Metric Entropy

Group Study and Seminar Series (Summer 20)

Presented by: Jiancong Xiao

The Chinese University of Hong Kong, Shenzhen, China

August 6, 2020

Mainly based on:
Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (Vol. 48). Chapter 5. MIT IDS. 160 / 18.S998 / 9.521 Spring 20. Mathematical Statistics: A Non-Asymptotic Approach. Lecture 16-19.

Outline

Suprema of Subgaussian ProcessesGaussian and Rademacher process
A few examples
Dudley's upper boundOne step upper boundchaining (multiple step upper bound)
Sudakov's lower boundCovering and PackingSudakov minoration
Application in Machine Learning Theory

Suprema of Subgaussian Processes

Definition 1.
Stochastic process $\left(U_{\theta}\right)_{\theta \in \Theta}$, indexed by $\theta \in \Theta$, is a collection of random variables on a common probability space.

- The index θ can be 'time'.
- We are interested in the case that Θ has some metric structure.
- We will be interested in the behavior of

$$
\mathbb{E} \sup _{\theta \in \Theta} U_{\theta}
$$

Subgaussian process

To understand this object, we need
Definition 2.
Stochastic process $\left(U_{\theta}\right)_{\theta \in \Theta}$ is sub-Gaussian with respect to a metric d on θ if U_{θ} is zero-mean and

$$
\forall \theta, \theta^{\prime} \in \Theta, \lambda \in \mathbb{R}, \quad \mathbb{E} \exp \left\{\lambda\left(U_{\theta}-U_{\theta^{\prime}}\right)\right\} \leq \exp \left\{\lambda^{2} d\left(\theta, \theta^{\prime}\right)^{2} / 2\right\}
$$

- $U_{\theta}-U_{\theta^{\prime}}$ is subgaussian with $\sigma=d\left(\theta, \theta^{\prime}\right)$
- The main examples have a linearly parametrized form

Gaussian process and Rademacher process

- Gaussian process

Let $G_{\theta}=\langle g, \theta\rangle, g=\left(g_{1}, \cdots, g_{n}\right)^{T}, g_{i} \sim N(0,1)$ i.i.d. Take $d\left(\theta, \theta^{\prime}\right)=\left\|\theta-\theta^{\prime}\right\|$. Then

$$
G_{\theta}-G_{\theta^{\prime}}=\left\langle g, \theta-\theta^{\prime}\right\rangle \sim N\left(0,\left\|\theta-\theta^{\prime}\right\|^{2}\right)
$$

is trivially subgaussian with respect to the Euclidean distance on Θ.

- Rademacher process

Let $R_{\theta}=\langle\epsilon, \theta\rangle, \epsilon=\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)^{T}, \epsilon$ i.i.d. Rademacher. Again, take $d\left(\theta, \theta^{\prime}\right)=\left\|\theta-\theta^{\prime}\right\|$. Then

$$
R_{\theta}-R_{\theta^{\prime}}=\left\langle\epsilon, \theta-\theta^{\prime}\right\rangle
$$

is subgaussian.

Relationship between Gaussian and Rademacher Process

Definition 3.

We will call $\hat{\mathcal{R}}(\Theta)=\mathbb{E} \sup _{\theta \in \Theta} R_{\theta}=\mathbb{E} \sup _{\theta \in \Theta}\langle\epsilon, \theta\rangle$ the (empirical) Rademacher averages of Θ. The corresponding expected supremum of the Gaussian process will be called the Gaussian averages or the Gaussian width of Θ and denoted by $\hat{\mathcal{G}}(\Theta)$.

- Rademacher complexity of Θ is $\frac{1}{n} \hat{\mathcal{R}}(\Theta)$ (Qingyan's present on July 16th)

- Property 1

$\forall \Theta \subset \mathbb{R}^{n}$, we have

$$
\hat{\mathcal{R}}(\Theta) \lesssim \hat{\mathcal{G}}(\Theta) \lesssim \sqrt{\log n} \hat{\mathcal{R}}(\Theta)
$$

Relationship between Gaussian and Rademacher Process

Proof of Property $1(a): \hat{\mathcal{R}}(\Theta) \stackrel{a}{\lesssim} \hat{\mathcal{G}}(\Theta) \stackrel{b}{\lesssim} \sqrt{\log n} \hat{\mathcal{R}}(\Theta)$

$$
\begin{aligned}
\hat{\mathcal{G}}(\Theta) & =\mathbb{E} \sup _{\theta \in \Theta} \sum_{i=1}^{n} g_{i} \theta_{i} \\
& =\mathbb{E}_{\epsilon} \mathbb{E}_{g} \sup _{\theta \in \Theta} \sum_{i=1}^{n} \epsilon_{i}\left|g_{i}\right| \theta_{i} \\
& \geq \mathbb{E}_{\epsilon} \sup _{\theta \in \Theta} \sum_{i=1}^{n} \epsilon_{i} \mathbb{E}\left|g_{i}\right| \theta_{i} \\
& =\sqrt{\frac{2}{\pi}} \mathbb{E}_{\epsilon} \sup _{\theta \in \Theta} \sum_{i=1}^{n} \epsilon_{i} \theta_{i} \\
& =\sqrt{\frac{2}{\pi}} \hat{\mathcal{R}}(\Theta)
\end{aligned}
$$

Relationship between Gaussian and Rademacher Process

Proof of Property $1(\mathrm{~b}): \hat{\mathcal{R}}(\Theta) \stackrel{a}{\lesssim} \hat{\mathcal{G}}(\Theta) \stackrel{b}{\lesssim} \sqrt{\log n} \hat{\mathcal{R}}(\Theta)$

$$
\begin{aligned}
\hat{\mathcal{G}}(\Theta) & =\mathbb{E} \sup _{\theta \in \Theta} \sum_{i=1}^{n} g_{i} \theta_{i} \\
& =\mathbb{E}_{\epsilon} \mathbb{E}_{g} \sup _{\theta \in \Theta} \sum_{i=1}^{n} \epsilon_{i}\left|g_{i}\right| \theta_{i} \\
& =\mathbb{E}_{g} \hat{\mathcal{R}}(|g| \cdot \Theta) \\
& \leq \mathbb{E}_{g} \max _{i}\left|g_{i}\right| \hat{\mathcal{R}}(\Theta) \quad(\text { Lipschitz Property, week } 5) \\
& \leq \sqrt{2 \log 2 n} \hat{\mathcal{R}}(\Theta) \quad(\text { Page } 56, \text { week } 2)
\end{aligned}
$$

A few examples

- Example 1: $\Theta=\mathbb{B}_{2}^{n}$

Consider the Rademacher and Gaussian complexity of Euclidean ball $\mathbb{B}_{2}^{d}=\left\{\theta \mid\|\theta\|_{2} \leq 1\right\}$, by Cauchy-Schwartz inequality, it is easy to have

$$
\hat{\mathcal{R}}\left(\mathbb{B}_{2}^{n}\right)=\mathbb{E} \sup _{\|\theta\|_{2} \leq 1}\langle\epsilon, \theta\rangle=\mathbb{E}\|\epsilon\|_{2}=\sqrt{n}
$$

and

$$
\hat{\mathcal{G}}\left(\mathbb{B}_{2}^{n}\right)=\mathbb{E} \sup _{\|\theta\|_{2} \leq 1}\langle g, \theta\rangle=\mathbb{E}\|g\|_{2} \leq \sqrt{\mathbb{E}\|g\|_{2}^{2}}=\sqrt{n}
$$

- Actually $\mathbb{E}\|g\|_{2} \asymp \sqrt{n}$
- This is an example for the left inequality $\hat{\mathcal{R}}(\Theta) \lesssim \hat{\mathcal{G}}(\Theta)$

A few examples

- Example 2: $\Theta=\mathbb{B}_{1}^{n}$

Consider the Rademacher and Gaussian complexity of $\mathbb{B}_{1}^{d}=\left\{\theta \mid\|\theta\|_{1} \leq 1\right\}$, again by holder's inequality, we have

$$
\hat{\mathcal{R}}\left(\mathbb{B}_{1}^{n}\right)=\mathbb{E} \sup _{\|\theta\|_{1} \leq 1}\langle\epsilon, \theta\rangle=\mathbb{E}\|\epsilon\|_{\infty}=1
$$

and

$$
\hat{\mathcal{G}}\left(\mathbb{B}_{1}^{n}\right)=\mathbb{E} \sup _{\|\theta\|_{1} \leq 1}\langle g, \theta\rangle=\mathbb{E}\|g\|_{\infty} \leq \sqrt{2 \log (2 n)}
$$

- The last inequality is from Page 56 (week 2)
- This is an example for the left inequality $\hat{\mathcal{G}}(\Theta) \lesssim \sqrt{\log n} \hat{\mathcal{R}}(\Theta)$

Outline

Suprema of Subgaussian Processes
Gaussian and Rademacher process
A few examples
Dudley's upper bound
One step upper bound
chaining (multiple step upper bound)
Sudakov's lower bound
Covering and Packing
Sudakov minoration

Application in Machine Learning Theory

finite-class lemma

Recap: How to bound the Gaussian or Rademacher complexity?

- finite-class: Massart lemma.
- infinite-class: build the ϵ-net and use the covering number.

Lemma 4 (Massart).

Let d be a metric on Θ and assume $\left(U_{\theta}\right)$ is a subgaussian process. Then for any finite subset $A \subseteq \Theta \times \Theta$,

$$
\mathbb{E} \max _{\left(\theta, \theta^{\prime}\right) \in A} U_{\theta}-U_{\theta^{\prime}} \leq \max _{\left(\theta, \theta^{\prime}\right) \in A} d\left(\theta-\theta^{\prime}\right) \sqrt{2 \log \operatorname{card}(A)}
$$

Definition 5 (covering number).

Let (Θ, d) be a metric space. A set $\theta_{1}, \cdots, \theta_{N} \in \Theta$ is a cover of Θ at scale ϵ for any θ there exists $j \in[N]$ such that $d\left(\theta, \theta_{j}\right) \leq \epsilon$. The covering number of Θ at scale ϵ is the size of the smallest cover, denoted by $\mathcal{N}(\Theta, d, \epsilon)$.

finite-class lemma

A simple consequence of Lemma 5 is
Lemma 6 (Single scaled upper bound).
If $\left(U_{\theta}\right)_{\theta \in \Theta}$ is subgaussian with respect to d on Θ, then for any $\delta>0$,

$$
\mathbb{E} \sup _{\theta \in \Theta} U_{\theta} \leq 2 \mathbb{E} \sup _{d\left(\theta, \theta^{\prime}\right) \leq \delta}\left(U_{\theta}-U_{\theta^{\prime}}\right)+2 \operatorname{diam}(\Theta) \sqrt{\log \mathcal{N}(\Theta, d, \delta)}
$$

Proof:

$$
\mathbb{E} \sup _{\theta \in \Theta} U_{\theta}=\mathbb{E} \sup _{\theta \in \Theta} U_{\theta}-U_{\theta^{\prime}} \leq \mathbb{E} \sup _{\theta, \theta^{\prime} \in \Theta} U_{\theta}-U_{\theta^{\prime}}
$$

Let $\hat{\Theta}$ be a δ-cover of Θ. Then

$$
U_{\theta}-U_{\theta^{\prime}}=U_{\theta}-U_{\hat{\theta}}+U_{\hat{\theta}}-U_{\hat{\theta}^{\prime}}+U_{\hat{\theta}^{\prime}}-U_{\theta^{\prime}} \leq 2 \sup _{d\left(\theta, \theta^{\prime}\right) \leq \delta}\left(U_{\theta}-U_{\theta^{\prime}}\right)+\sup _{\hat{\theta}, \hat{\theta}^{\prime} \in \hat{\theta}}\left(U_{\hat{\theta}}-U_{\hat{\theta}^{\prime}}\right)
$$

Example

Lemma 7 is not the best. Let us go back to example 1 that $\Theta \subset \mathbb{B}_{2}^{n}$. Then

- the first term

$$
2 \mathbb{E} \sup _{d\left(\theta, \theta^{\prime}\right) \leq \delta}\left(U_{\theta}-U_{\theta^{\prime}}\right)=2 \mathbb{E} \sup _{\left\|\theta, \theta^{\prime}\right\| \leq \delta}\left\langle g, \theta-\theta^{\prime}\right\rangle \leq 2 \delta \sqrt{n}
$$

- the second term

$$
2 \operatorname{diam}(\Theta) \sqrt{\log \mathcal{N}(\Theta, d, \delta)} \leq 2 \sqrt{d \log \left(1+\frac{2}{\delta}\right)}
$$

- Suppose Θ lies in a d dimensional subspace with $d<n$
- Remark: the covering number of \mathbb{B}_{2}^{d} (We will prove it later by packing number)

$$
\mathcal{N}\left(\Theta,\|\cdot\|_{2}, \delta\right) \leq\left(1+\frac{2}{\delta}\right)^{d}
$$

Example

Continue:

- Take $\delta=\sqrt{d / n}$

$$
\mathbb{E} \sup _{\theta \in \Theta} U_{\theta} \leq 2 \delta \sqrt{n}+2 \sqrt{d \log \left(1+\frac{2}{\delta}\right)} \leq \mathcal{O}(\sqrt{d \log (n / d)})
$$

- We have already show that

$$
\mathbb{E} \sup _{\theta \in \Theta} U_{\theta} \leq \mathcal{O}(\sqrt{d})
$$

- Single scale upper bound is not the best
- the second term can be improved by chaining

Chaining

Definition 7 (δ-truncated Dudley's entropy integral).
Define D be the diameter of Θ. The δ-truncated Dudley's entropy integral is defined as

$$
\mathcal{J}(\delta, D)=\int_{\delta}^{D / 2} \sqrt{\log \mathcal{N}(\Theta, d, \epsilon)} d \epsilon
$$

Theorem 8 (Dudley's entropy upper bound).
If $\left(U_{\theta}\right)_{\theta \in \Theta}$ is subgaussian with respect to d on Θ. Let $D=\operatorname{diam}(\Theta)$, then for any $\delta \in[0, D]$,

$$
\mathbb{E} \sup _{\theta \in \Theta} U_{\theta} \leq 2 \mathbb{E} \sup _{d\left(\theta, \theta^{\prime}\right) \leq \delta}\left(U_{\theta}-U_{\theta^{\prime}}\right)+8 \sqrt{2} \mathcal{J}(\delta / 4, D)
$$

Chaining

Proof: Do Lemma 6 in multiple steps. (Week 5, Theorem 11)
The best upper bound is

$$
\mathbb{E} \sup _{\theta \in \Theta} U_{\theta} \leq \inf _{\delta \in[0, D]}\left[2 \mathbb{E} \sup _{d\left(\theta, \theta^{\prime}\right) \leq \delta}\left(U_{\theta}-U_{\theta^{\prime}}\right)+8 \sqrt{2} \mathcal{J}(\delta / 4, D)\right]
$$

- It is computational intractable.
- Simply take $\delta=0$ we have

$$
\mathbb{E} \sup _{\theta \in \Theta} U_{\theta} \leq 8 \sqrt{2} \mathcal{J}(0, D)
$$

- In example 1:

$$
\mathbb{E} \sup _{\theta \in \Theta} U_{\theta} \leq 8 \sqrt{2} \int_{0}^{D / 2} \sqrt{\log \mathcal{N}(\Theta,\|\cdot\|, \epsilon)} d \epsilon=8 \sqrt{2} \int_{0}^{D / 2} \sqrt{d \log \left(1+\frac{2}{\epsilon}\right)} d \epsilon \leq \mathcal{O}(\sqrt{d})
$$

Outline

```
Suprema of Subgaussian Processes
    Gaussian and Rademacher process
    A few examples
Dudley's upper bound
    One step upper bound
    chaining (multiple step upper bound)
Sudakov's lower bound
Covering and Packing
Sudakov minoration
Application in Machine Learning Theory
```


Covering and Packing

Definition 9 (Packing number).
A δ-packing of a set θ with respect to a metric d is a set $\left\{\theta_{1}, \cdots, \theta_{M}\right\}$ such that $d\left(\theta_{i}, \theta_{j}\right)>\delta$ for all distinct $i, j \in\{1,2, \ldots, M\}$. The δ-packing number $\mathcal{M}(\Theta, d, \delta)$ is the cardinality of the largest δ-packing.

(a)

(b)

Figure: (a): covering and (b): packing

Covering and Packing

Lemma 10.
Let (Θ, d) be a metric space, then

$$
\mathcal{M}(\Theta, d, 2 \delta) \stackrel{a}{\leq} \mathcal{N}(\Theta, d, \delta) \stackrel{b}{\leq} \mathcal{M}(\Theta, d, \delta)
$$

Proof of (a):

- Suppose there exists a 2δ-packing $\left\{y_{1}, \cdots, y_{M}\right\}$ and a δ-covering $\left\{x_{1}, \cdots, x_{N}\right\}$ with $M \geq N+1$.
- By pigeonhole principle, $\exists i, j$ and k, s.t. $y_{i}, y_{j} \in B\left(x_{k}, \delta\right)$
- then $d\left(y_{i}, y_{j}\right) \leq 2 \delta$
- contradiction

Covering and Packing

Continue,

$$
\mathcal{N}(\Theta, d, \delta) \stackrel{b}{\leq} \mathcal{M}(\Theta, d, \delta)
$$

Proof of (b):

- Suppose $E=\left\{\theta_{1}, \cdots, \theta_{M}\right\}$ is a maximal δ-packing.
- Then $\forall \theta \in \Theta \backslash E, \exists j$ s.t. $d\left(\theta, \theta_{j}\right) \leq \delta$
- (Otherwise, we can add θ to E to form a better packing)
- E is a δ-covering of Θ.

Sudakov's lower bound

Theorem 11 (Sudakov Minoration).
Let $\left(G_{\theta}\right)_{\theta \in \Theta}$ be a zero mean Gaussian process defined on Θ. Then

$$
\mathbb{E} \sup _{\theta \in \Theta} G_{\theta} \geq \sup _{\delta>0} \frac{\delta}{2} \sqrt{\log \mathcal{M}(\Theta,\|\cdot\|, \delta)}
$$

- $\mathcal{M}(\Theta,\|\cdot\|, \delta)$ can be replaced by $\mathcal{N}(\Theta,\|\cdot\|, \delta)$ by lemma 10
- in example 1

$$
\mathbb{E} \sup _{\theta \in \Theta} G_{\theta} \geq \sup _{\delta>0} \frac{\delta}{2} \sqrt{d \log (1 / \delta)} \succsim \sqrt{d}
$$

metric entropy of unit balls

- Let B be the unit norm ball and d be the metric induced by the norm
- It lefts to show

$$
\left(\frac{1}{\delta}\right)^{d} \stackrel{a}{\leq} \mathcal{N}(B, d, \delta) \leq \mathcal{M}(B, d, \delta) \stackrel{b}{\leq}\left(1+\frac{2}{\delta}\right)^{d}
$$

- Proof of (a): Let $\left\{\theta_{1}, \cdots, \theta_{N}\right\}$ be a δ-covering of B, then $B \subset \cup_{j=1}^{N}\left[\theta_{j}+\delta B\right]$
- Then $\operatorname{vol}(B) \leq N \delta^{d} \operatorname{vol}(B)$
- Proof of (b): Let $\left\{\theta_{1}, \cdots, \theta_{M}\right\}$ be a δ-packing of B, then

$$
M v o l(B \delta / 2) \leq \operatorname{vol}(B+B \delta / 2)
$$

- it is $M(\delta / 2)^{d} \operatorname{vol}(B) \leq(\delta / 2)^{d}(1+2 / \delta)^{d} \operatorname{vol}(B)$

Sudakov's lower bound

Before we give the proof of Theorem 11, we state two fact (without proof).

- fact 1: Sudakov-Fernique inequality

Given a pair of zero-mean Gaussian vectors $\left(X_{1}, \cdots, X_{N}\right)$ and $\left(Y_{1}, \cdots, Y_{N}\right)$ such that

$$
\mathbb{E}\left[\left(X_{i}-X_{j}\right)^{2}\right] \leq \mathbb{E}\left[\left(Y_{i}-Y_{j}\right)^{2}\right] \quad \forall i, j
$$

Then $\mathbb{E}\left[\max X_{i}\right] \leq \mathbb{E}\left[\max Y_{i}\right]$

- fact 2: If $X_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ i.i.d. then

$$
\sigma \sqrt{(1 / 2) \log N} \leq \mathbb{E}\left[\max X_{i}\right] \leq \sigma \sqrt{2 \log N}
$$

Sudakov's lower bound

Proof of Theorem 11:
Let $E=\left\{\theta_{1}, \cdots, \theta_{M}\right\}$ be a maximal δ-packing of Θ. Consider the sequence $Y_{i}=G_{\theta_{i}}$, we have

$$
\mathbb{E}\left[\left(Y_{i}-Y_{j}\right)^{2}\right]=\left\|\theta_{i}-\theta_{j}\right\|^{2}>\delta^{2}
$$

Then we define $X_{i} \sim \mathcal{N}\left(0, \delta^{2} / 2\right)$ i.i.d for $i=1, \cdots, M$, we have

$$
\mathbb{E}\left[\left(X_{i}-X_{j}\right)^{2}\right]=\delta^{2}
$$

Then

$$
\mathbb{E} \sup _{\theta \in \Theta} G_{\theta} \geq \mathbb{E} \max _{i=1, \cdots, M} Y_{i} \geq \mathbb{E} \max _{i=1, \cdots, M} X_{i} \geq \frac{\delta}{2} \sqrt{\log M}
$$

illustration of upper bound and lower bound

- Combine the upper bound and lower bound, for Gaussian process, we have

$$
C_{1} \sup _{\delta>0} \delta \sqrt{\log \mathcal{N}(\Theta,\|\cdot\|, \delta)} \leq \mathbb{E} \sup _{\theta \in \Theta} G_{\theta} \leq C_{2} \int_{0}^{D / 2} \sqrt{\log \mathcal{N}(\Theta,\|\cdot\|, \epsilon)} d \epsilon
$$

Figure: Illustration of upper bound and lower bound

Illustration of upper bound and lower bound

- Notice that the upper bound is for any subgaussian process
- While lower bound is only for gaussian process
- Recap:

$$
\sqrt{\frac{2}{\pi}} \hat{\mathcal{R}}(\Theta) \leq \hat{\mathcal{G}}(\Theta) \leq \sqrt{2 \log 2 n} \hat{\mathcal{R}}(\Theta)
$$

- the lower bound for Rademacher average is

$$
\frac{C_{3}}{\sqrt{\log 2 n}} \sup _{\delta>0} \delta \sqrt{\log \mathcal{M}(\Theta,\|\cdot\|, \delta)} \leq \mathbb{E} \sup _{\theta \in \Theta} R_{\theta}
$$

Outline

```
Suprema of Subgaussian Processes
    Gaussian and Rademacher process
    A few examples
Dudley's upper bound
    One step upper bound
    chaining (multiple step upper bound)
Sudakov's lower bound
    Covering and Packing
    Sudakov minoration
```

Application in Machine Learning Theory

Function class and metric

- In Machine Learning Theory, we are interested in the complexity of Function class
- Given a set of functions $\mathcal{F}=\{f: \mathcal{X} \rightarrow \mathbb{R}\}$, a probability measure P on \mathcal{X}
- we define

$$
\|f\|_{L^{2}(P)}^{2}=\mathbb{E} f(X)^{2}
$$

- Similarly, given a set of sample X_{1}, \cdots, X_{n}, we define a pseudometric

$$
\|f\|_{L^{2}\left(P_{n}\right)}^{2}=\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)^{2}
$$

- the ε-covering number and packing number is

$$
\mathcal{N}\left(\mathcal{F}, L^{2}(P), \varepsilon\right) \quad \text { and } \quad \mathcal{M}\left(\mathcal{F}, L^{2}(P), \varepsilon\right)
$$

- Remark: pseudometric: $d(x, y)=0 \nRightarrow x=y$

Upper bound and lower bound of Rademacher complexity

- As before, Let $U_{\theta}=\langle\epsilon, \theta\rangle, \Theta=\left.\frac{1}{\sqrt{n}} \mathcal{F}\right|_{x_{1}, \ldots, x_{n}}$, Then by Dudley's upper bound

$$
\mathbb{E} \sup _{f \in \mathcal{F}} \frac{1}{\sqrt{n}} \sum_{i-1}^{n} \epsilon_{i} f\left(x_{i}\right)=\mathbb{E} \sup _{\theta \in \Theta} U_{\theta} \leq 2 \delta \sqrt{n}+8 \sqrt{2} \mathcal{J}(\delta / 4, D)
$$

- Move the \sqrt{n} to the left hand side, replace $\delta / 4$ by δ the empirical Rademacher complexity is

$$
\mathbb{E} \sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i-1}^{n} \epsilon_{i} f\left(x_{i}\right) \leq \inf _{\delta \geq 0}\left[8 \delta+\frac{12}{\sqrt{n}} \int_{\delta}^{D / 2} \sqrt{\log \mathcal{N}\left(\mathcal{F}, L^{2}(P), \varepsilon\right)} d \varepsilon\right]
$$

- By Sudakov's Lower bound

$$
\mathbb{E} \sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i-1}^{n} \epsilon_{i} f\left(x_{i}\right) \geq \frac{c}{\log 2 n} \sup _{\delta \geq 0} \sqrt{\frac{\log \mathcal{M}\left(\mathcal{F}, L^{2}(P), \varepsilon\right)}{n}}
$$

Metric Entropy

Thank you!

