Metric Entropy

Group Study and Seminar Series (Summer 20)

Presented by: Jiancong Xiao

The Chinese University of Hong Kong, Shenzhen, China

August 6, 2020

Mainly based on:

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (Vol. 48). Chapter 5. MIT IDS.160 / 18.S998 / 9.521 Spring 20. Mathematical Statistics: A Non-Asymptotic Approach. Lecture 16-19.

Outline

Suprema of Subgaussian Processes

Gaussian and Rademacher process

A few examples

Dudley's upper bound

One step upper bound

Sudakov's lower bound

Covering and Packing

Sudakov minoration

Application in Machine Learning Theory

Suprema of Subgaussian Processes

Definition 1.

Stochastic process $(U_{\theta})_{\theta \in \Theta}$, indexed by $\theta \in \Theta$, is a collection of random variables on a common probability space.

- ightharpoonup The index θ can be 'time'.
- \blacktriangleright We are interested in the case that Θ has some metric structure.
- ▶ We will be interested in the behavior of

 $\mathbb{E}\sup_{\theta\in\Theta}U_{\theta}$

Subgaussian process

To understand this object, we need

Definition 2.

Stochastic process $(U_{\theta})_{\theta \in \Theta}$ is sub-Gaussian with respect to a metric d on θ if U_{θ} is zero-mean and

$$\forall \theta, \theta' \in \Theta, \lambda \in \mathbb{R}, \quad \mathbb{E} \exp \{\lambda (U_{\theta} - U_{\theta'})\} \le \exp \{\lambda^2 d(\theta, \theta')^2 / 2\}$$

- ▶ $U_{\theta} U_{\theta'}$ is subgaussian with $\sigma = d(\theta, \theta')$
- ▶ The main examples have a linearly parametrized form

Gaussian process and Rademacher process

Gaussian process

Let
$$G_{\theta} = \langle g, \theta \rangle$$
, $g = (g_1, \dots, g_n)^T$, $g_i \sim N(0, 1)$ i.i.d. Take $d(\theta, \theta') = \|\theta - \theta'\|$. Then

$$G_{\theta} - G_{\theta'} = \langle g, \theta - \theta' \rangle \sim N(0, \|\theta - \theta'\|^2)$$

is trivially subgaussian with respect to the Euclidean distance on Θ .

Rademacher process

Let $R_{\theta} = \langle \epsilon, \theta \rangle$, $\epsilon = (\epsilon_1, \cdots, \epsilon_n)^T$, ϵ i.i.d. Rademacher. Again, take $d(\theta, \theta') = \|\theta - \theta'\|$. Then

$$R_{\theta} - R_{\theta'} = \langle \epsilon, \theta - \theta' \rangle$$

is subgaussian.

Relationship between Gaussian and Rademacher Process

Definition 3.

We will call $\hat{\mathcal{R}}(\Theta) = \mathbb{E} \sup_{\theta \in \Theta} R_{\theta} = \mathbb{E} \sup_{\theta \in \Theta} \langle \epsilon, \theta \rangle$ the (empirical) Rademacher averages of Θ . The corresponding expected supremum of the Gaussian process will be called the Gaussian averages or the Gaussian width of Θ and denoted by $\hat{\mathcal{G}}(\Theta)$.

- ▶ Rademacher complexity of Θ is $\frac{1}{n}\hat{\mathcal{R}}(\Theta)$ (Qingyan's present on July 16th)
- Property 1

 $\forall\Theta\subset\mathbb{R}^n$, we have

$$\hat{\mathcal{R}}(\Theta) \lesssim \hat{\mathcal{G}}(\Theta) \lesssim \sqrt{\log n} \hat{\mathcal{R}}(\Theta)$$

Relationship between Gaussian and Rademacher Process

Proof of Property 1(a): $\hat{\mathcal{R}}(\Theta) \overset{a}{\lesssim} \hat{\mathcal{G}}(\Theta) \overset{b}{\lesssim} \sqrt{\log n} \hat{\mathcal{R}}(\Theta)$

$$\hat{\mathcal{G}}(\Theta) = \mathbb{E} \sup_{\theta \in \Theta} \sum_{i=1}^{n} g_{i} \theta_{i}$$

$$= \mathbb{E}_{\epsilon} \mathbb{E}_{g} \sup_{\theta \in \Theta} \sum_{i=1}^{n} \epsilon_{i} |g_{i}| \theta_{i}$$

$$\geq \mathbb{E}_{\epsilon} \sup_{\theta \in \Theta} \sum_{i=1}^{n} \epsilon_{i} \mathbb{E} |g_{i}| \theta_{i}$$

$$= \sqrt{\frac{2}{\pi}} \mathbb{E}_{\epsilon} \sup_{\theta \in \Theta} \sum_{i=1}^{n} \epsilon_{i} \theta_{i}$$

$$= \sqrt{\frac{2}{\pi}} \hat{\mathcal{R}}(\Theta)$$

Relationship between Gaussian and Rademacher Process

Proof of Property 1(b):
$$\hat{\mathcal{R}}(\Theta) \overset{a}{\lesssim} \hat{\mathcal{G}}(\Theta) \overset{b}{\lesssim} \sqrt{\log n} \hat{\mathcal{R}}(\Theta)$$

$$\hat{\mathcal{G}}(\Theta) = \mathbb{E} \sup_{\theta \in \Theta} \sum_{i=1}^{n} g_{i} \theta_{i}$$

$$= \mathbb{E}_{\epsilon} \mathbb{E}_{g} \sup_{\theta \in \Theta} \sum_{i=1}^{n} \epsilon_{i} |g_{i}| \theta_{i}$$

$$= \mathbb{E}_{g} \hat{\mathcal{R}}(|g| \cdot \Theta)$$

$$\leq \mathbb{E}_{g} \max_{i} |g_{i}| \hat{\mathcal{R}}(\Theta) \quad \text{(Lipschitz Property, week 5)}$$

$$< \sqrt{2 \log 2n} \hat{\mathcal{R}}(\Theta) \quad \text{(Page 56, week 2)}$$

A few examples

Example 1: $\Theta = \mathbb{B}_2^n$

Consider the Rademacher and Gaussian complexity of Euclidean ball $\mathbb{B}_2^d = \{\theta | \|\theta\|_2 \leq 1\}$, by Cauchy-Schwartz inequality, it is easy to have

$$\hat{\mathcal{R}}(\mathbb{B}_2^n) = \mathbb{E} \sup_{\|\theta\|_2 \le 1} \langle \epsilon, \theta \rangle = \mathbb{E} \|\epsilon\|_2 = \sqrt{n}$$

and

$$\hat{\mathcal{G}}(\mathbb{B}_2^n) = \mathbb{E}\sup_{\|\theta\|_2 \leq 1} \langle g, \theta \rangle = \mathbb{E}\|g\|_2 \leq \sqrt{\mathbb{E}\|g\|_2^2} = \sqrt{n}$$

- ► Actually $\mathbb{E}||g||_2 \asymp \sqrt{n}$
- ▶ This is an example for the left inequality $\hat{\mathcal{R}}(\Theta) \lesssim \hat{\mathcal{G}}(\Theta)$

A few examples

Example 2: $\Theta = \mathbb{B}_1^n$

Consider the Rademacher and Gaussian complexity of $\mathbb{B}_1^d = \{\theta | \|\theta\|_1 \leq 1\}$, again by holder's inequality, we have

$$\hat{\mathcal{R}}(\mathbb{B}_1^n) = \mathbb{E} \sup_{\|\theta\|_1 \le 1} \langle \epsilon, \theta \rangle = \mathbb{E} \|\epsilon\|_{\infty} = 1$$

and

$$\hat{\mathcal{G}}(\mathbb{B}_1^n) = \mathbb{E} \sup_{\|\theta\|_1 \le 1} \langle g, \theta \rangle = \mathbb{E} \|g\|_{\infty} \le \sqrt{2 \log(2n)}$$

- ► The last inequality is from Page 56 (week 2)
- ▶ This is an example for the left inequality $\hat{\mathcal{G}}(\Theta) \lesssim \sqrt{\log n} \hat{\mathcal{R}}(\Theta)$

Outline

Suprema of Subgaussian Processes

Gaussian and Rademacher process

A few examples

Dudley's upper bound

One step upper bound chaining (multiple step upper bound)

Sudakov's lower bound

Covering and Packing

Sudakov minoration

Application in Machine Learning Theory

finite-class lemma

Recap: How to bound the Gaussian or Rademacher complexity?

- ▶ finite-class: Massart lemma.
- ▶ infinite-class: build the ϵ -net and use the covering number.

Lemma 4 (Massart).

Let d be a metric on Θ and assume (U_{θ}) is a subgaussian process. Then for any finite subset $A \subseteq \Theta \times \Theta$,

$$\mathbb{E} \max_{(\theta, \theta') \in A} U_{\theta} - U_{\theta'} \leq \max_{(\theta, \theta') \in A} d(\theta - \theta') \sqrt{2 \log \operatorname{card}(A)}$$

Definition 5 (covering number).

Let (Θ,d) be a metric space. A set $\theta_1,\cdots,\theta_N\in\Theta$ is a cover of Θ at scale ϵ for any θ there exists $j\in[N]$ such that $d(\theta,\theta_j)\leq\epsilon$. The covering number of Θ at scale ϵ is the size of the smallest cover, denoted by $\mathcal{N}(\Theta,d,\epsilon)$.

Dudley's upper bound 12/31

finite-class lemma

A simple consequence of Lemma 5 is

Lemma 6 (Single scaled upper bound).

If $(U_{\theta})_{\theta \in \Theta}$ is subgaussian with respect to d on Θ , then for any $\delta > 0$,

$$\mathbb{E} \sup_{\theta \in \Theta} U_{\theta} \leq 2\mathbb{E} \sup_{d(\theta, \theta') \leq \delta} (U_{\theta} - U_{\theta'}) + 2 \operatorname{diam}(\Theta) \sqrt{\log \mathcal{N}(\Theta, d, \delta)}$$

Proof:

$$\mathbb{E} \sup_{\theta \in \Theta} U_{\theta} = \mathbb{E} \sup_{\theta \in \Theta} U_{\theta} - U_{\theta'} \le \mathbb{E} \sup_{\theta, \theta' \in \Theta} U_{\theta} - U_{\theta'}$$

Let $\hat{\Theta}$ be a δ -cover of Θ . Then

$$U_{\theta} - U_{\theta'} = U_{\theta} - U_{\hat{\theta}} + U_{\hat{\theta}} - U_{\hat{\theta'}} + U_{\hat{\theta'}} - U_{\theta'} \le 2 \sup_{d(\theta, \theta') \le \delta} (U_{\theta} - U_{\theta'}) + \sup_{\hat{\theta}, \hat{\theta'} \in \hat{\Theta}} (U_{\hat{\theta}} - U_{\hat{\theta'}})$$

Example

Lemma 7 is not the best. Let us go back to example 1 that $\Theta \subset \mathbb{B}_2^n$. Then

the first term

$$2\mathbb{E} \sup_{d(\theta, \theta') \le \delta} (U_{\theta} - U_{\theta'}) = 2\mathbb{E} \sup_{\|\theta, \theta'\| \le \delta} \langle g, \theta - \theta' \rangle \le 2\delta \sqrt{n}$$

the second term

$$2\mathsf{diam}(\Theta)\sqrt{\log\mathcal{N}(\Theta,d,\delta)} \leq 2\sqrt{d\log(1+\frac{2}{\delta})}$$

- Suppose Θ lies in a d dimensional subspace with d < n
- Remark: the covering number of \mathbb{B}_2^d (We will prove it later by packing number)

$$\mathcal{N}(\Theta, \|\cdot\|_2, \delta) \le \left(1 + \frac{2}{\delta}\right)^d$$

Example

Continue:

▶ Take $\delta = \sqrt{d/n}$

$$\mathbb{E} \sup_{\theta \in \Theta} U_{\theta} \le 2\delta \sqrt{n} + 2\sqrt{d\log(1 + \frac{2}{\delta})} \le \mathcal{O}(\sqrt{d\log(n/d)})$$

► We have already show that

$$\mathbb{E}\sup_{\theta\in\Theta}U_{\theta}\leq\mathcal{O}(\sqrt{d})$$

- ► Single scale upper bound is not the best
- the second term can be improved by chaining

Chaining

Definition 7 (δ -truncated Dudley's entropy integral).

Define D be the diameter of Θ . The δ -truncated Dudley's entropy integral is defined as

$$\mathcal{J}(\delta, D) = \int_{\delta}^{D/2} \sqrt{\log \mathcal{N}(\Theta, d, \epsilon)} d\epsilon$$

Theorem 8 (Dudley's entropy upper bound).

If $(U_{\theta})_{\theta \in \Theta}$ is subgaussian with respect to d on Θ . Let $D = diam(\Theta)$, then for any $\delta \in [0, D]$,

$$\mathbb{E} \sup_{\theta \in \Theta} U_{\theta} \le 2\mathbb{E} \sup_{d(\theta, \theta') \le \delta} (U_{\theta} - U_{\theta'}) + 8\sqrt{2}\mathcal{J}(\delta/4, D)$$

Dudley's upper bound 16/31

Chaining

Proof: Do Lemma 6 in multiple steps. (Week 5, Theorem 11) The best upper bound is

$$\mathbb{E} \sup_{\theta \in \Theta} U_{\theta} \le \inf_{\delta \in [0,D]} \left[2\mathbb{E} \sup_{d(\theta,\theta') \le \delta} (U_{\theta} - U_{\theta'}) + 8\sqrt{2}\mathcal{J}(\delta/4, D) \right]$$

- ► It is computational intractable.
- ▶ Simply take $\delta = 0$ we have

$$\mathbb{E}\sup_{\theta\in\Theta}U_{\theta}\leq 8\sqrt{2}\mathcal{J}(0,D)$$

▶ In example 1:

$$\mathbb{E} \sup_{\theta \in \Theta} U_{\theta} \leq 8\sqrt{2} \int_{0}^{D/2} \sqrt{\log \mathcal{N}(\Theta, \|\cdot\|, \epsilon)} d\epsilon = 8\sqrt{2} \int_{0}^{D/2} \sqrt{d \log(1 + \frac{2}{\epsilon})} d\epsilon \leq \mathcal{O}(\sqrt{d})$$

Outline

Suprema of Subgaussian Processes

Gaussian and Rademacher process

A few examples

Dudley's upper bound

One step upper bound chaining (multiple step upper bound)

Sudakov's lower bound

Covering and Packing

Application in Machine Learning Theory

Sudakov's lower bound 18 / 31

Covering and Packing

Definition 9 (Packing number).

A δ -packing of a set θ with respect to a metric d is a set $\{\theta_1,\cdots,\theta_M\}$ such that $d(\theta_i,\theta_j)>\delta$ for all distinct $i,j\in\{1,2,...,M\}$. The δ -packing number $\mathcal{M}(\Theta,d,\delta)$ is the cardinality of the largest δ -packing.

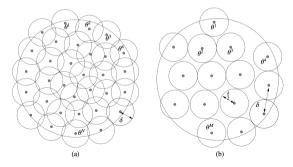


Figure: (a): covering and (b): packing

Covering and Packing

Lemma 10.

Let (Θ, d) be a metric space, then

$$\mathcal{M}(\Theta, d, 2\delta) \stackrel{a}{\leq} \mathcal{N}(\Theta, d, \delta) \stackrel{b}{\leq} \mathcal{M}(\Theta, d, \delta)$$

Proof of (a):

- ▶ Suppose there exists a 2δ -packing $\{y_1, \cdots, y_M\}$ and a δ -covering $\{x_1, \cdots, x_N\}$ with M > N + 1.
- ▶ By pigeonhole principle, $\exists i, j$ and k, s.t. $y_i, y_j \in B(x_k, \delta)$
- ▶ then $d(y_i, y_j) \le 2\delta$
- contradiction

Covering and Packing

Continue,

$$\mathcal{N}(\Theta, d, \delta) \stackrel{b}{\leq} \mathcal{M}(\Theta, d, \delta)$$

Proof of (b):

- Suppose $E = \{\theta_1, \dots, \theta_M\}$ is a maximal δ -packing.
- ▶ Then $\forall \theta \in \Theta \backslash E$, $\exists j$ s.t. $d(\theta, \theta_j) \leq \delta$
- ightharpoonup (Otherwise, we can add θ to E to form a better packing)
- ightharpoonup E is a δ-covering of Θ.

Sudakov's lower bound

Theorem 11 (Sudakov Minoration).

Let $(G_{\theta})_{\theta \in \Theta}$ be a zero mean Gaussian process defined on Θ . Then

$$\mathbb{E} \sup_{\theta \in \Theta} G_{\theta} \ge \sup_{\delta > 0} \frac{\delta}{2} \sqrt{\log \mathcal{M}(\Theta, \| \cdot \|, \delta)}$$

- $ightharpoonup \mathcal{M}(\Theta, \|\cdot\|, \delta)$ can be replaced by $\mathcal{N}(\Theta, \|\cdot\|, \delta)$ by lemma 10
- in example 1

$$\mathbb{E} \sup_{\theta \in \Theta} G_{\theta} \ge \sup_{\delta > 0} \frac{\delta}{2} \sqrt{d \log(1/\delta)} \succsim \sqrt{d}$$

metric entropy of unit balls

- ightharpoonup Let B be the unit norm ball and d be the metric induced by the norm
- ► It lefts to show

$$(\frac{1}{\delta})^d \stackrel{a}{\leq} \mathcal{N}(B, d, \delta) \leq \mathcal{M}(B, d, \delta) \stackrel{b}{\leq} (1 + \frac{2}{\delta})^d$$

- ▶ Proof of (a): Let $\{\theta_1, \dots, \theta_N\}$ be a δ -covering of B, then $B \subset \bigcup_{i=1}^N [\theta_i + \delta B]$
- ► Then $vol(B) \le N\delta^d vol(B)$
- ▶ Proof of (b): Let $\{\theta_1, \dots, \theta_M\}$ be a δ -packing of B, then

$$Mvol(B\delta/2) \le vol(B + B\delta/2)$$

• it is $M(\delta/2)^d vol(B) \le (\delta/2)^d (1 + 2/\delta)^d vol(B)$

Sudakov's lower bound

Before we give the proof of Theorem 11, we state two fact (without proof).

▶ fact 1: Sudakov-Fernique inequality Given a pair of zero-mean Gaussian vectors (X_1, \dots, X_N) and (Y_1, \dots, Y_N) such that

$$\mathbb{E}[(X_i - X_j)^2] \le \mathbb{E}[(Y_i - Y_j)^2] \quad \forall i, j$$

Then $\mathbb{E}[\max X_i] \leq \mathbb{E}[\max Y_i]$

▶ fact 2: If $X_i \sim \mathcal{N}(0, \sigma^2)$ i.i.d. then

$$\sigma\sqrt{(1/2)\log N} \le \mathbb{E}[\max X_i] \le \sigma\sqrt{2\log N}$$

Sudakov's lower bound 24 / 31

Sudakov's lower bound

Proof of Theorem 11:

Let $E = \{\theta_1, \dots, \theta_M\}$ be a maximal δ -packing of Θ . Consider the sequence $Y_i = G_{\theta_i}$, we have

$$\mathbb{E}[(Y_i - Y_j)^2] = \|\theta_i - \theta_j\|^2 > \delta^2$$

Then we define $X_i \sim \mathcal{N}(0, \delta^2/2)$ i.i.d for $i = 1, \dots, M$, we have

$$\mathbb{E}[(X_i - X_j)^2] = \delta^2$$

Then

$$\mathbb{E}\sup_{\theta\in\Theta}G_{\theta}\geq\mathbb{E}\max_{i=1,\cdots,M}Y_{i}\geq\mathbb{E}\max_{i=1,\cdots,M}X_{i}\geq\frac{\delta}{2}\sqrt{\log M}$$

Г

illustration of upper bound and lower bound

Combine the upper bound and lower bound, for Gaussian process, we have

$$C_1 \sup_{\delta > 0} \delta \sqrt{\log \mathcal{N}(\Theta, \|\cdot\|, \delta)} \leq \mathbb{E} \sup_{\theta \in \Theta} G_{\theta} \leq C_2 \int_0^{D/2} \sqrt{\log \mathcal{N}(\Theta, \|\cdot\|, \epsilon)} d\epsilon$$

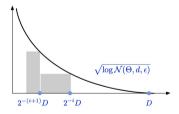


Figure: Illustration of upper bound and lower bound

Sudakov's lower bound 26 / 31

Illustration of upper bound and lower bound

- ▶ Notice that the upper bound is for any subgaussian process
- While lower bound is only for gaussian process
- ► Recap:

$$\sqrt{\frac{2}{\pi}}\hat{\mathcal{R}}(\Theta) \le \hat{\mathcal{G}}(\Theta) \le \sqrt{2\log 2n}\hat{\mathcal{R}}(\Theta)$$

▶ the lower bound for Rademacher average is

$$\frac{C_3}{\sqrt{\log 2n}} \sup_{\delta > 0} \delta \sqrt{\log \mathcal{M}(\Theta, \|\cdot\|, \delta)} \le \mathbb{E} \sup_{\theta \in \Theta} R_{\theta}$$

Sudakov's lower bound 27 / 31

Outline

Suprema of Subgaussian Processes

Gaussian and Rademacher process

A few examples

Dudley's upper bound

One step upper bound chaining (multiple step upper bound)

Sudakov's lower bound

Covering and Packing

Application in Machine Learning Theory

Function class and metric

- ▶ In Machine Learning Theory, we are interested in the complexity of Function class
- ▶ Given a set of functions $\mathcal{F} = \{f : \mathcal{X} \to \mathbb{R}\}$, a probability measure P on \mathcal{X}
- we define

$$||f||_{L^2(P)}^2 = \mathbb{E}f(X)^2$$

ightharpoonup Similarly, given a set of sample X_1, \dots, X_n , we define a pseudometric

$$||f||_{L^2(P_n)}^2 = \frac{1}{n} \sum_{i=1}^n f(X_i)^2$$

ightharpoonup the ε -covering number and packing number is

$$\mathcal{N}(\mathcal{F}, L^2(P), \varepsilon)$$
 and $\mathcal{M}(\mathcal{F}, L^2(P), \varepsilon)$

▶ Remark: pseudometric: $d(x,y) = 0 \Rightarrow x = y$

Upper bound and lower bound of Rademacher complexity

lackbox As before, Let $U_{ heta}=\langle\epsilon, heta
angle$, $\Theta=rac{1}{\sqrt{n}}\mathcal{F}|_{x_1,\cdots,x_n}$, Then by Dudley's upper bound

$$\mathbb{E}\sup_{f\in\mathcal{F}}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\epsilon_{i}f(x_{i}) = \mathbb{E}\sup_{\theta\in\Theta}U_{\theta} \leq 2\delta\sqrt{n} + 8\sqrt{2}\mathcal{J}(\delta/4, D)$$

lacktriangle Move the \sqrt{n} to the left hand side, replace $\delta/4$ by δ the empirical Rademacher complexity is

$$\mathbb{E} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \leq \inf_{\delta \geq 0} \left[8\delta + \frac{12}{\sqrt{n}} \int_{\delta}^{D/2} \sqrt{\log \mathcal{N}(\mathcal{F}, L^{2}(P), \varepsilon)} d\varepsilon \right]$$

► By Sudakov's Lower bound

$$\mathbb{E} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \ge \frac{c}{\log 2n} \sup_{\delta \ge 0} \sqrt{\frac{\log \mathcal{M}(\mathcal{F}, L^2(P), \varepsilon)}{n}}$$

Metric Entropy

Thank you!