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Outline

Outline of this talk

• Background on reinforcement learning and positioning this

work

• Solving the Gambler’s problem - The question #1 in the RL

text book [SB18]

• What does it imply for reinforcement learning
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Reinforcement learning and sequential decisions

Milestones, in chronological order: Breakout in Atari 2600, AlphaGo and

AlphaZero, Libratus and DeepStack, and AlphaStar
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Reinforcement learning and sequential decisions

Applications: humanoid simulation, robot surgeon, robotics, and autonomous

driving
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Reinforcement learning and sequential decisions

Reinforcement learning: To model and learn sequential

agent-environment interaction from reinforces

Sutton and Barto. Reinforcement learning: An introduction. 2018.
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Connections to other areas

Cognitive science

• RL discusses the interaction between action and perception of

an agent, while cognitive science studies that of humans.

• Cognitive science concepts are heavily adopted

Optimal control

• RL targets mostly model-free learning. To learn only from the

reward signals tabula rasa without knowing the environment

• Optimal control is based on the model instead

Online learning

• RL is contextual multi-arm bandit with an additional dynamic:

The action will impact the environment.
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Position of this work

• This work is solves a sequential decision problem by analysis

(not by learning algorithms)

• Technically, this work can be categorized into optimal control

(to solve policy) and dynamical systems (to solve value)

• Despite these, it is a description of the optimum of the

sequential decision processes and the corresponding learning

problems
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Markov decision processes (MDP) - Formulation

• RL is formulated as MDP - tuple (S,A, T ,R, ρ0, γ)

• S ⊆ Rm state space, A ⊆ Rn action space, ρ0 ∈ ∆(S) the

initial state distribution1

• T : S ×A → ∆(S) environment transition probability function

• R : S ×A → ∆(R) reward function

• γ ∈ [0, 1] unnormalized discount factor

• The MDP follows

at ∼ π(a|st), rt ∼ R(st, at), st+1 ∼ T (st, at), t = 0, 1, 2, . . .

• The objective is to learn the policy π : S → ∆(A)

• To maximize the expected return

RT =
∑

0≤t≤T

γtrt, J = E[R∞] = E
[∑
t≥0

γtrt

∣∣∣s0 ∼ ρ0,π
]

1∆(·) denotes the set of all random variables over the input space
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Markov decision processes - Learning algorithms

• Action-value function Q(s, a): E[R∞] condition on initial s, a

Q(s, a) = E[R∞] = E
[∑
t≥0

γtrt

∣∣∣s0 = s, a0 = a,π
]

v(s) = Ea[Q(s, a)] = E
[∑
t≥0

γtrt

∣∣∣s0 = s,π
]

• Can be learned temporal-difference (TD) methods

• TD(0) by Monte-Carlo sampling

• TD(1) by Bellman recursive property

• Alternatively, learning by policy gradient

∇πE[R∞|π] = Eπ(a|s)[∇π log π(a|s)Q(s, a)] (1)
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The Gambler’s problem

The Gambler’s problem is an early example in the RL textbook by

Sutton and Barto [SB18, SB98]

• The gambler starts with s ≤ 1 capital (state)

• At each round bets a, 0 < a ≤ s (action) and

receives

0 with probability constant p > 0.5,

2a with probability 1− p.

• Target capital is 1. Game terminates at s = 1 or s = 0

What is the probability of reaching the target, under the best a

(the optimal state-value function v(s))?

14



The Gambler’s problem

Some additional notes on the problem

1. The problem looks very simple (but deceptively!). It’s in fact

the most simple RL setting in the book apart from bandits.

2. The original problem starts with capital n, bets only integers,

and targets capital N . We solve both the original and the

continuous versions.

3. Numerically estimated in the book by the value iteration

algorithm. Strange patterns have been observed.
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The Gambler’s problem

• Recall MDP formulation - tuple (S,A, T ,R, ρ0, γ)

• S = [0, 1] state space, A = (0, min(s, 1− s)] action space,

ρ0 ∈ ∆(S) an arbitrary initial state distribution, γ ∈ [0, 1]

arbitrary

• T : S ×A → ∆(S), T (s, a) is s− a and s+ a w.p. p > 0.5

and 1− p, respectively

• R : S ×A → ∆(R), R(1, ·) = 1.

• The MDP follows

at ∼ π(a|st), rt ∼ R(st, at), st+1 ∼ T (st, at), t = 0, 1, 2, . . .

• The MDP terminates when s ∈ {0, 1}
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The Gambler’s problem

Some additional notes on the MDP

1. The MDP is stationary: Termination only on terminate states.

Optimal policy/value does not need to depend on t. The

Bellman equation is stringently satisfied

2. The MDP is stationary. Fewer results apply to the continuous

settings and some known properties do not extend to

continuous MDPs

3. At least one deterministic policy is optimal in MDPs so we

can wlog restrict π to be deterministic.
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The optimal value function

Theorem 12. v(s) =
∑∞

i=1(1− p)γibi
∏i−1
j=1((1− p) + (2p− 1)bj)

is the optimal state-value function for any 0 ≤ γ ≤ 1 and p > 0.5,

where s = 0.b1b2 . . . b` . . .(2) is the binary representation of the

state 0 ≤ s < 1.

(p: probability of losing a bet. γ: constant discount factor)

• The answer is surprisingly complicated despite the problem

being simple

• Describing v(s) using elementary functions is not possible
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Plots and characterizations

x-axis: Initial capital (state); y-axis: Probability of winning (value

function)

Characterizations: Fractal; self-similar; derivative is either zero or

infinity; not written as elementary functions
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The solution of optimal value function

Proposition 1. The optimal value function z(n) is v(n/N) in the

discrete setting of the Gambler’s problem, where v(·) is the optimal

value function under the continuous case defined in Theorem 12.

Corollary 13. The policy π(s) = min(s, 1− s) is (Blackwell)

optimal in both the discrete and the continuous cases.
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Discrete plots

Discrete problem value function is exactly the continuous problem

value function evaluated at discrete points.

This is the ”strange pattern” in Sutton and Barto’s book.
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Bellman equation TD(0)

The Bellman equation of the Gambler’s problem is f(0) = 0,

f(1) = 1,

f(s) = max
0<a≤min{s,1−s}

(1− p)γf(s+ a) + pγf(s− a)

for some real function f : [0, 1]→ R.

Theorem 22. Let γ = 1, p > 0.5. f(s) solves the Bellman

equation if and only if either

• f(s) is v(s) defined in Theorem 12, or

• f(0) = 0, f(1) = 1, and f(s) = C for all 0 < s < 1, for some

constant C ≥ 1.
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The mathematical complexity of reinforcement learning

In a difficult case, this problem explores the most fundamental

arguments in probabilities and math - the belief of axioms.

Theorem 27. Let γ = 1 and p = 0.5. A real function f(s)

satisfies the Bellman equation if and only if either

• f(s) = C ′s+B′ on s ∈ (0, 1), for some constants

C ′ +B′ ≥ 1, or

• f(s) is some non-constructive, not Lebesgue measurable

function under Axiom of Choice.
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Implications (1) - Generalization

• Similar observations of chaos in other RL problems (e.g.

Mountain Car, as below)

• Results and characterizations apply to RL in general
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Implications (2) - Fractal and self-similarity

2. The value function is non-smooth on any interval

• Modern deep reinforcement learning (incorrectly) assume the

value function to be smooth to use neural networks.

• Proposition 19 and 20. Using N -bin discretization incurs at

least O(1/N) approximation error. Using L-Lipschitz function

has at least O(1/L) error.

• Revisit state and value representation

The state-of-the-art algorithm, soft actor-critic

[HZAL18, HTAL17], learns a smooth surrogate instead of the

optimal function. It achieves the state of the art by

unintentionally avoiding the optimality.
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Implications (3) - Singularity

3. Singularity means a function’s derivation takes either zero or
infinity, on its entire interval (0, 1).

• Remark: The curve still goes from (0, 0) to (1, 1),

counter-intuitively

• Algorithmically this denies the access to ∂v(s)/∂s and

∂Q(s, a)/∂a

[LHP+15, GLT+17, HWS+15, FA12, Fai08, PYFW19, LJL+18],

including famous DDPG and Dyna

Their are many more algorithms than what I can enumerate.

The code will always return a gradient when called but it will

depend on the discrete gradient rather than what the

algorithm expect.
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Implications (4) - Q-learning

4. The Q-learning algorithm minimizes the Bellman equation.

We do not know which point it will converge to.

Optimization and approximation algorithms might prefer a large

constant function than the desired optimal value function.

In fact, original Q-learning rarely works in continuous spaces and

people did not know why. DeepMind made it work by combination

of tricks while biasing the objective.
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Implicated future works

• Long-term research goal of the line: To understand the

sequential decision problem.

• Foundations will help us characterize and understand the

problem itself instead of the methods, which then drives

better algorithm designs.

• Implied future works

• Improving state and value function approximation, as now that

we know why previous methods suffer from errors;

• Improving Q-learning’s convergence, as we know why it did not

behave as desired.
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Dynamical systems

Let f : [0, 1]→ R be a real function. For f(s) to be the optimal

value function, the Bellman equation for the non-terminal and

terminal states are (A(s) = (0, min {s, 1− s}], s ∈ (0, 1))

f(s) = max
a∈A(s)

pγ f(s−a)+(1−p)γ f(s+a) for any s ∈ (0, 1), (A)

and

f(0) = 0, f(1) = 1. (B)
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Dynamical systems

The bounded version of the problem leads to the optimal value

function.

0 ≤ γ ≤ 1, p > 0.5, f(s) ≤ 1 for all s, f(s) is continuous on s = 0.

(X)

The unbounded version of the problem leads to the solutions of the

Bellman equation.

0 ≤ γ ≤ 1, p > 0.5. (Y)

The corner case of γ = 1, p = 0.5 is difficult and exceptional

γ = 1, p = 0.5, f(s) is unbounded. (Z)
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The optimal value function

Recall that

Theorem 12. v(1) = 1 and

v(s) =

∞∑
i=1

(1− p)γibi
i−1∏
j=1

((1− p) + (2p− 1)bj)

for any 0 ≤ γ < 1 is the optimal state-value function, where

s = 0.b1b2 . . . b` . . .(2) is the binary representation of the state

0 ≤ s < 1.

(p > 0.5: probability of losing a bet. γ: constant discount factor)
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The optimal value function (ABX)

Theorem (lemma 3, Monotonicity)

Let γ = 1 and p > 0.5. If a real function f(s) satisfies (AB) then

f(s) is monotonically increasing on [0, 1).

Proof sketch.

If otherwise there exists s1 < s2 and f(s1) > f(s2), then by

induction we obtain

f(s2 + k2− log(k)∆s)− f(s2) ≤ −kplog(k)∆f .

By the arbitrarity of k this indicates the non-existence of

f(s2 + k2−`∆s).
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The optimal value function (ABX)

Theorem (lemma 4, Continuity)

Let γ = 1 and p ≥ 0.5. If a real function f(s) is monotonically

increasing on (0, 1] and it satisfies (AB), then f(s) is continuous

on (0, 1].

Proof sketch.

• Otherwise we construct a series of points s1, s2, . . . around

the discontinuity.

• Repeatedly applying condition (A) shows that the series

f(s1), f(s2), . . . is unbounded, which contradicts with the

monotonicity.
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The optimal value function (ABX)

Theorem (Lemma 2, Uniqueness under existence)

Let f(s) : [0, 1]→ R be a real function. If v(s) and f(s) both

satisfy (ABX), then v(s) = f(s) for all 0 ≤ s ≤ 1.

Proof sketch.

• Find a point s0 that maximizes v(s0)− f(s0) then derive

contradiction under v(s0)− f(s0) > 0.

• Show the existence of s0 via the continuity of v(s) and

f(s).
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The optimal value function (ABX)

Theorem (lemma 11, Feasibility of v(s))

v(s) is a solution of the system (ABX).

Proof sketch.

Let v′(s) = maxa∈A(s) pγ v(s− a) + (1− p)γ v(s+ a).

• v(s) = v′(s) on the dyadic rationals
⋃
`≥1G`.

• v(s) and v′(s) are continuous for any s if there does not exist

an ` ≥ 1 such that s ∈ G`.
• Since

⋃
`≥1G` is dense and compact on (0, 1), v(s) = v′(s)

holds whenever both v(s) and v′(s) are continuous at s.

• Thus v(s) = v′(s) on the complement of
⋃
`≥1G`.
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The optimal value function (ABX)

Theorem (Theorem 12, The optimal value function)

Let 0 ≤ γ ≤ 1 and p > 0.5. Under the continuous setting of the

Gambler’s problem, the optimal state-value function is v(1) = 1

and v(s) =
∑∞

i=1(1− p)γibi
∏i−1
j=1((1− p) + (2p− 1)bj) for

0 ≤ s < 1.

Proof.

• The optimal value function solves (ABX).

• v(s) solves (ABX).

• There can be only one function who solves (ABX).
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