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Suprema of Subgaussian Processes

Definition 1.
Stochastic process (Up)gco, indexed by 6 € ©, is a collection of random variables on a common
probability space.

» The index 6 can be 'time’.

» We are interested in the case that © has some metric structure.

» We will be interested in the behavior of

E sup Uy
0O
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Subgaussian process

To understand this object, we need

Definition 2.

Stochastic process (Up)gco is sub-Gaussian with respect to a metric d on 6 if Uy is zero-mean
and

V0,0’ c O, A€ R, Eexp{\NUs — Uyp)} < exp{A\2d(0,0)%/2}

» Uy — Uy is subgaussian with o = d(6,6")

» The main examples have a linearly parametrized form
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Gaussian process and Rademacher process

» Gaussian process
Let Go = {9,0), g = (g1, -+ ,gn)T, gi ~ N(0,1) i.i.d. Take d(0,0") = ||0 — ¢’|. Then

Go — Gor = (9,0 —0') ~ N(0,[10 — ¢'||*)

is trivially subgaussian with respect to the Euclidean distance on O.
» Rademacher process

Let Ry = (€,0), € = (€1, ,€,)T, € i.i.d. Rademacher. Again, take d(6,0") = ||0 — ¢'|.
Then

Ra — Ra/ = <€,9 — 0’)

is subgaussian.
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Relationship between Gaussian and Rademacher Process

Definition 3.

We will call R(©) = Esupycg Ro = Esupgee (e, ) the (empirical) Rademacher averages of ©.
The corresponding expected supremum of the Gaussian process will be called the Gaussian
averages or the Gaussian width of © and denoted by Q(@)

» Rademacher complexity of © is 2R(©) (Qingyan’s present on July 16th)

> Property 1
VO C R"™, we have
R(©) S G(0) 5 ViognR(©)
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Relationship between Gaussian and Rademacher Process

. a . b R
Proof of Property 1(a): R(0) < G(0) < viognR(0)

G(©) = Esup Z gi0;

0€0

n
=ELE, sup > eilgilbs
S

i=1

n
> Ecsup > eklgilo;

i=1

2 n
=4/ —E,sup €0;
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Relationship between Gaussian and Rademacher Process

a b
Proof of Property 1(b): R(0) < G(0) < vIognR(O)

]Ebungz i

0o

= E.E, sup €ilgi|0;
ssp > el

i=1
=E,R(lg| - ©)
< E, max |g;|R(©) (Lipschitz Property, week 5)

< \/2log2nR(©) (Page 56, week 2)
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A few examples

> Example 1: © = B3
Consider the Rademacher and Gaussian complexity of Euclidean ball BS = {6]||||> < 1}, by
Cauchy-Schwartz inequality, it is easy to have

RBY) =E sup (¢,0) = E|lels = vn
l16]l<1

and

G(B) =E Hesuulil<979> =Elgll2 < /Ellgl3 = v
2>

> Actually E||g|l2 < v/n
> This is an example for the left inequality R(©) < G(©)
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A few examples

> Example 2: © =B}
Consider the Rademacher and Gaussian complexity of B¢ = {6]||0||; < 1}, again by holder's
inequality, we have

R(BY) =E sup (e,0) =E|elloc =1
ol <1

and

G(BY) = EHOSHHEI<979> = El|g|s < v/2log(2n)

» The last inequality is from Page 56 (week 2)
> This is an example for the left inequality G(0) < v/IognR(©)
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finite-class lemma

Recap: How to bound the Gaussian or Rademacher complexity?
» finite-class: Massart lemma.

» infinite-class: build the e-net and use the covering number.

Lemma 4 (Massart).
Let d be a metric on © and assume (Up) is a subgaussian process. Then for any finite subset
ACO X0,

E max Up— Uy < max d(6—0")\/2logcard(A)
(6,6")€A (0,6)€A

Definition 5 (covering number).
Let (©,d) be a metric space. A set 61, - ,0N € O is a cover of © at scale ¢ for any 6 there
exists j € [IN] such that d(6,6;) < e. The covering number of © at scale € is the size of the
smallest cover, denoted by N (O, d, ¢).
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finite-class lemma
A simple consequence of Lemma 5 is
Lemma 6 (Single scaled upper bound).
If (Ug)oco is subgaussian with respect to d on ©, then for any § > 0,

EsupUy <2E sup (Up — Uy) + 2diam(©)+/log N'(©,d, )
00 d(0,0")<6

Proof:

EsupUy =EsupUy — Uy <E sup Uy — Uy
EG) 6O 0,6'cO®

Let © be a d-cover of ©. Then

Up— Uy =Up—Us+ Uy —Ups +Us — Uy <2 sup (Up —Up) + sup (Uy—Uy)

d(0,6')<é 6,6'c®
Dudley’s upper bound
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Example

Lemma 7 is not the best. Let us go back to example 1 that © C BS. Then
> the first term

2E sup (Up—Uy)=2E sup (g,0 —0")<26y/n
d(0,6’)<é 16,6 <6

» the second term
2
2diam(©)+/log N (0©,d, 0) < 24/dlog(1 + 5)

» Suppose O lies in a d dimensional subspace with d < n

» Remark: the covering number of B (We will prove it later by packing number)

N, 120) < (14+2)"
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Example

Continue:

» Take 0 = +/d/n
Esup Up < 25v/n + 24/ dlog(1 + %) < O(y/dlog(n/d))

0€©

» We have already show that

Esup Uy < O(Vd)
0coO

> Single scale upper bound is not the best

> the second term can be improved by chaining
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Chaining

Definition 7 (J-truncated Dudley’s entropy integral).
Define D be the diameter of ©. The d-truncated Dudley's entropy integral is defined as

D/2

J(0,D) = V1og N (©,d, €)de

Theorem 8 (Dudley’s entropy upper bound).
If (Up)oco is subgaussian with respect to d on ©. Let D = diam(©), then for any 6 € [0, D],

EsupUs <2E sup (Us — Up/) + 8V27(5/4, D)
Ie) d(6,0)<s

Dudley's upper bound 16 /31



Chaining

Proof: Do Lemma 6 in multiple steps. (Week 5, Theorem 11)
The best upper bound is

EsupUp < inf [21@ sup (Up — Uy) + 8\/27(5/4,D)}
Ie) §€0,D] d(0,0)<s

» It is computational intractable.
» Simply take 6 = 0 we have

Esup Uy < 8V27(0, D)
0co

» In example 1:

0€O

Dudley’s upper bound

D/2 D/2 5
Esup Uy < 8\[2/ V1og N (O, ] - ||, e)de = 8\[2/ \/dlog(1 + =)de < O(Vd)
0 0 €
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Covering and Packing

Definition 9 (Packing number).

A d-packing of a set 6 with respect to a metric d is a set {61, - ,0r} such that d(6;,60;) > d

for all distinct 4,j € {1,2,..., M}.The d-packing number M(©,d, d) is the cardinality of the

largest d-packing.

Sudakov's lower bound
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Figure: (a): covering and (b): packing
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Covering and Packing

Lemma 10.
Let (©,d) be a metric space, then

M(©,d,26) £ N'(©,d,5) < M(6,d, 6)

Proof of (a):
» Suppose there exists a 2d-packing {y1,- -+ ,ynm} and a d-covering {z1, - ,zn} with
M>N+1.
» By pigeonhole principle, 3¢, j and k, s.t. y;,y; € B(zx,9)
> then d(y;,y;) < 20
» contradiction
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Covering and Packing

Continue,
N(©,d,8) < M(©, d, 6)
Proof of (b):
» Suppose E = {01, -+ ,0x} is a maximal §-packing.
» Then V0 € O\E, 3j s.t. d(0,0;) <¢
> (Otherwise, we can add 6 to E to form a better packing)

> [ is a d-covering of O.
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Sudakov’s lower bound

Theorem 11 (Sudakov Minoration).

Let (Gy)pco be a zero mean Gaussian process defined on ©. Then

E sup Gy >sup \/log/\/l O, -1,9)
0€e

> M(O,] - ||,d) can be replaced by N'(©, || - ||,) by lemma 10

» in example 1

Esup Gy > sup \/dlog 1/6) =

0cO
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metric entropy of unit balls

» Let B be the unit norm ball and d be the metric induced by the norm

» [t lefts to show

(%)d £ N(B,d,6) < M(B,d,6) < (1+ g)d

» Proof of (a): Let {0y, -+ ,0n} be a d-covering of B, then B C Ué-\'zl[ﬁj + B]
» Then vol(B) < Né§%ol(B)

» Proof of (b): Let {01,---,0x} be a §-packing of B, then
Muvol(B§/2) < wvol(B + Bd/2)
> itis M(5/2)%ol(B) < (6/2)4(1 + 2/8)%wol(B) O
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Sudakov’s lower bound

Before we give the proof of Theorem 11, we state two fact (without proof).

» fact 1: Sudakov-Fernique inequality
Given a pair of zero-mean Gaussian vectors (X1,---,Xy) and (Y1,---,Yy) such that

E[(X; — X;)’] <E[(Y; = Y;)?] Vi, j

Then E[max X;] < E[maxY}]
> fact 2: If X; ~ N(0,0?) i.id. then

o4/ (1/2)log N < E[max X;] < o/2log N

Sudakov's lower bound 24 /31



Sudakov’s lower bound

Proof of Theorem 11:
Let E = {6, - ,0x} be a maximal d-packing of ©. Consider the sequence Y; = Gy,, we have

E[(Y: - Y;)*] = [16: - 6;]* > °
Then we define X; ~ N(0,6%/2) i.i.d fori=1,---, M, we have
E[(X; — X;)?] = ¢

Then

0
EsupGy > E max Y; > IE max X; > —+/log M
O =1, =1,---,M
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illustration of upper bound and lower bound

» Combine the upper bound and lower bound, for Gaussian process, we have

D/2
Cisupdy/log N(O, | - ||,0) < Esup Gy < Cq V1og N (O, ]| - ||, e)de
6>0 0cO 0

log N'(©,d,¢€)

2-Gt)p  27ip D

Figure: lllustration of upper bound and lower bound
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lllustration of upper bound and lower bound

» Notice that the upper bound is for any subgaussian process
» While lower bound is only for gaussian process

» Recap:

2R(0) < G(6) < \/2log R(O

™

» the lower bound for Rademacher average is

Cs
_— o/ 1 o, 0) <E R
Tog o b Vieg M(©, ] -, 6) sup fy
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Application in Machine Learning Theory
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Function class and metric

» In Machine Learning Theory, we are interested in the complexity of Function class
» Given a set of functions F = {f : X — R}, a probability measure P on X
> we define

11172y = Ef(X)?

» Similarly, given a set of sample Xy,---, X,,, we define a pseudometric

-L L

S\H

1£1Z2cp,)
» the e-covering number and packing number is
N(F,L*(P),e) and M(F,L*(P),¢)

» Remark: pseudometric: d(z,y) =0+ 2z =y
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Upper bound and lower bound of Rademacher complexity

> As before, Let Uy = (¢,0), © = %fﬁlzn Then by Dudley’s upper bound

E sup % Z eif(x;) = Esup Uy < 26v/n + 8V27(6/4, D)
~ 0cO

feF

> Move the /n to the left hand side, replace 6/4 by & the empirical Rademacher complexity is

D/2
E sup — Zelf (x;) < 1nf 86—1——/ Vg N(F, L2(P), a)ds}

feF iz

» By Sudakov's Lower bound

c log M(F,L?(P),¢)
NS

n n
fer i
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Metric Entropy

Thank you!
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