sup
‖θ‖1≤1

〈ε, θ〉 = E‖ε‖∞ = 1

and

Ĝ(Bn1 ) = E sup
‖θ‖1≤1

〈g, θ〉 = E‖g‖∞ ≤
√

2 log(2n)

I The last inequality is from Page 56 (week 2)

I This is an example for the left inequality Ĝ(Θ) .
√

log nR̂(Θ)
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finite-class lemma

Recap: How to bound the Gaussian or Rademacher complexity?

I finite-class: Massart lemma.

I infinite-class: build the ε-net and use the covering number.

Lemma 4 (Massart).

Let d be a metric on Θ and assume (Uθ) is a subgaussian process. Then for any finite subset

A ⊆ Θ×Θ,

E max
(θ,θ′)∈A

Uθ − Uθ′ ≤ max
(θ,θ′)∈A

d(θ − θ′)
√

2 log card(A)

Definition 5 (covering number).

Let (Θ, d) be a metric space. A set θ1, · · · , θN ∈ Θ is a cover of Θ at scale ε for any θ there

exists j ∈ [N ] such that d(θ, θj) ≤ ε. The covering number of Θ at scale ε is the size of the

smallest cover, denoted by N (Θ, d, ε).
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finite-class lemma

A simple consequence of Lemma 5 is

Lemma 6 (Single scaled upper bound).

If (Uθ)θ∈Θ is subgaussian with respect to d on Θ, then for any δ > 0,

E sup
θ∈Θ

Uθ ≤ 2E sup
d(θ,θ′)≤δ

(Uθ − Uθ′) + 2diam(Θ)
√

logN (Θ, d, δ)

Proof:

E sup
θ∈Θ

Uθ = E sup
θ∈Θ

Uθ − Uθ′ ≤ E sup
θ,θ′∈Θ

Uθ − Uθ′

Let Θ̂ be a δ-cover of Θ. Then

Uθ − Uθ′ = Uθ − Uθ̂ + Uθ̂ − Uθ̂′ + Uθ̂′ − Uθ′ ≤ 2 sup
d(θ,θ′)≤δ

(Uθ − Uθ′) + sup
θ̂,θ̂′∈Θ̂

(Uθ̂ − Uθ̂′)
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Example

Lemma 7 is not the best. Let us go back to example 1 that Θ ⊂ Bn2 . Then

I the first term

2E sup
d(θ,θ′)≤δ

(Uθ − Uθ′) = 2E sup
‖θ,θ′‖≤δ

〈g, θ − θ′〉 ≤ 2δ
√
n

I the second term

2diam(Θ)
√

logN (Θ, d, δ) ≤ 2

√
d log(1 +

2

δ
)

I Suppose Θ lies in a d dimensional subspace with d < n

I Remark: the covering number of Bd2 (We will prove it later by packing number)

N (Θ, ‖ · ‖2, δ) ≤
(

1 +
2

δ

)d
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Example

Continue:

I Take δ =
√
d/n

E sup
θ∈Θ

Uθ ≤ 2δ
√
n+ 2

√
d log(1 +

2

δ
) ≤ O(

√
d log(n/d))

I We have already show that

E sup
θ∈Θ

Uθ ≤ O(
√
d)

I Single scale upper bound is not the best

I the second term can be improved by chaining
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Chaining

Definition 7 (δ-truncated Dudley’s entropy integral).

Define D be the diameter of Θ. The δ-truncated Dudley’s entropy integral is defined as

J (δ,D) =

∫ D/2

δ

√
logN (Θ, d, ε)dε

Theorem 8 (Dudley’s entropy upper bound).

If (Uθ)θ∈Θ is subgaussian with respect to d on Θ. Let D = diam(Θ), then for any δ ∈ [0, D],

E sup
θ∈Θ

Uθ ≤ 2E sup
d(θ,θ′)≤δ

(Uθ − Uθ′) + 8
√

2J (δ/4, D)

Dudley’s upper bound 16 / 31



Chaining

Proof: Do Lemma 6 in multiple steps. (Week 5, Theorem 11)

The best upper bound is

E sup
θ∈Θ

Uθ ≤ inf
δ∈[0,D]

[
2E sup

d(θ,θ′)≤δ
(Uθ − Uθ′) + 8

√
2J (δ/4, D)

]

I It is computational intractable.

I Simply take δ = 0 we have

E sup
θ∈Θ

Uθ ≤ 8
√

2J (0, D)

I In example 1:

E sup
θ∈Θ

Uθ ≤ 8
√

2

∫ D/2

0

√
logN (Θ, ‖ · ‖, ε)dε = 8

√
2

∫ D/2

0

√
d log(1 +

2

ε
)dε ≤ O(

√
d)

Dudley’s upper bound 17 / 31



Outline

Suprema of Subgaussian Processes

Gaussian and Rademacher process

A few examples

Dudley’s upper bound

One step upper bound

chaining (multiple step upper bound)

Sudakov’s lower bound

Covering and Packing

Sudakov minoration

Application in Machine Learning Theory

Sudakov’s lower bound 18 / 31



Covering and Packing

Definition 9 (Packing number).

A δ-packing of a set θ with respect to a metric d is a set {θ1, · · · , θM} such that d(θi, θj) > δ

for all distinct i, j ∈ {1, 2, ...,M}.The δ-packing number M(Θ, d, δ) is the cardinality of the

largest δ-packing.

Figure: (a): covering and (b): packingSudakov’s lower bound 19 / 31



Covering and Packing

Lemma 10.

Let (Θ, d) be a metric space, then

M(Θ, d, 2δ)
a
≤ N (Θ, d, δ)

b
≤M(Θ, d, δ)

Proof of (a):

I Suppose there exists a 2δ-packing {y1, · · · , yM} and a δ-covering {x1, · · · , xN} with

M ≥ N + 1.

I By pigeonhole principle, ∃i, j and k, s.t. yi, yj ∈ B(xk, δ)

I then d(yi, yj) ≤ 2δ

I contradiction
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Covering and Packing

Continue,

N (Θ, d, δ)
b
≤M(Θ, d, δ)

Proof of (b):

I Suppose E = {θ1, · · · , θM} is a maximal δ-packing.

I Then ∀θ ∈ Θ\E, ∃j s.t. d(θ, θj) ≤ δ
I (Otherwise, we can add θ to E to form a better packing)

I E is a δ-covering of Θ.
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Sudakov’s lower bound

Theorem 11 (Sudakov Minoration).

Let (Gθ)θ∈Θ be a zero mean Gaussian process defined on Θ. Then

E sup
θ∈Θ

Gθ ≥ sup
δ>0

δ

2

√
logM(Θ, ‖ · ‖, δ)

I M(Θ, ‖ · ‖, δ) can be replaced by N (Θ, ‖ · ‖, δ) by lemma 10

I in example 1

E sup
θ∈Θ

Gθ ≥ sup
δ>0

δ

2

√
d log(1/δ) %

√
d
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metric entropy of unit balls

I Let B be the unit norm ball and d be the metric induced by the norm

I It lefts to show

(
1

δ
)d

a
≤ N (B, d, δ) ≤M(B, d, δ)

b
≤ (1 +

2

δ
)d

I Proof of (a): Let {θ1, · · · , θN} be a δ-covering of B, then B ⊂ ∪Nj=1[θj + δB]

I Then vol(B) ≤ Nδdvol(B)

I Proof of (b): Let {θ1, · · · , θM} be a δ-packing of B, then

Mvol(Bδ/2) ≤ vol(B +Bδ/2)

I it is M(δ/2)dvol(B) ≤ (δ/2)d(1 + 2/δ)dvol(B)
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Sudakov’s lower bound

Before we give the proof of Theorem 11, we state two fact (without proof).

I fact 1: Sudakov-Fernique inequality

Given a pair of zero-mean Gaussian vectors (X1, · · · , XN ) and (Y1, · · · , YN ) such that

E[(Xi −Xj)
2] ≤ E[(Yi − Yj)2] ∀i, j

Then E[maxXi] ≤ E[maxYi]

I fact 2: If Xi ∼ N (0, σ2) i.i.d. then

σ
√

(1/2) logN ≤ E[maxXi] ≤ σ
√

2 logN
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Sudakov’s lower bound

Proof of Theorem 11:

Let E = {θ1, · · · , θM} be a maximal δ-packing of Θ. Consider the sequence Yi = Gθi , we have

E[(Yi − Yj)2] = ‖θi − θj‖2 > δ2

Then we define Xi ∼ N (0, δ2/2) i.i.d for i = 1, · · · ,M , we have

E[(Xi −Xj)
2] = δ2

Then

E sup
θ∈Θ

Gθ ≥ E max
i=1,··· ,M

Yi ≥ E max
i=1,··· ,M

Xi ≥
δ

2

√
logM
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illustration of upper bound and lower bound

I Combine the upper bound and lower bound, for Gaussian process, we have

C1 sup
δ>0

δ
√

logN (Θ, ‖ · ‖, δ) ≤ E sup
θ∈Θ

Gθ ≤ C2

∫ D/2

0

√
logN (Θ, ‖ · ‖, ε)dε

Figure: Illustration of upper bound and lower bound
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Illustration of upper bound and lower bound

I Notice that the upper bound is for any subgaussian process

I While lower bound is only for gaussian process

I Recap: √
2

π
R̂(Θ) ≤ Ĝ(Θ) ≤

√
2 log 2nR̂(Θ)

I the lower bound for Rademacher average is

C3√
log 2n

sup
δ>0

δ
√

logM(Θ, ‖ · ‖, δ) ≤ E sup
θ∈Θ

Rθ
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Function class and metric

I In Machine Learning Theory, we are interested in the complexity of Function class

I Given a set of functions F = {f : X → R}, a probability measure P on X
I we define

‖f‖2L2(P ) = Ef(X)2

I Similarly, given a set of sample X1, · · · , Xn, we define a pseudometric

‖f‖2L2(Pn) =
1

n

n∑
i=1

f(Xi)
2

I the ε-covering number and packing number is

N (F , L2(P ), ε) and M(F , L2(P ), ε)

I Remark: pseudometric: d(x, y) = 0 ; x = y
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Upper bound and lower bound of Rademacher complexity

I As before, Let Uθ = 〈ε, θ〉, Θ = 1√
n
F|x1,··· ,xn , Then by Dudley’s upper bound

E sup
f∈F

1√
n

n∑
i−1

εif(xi) = E sup
θ∈Θ

Uθ ≤ 2δ
√
n+ 8

√
2J (δ/4, D)

I Move the
√
n to the left hand side, replace δ/4 by δ the empirical Rademacher complexity is

E sup
f∈F

1

n

n∑
i−1

εif(xi) ≤ inf
δ≥0

[
8δ +

12√
n

∫ D/2

δ

√
logN (F , L2(P ), ε)dε

]
I By Sudakov’s Lower bound

E sup
f∈F

1

n

n∑
i−1

εif(xi) ≥
c

log 2n
sup
δ≥0

√
logM(F , L2(P ), ε)

n
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Metric Entropy

Thank you!
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