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Introduction to Stochastic Optimization
Consider the stochastic optimization problem as follows:

maximizex∈X Eζ∼P[h(x , ζ)] (1)

with X being convex.



Introduction to Stochastic Optimization

Consider the stochastic optimization problem as follows:

maximizex∈X Eζ∼P[h(x , ζ)] (2)

with X being convex.

• Prospective
• Expected value is a good measure of performance;
• Solve by sample average approximation (SAA).

• Challenge
• Difficult to know the exact distribution of ζ;
• Solution can be risky by SAA;
• SAA may result in sub-optimal solutions.



Risky: Stochastic Optimization with Noises

Adversarial attacks for classification problem 1:

1Ian Goodfellow 2015
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Sub-optimality: the Optimizer’s Curse

• Suppose P̂n is an unbiased estimator of P:

E⊗[P̂n] = P.

• The optimization results by SAA approach, i.e., RSAA, tend
to be pessimistic biased:

E⊗
[
RSAA

]
= E⊗

[
max
x∈X

Eζ∼P̂n
[h(x , ζ)]

]
≥ max

x∈X
E⊗
[
Eζ∼P̂n

[h(x , ζ)]

]
= Rtrue.



Testing Errors for Supervised Learning
Consider the supervised learning problem:

min
f∈F

E(x ,y)∼Ptrue [`(f (x), y)]

People tackle this problem by the SAA approach:

min
θ∈Θ

E(x ,y)∼P̂n
[`(fθ(x), y)], where P̂n =

1
n

n∑
i=1

δ(xi ,yi ).

Decomposition of errors in machine learning 2:

Testing Error =


Generalization Error (Distributional Uncertainty)
Representation Error
Optimization Error

2Ruoyu Sun, Optimization for deep learning: theory and algorithms (2019).



Motivation for DRO: Distributional Uncertainty

• Out-of-Sample performance of SAA:

sup
x

∣∣∣∣Eζ∼P[h(x , ζ)]− Eζ∼P̂n
[h(x , ζ)]

∣∣∣∣
≤C1

√
Var[h(x , ζ)]

n
+ C2 ·

1
n
E
[

sup
x∈X

n∑
i=1

σih(x , ζi)

]
.

• Distributional Uncertainty: it is difficult to obtain P, but
related samples or statistical information are available.

How to develop an algorithm that
cooperates the distributional uncertainty?



Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) model:

maximizex∈X min
P∈D

Eζ∼P[h(x , ζ)]

where D denotes a collection of distributions. We call it the
ambiguity set.

Data P̂n D
(
P̂n

)
x∗robust



Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) model:

maximizex∈X min
P∈D

Eζ∼P[h(x , ζ)]

where D denotes a collection of distributions. We call it the
ambiguity set.
Guidance for choosing D:

• Tractability (fast algorithm available);

• Statistical Theoretical Guarantees;

• Numerical Performance (compared with the benchmark
cases, such as SAA).



History of DRO
• DRO is first introduced in the context of inventory control

problem with a single random demand variable3.
• DRO with moment bounds4:

D =

{
P
∣∣∣∣ (EP[ζ]− µ0)T Σ−1

0 (EP[ζ]− µ0) ≤ γ1
EP[(ζ − µ0)(ζ − µ0)T ] � γ2Σ0

}
• DRO with KL-divergence/f -divergence balls5:

D =
{
P
∣∣∣D(P‖P̂n) ≤ γ

}
,

where D(·, ·) can be the KL-divergence metric, or
f -divergence metric.

3Scarf, H. (1958) A Min-Max Solution of an Inventory Problem.
4Erick Delage, Y. (2008) Distributionally Robust Optimization under

Moment Uncertainty with Application to Data-Driven Problems
5Duchi (2016), Statistics of Robust Optimization: A Generalized Empirical

Likelihood Approach



Introduction to Wasserstein Distance

• We set the ambiguity set to be

D =

{
P : W (P, P̂n) ≤ δ

}
where W (·, ·) refers to the Wasserstein metric:

W (P,Q) = sup
g∈Lip1

∣∣∣∣∫ g(x)dP(x)−
∫

g(x)dQ(x)

∣∣∣∣
• Wasserstein distance is a two-sample formula, and for its

approximation, we need samples from both P and Q.
• If one of P or Q is given in an explicit density form, the

Wasserstein distance is not convenient to use.



Comparison of Different Probability Metrics

• f -divergence is a two-density formula:

Df (P‖Q) =

∫
Ω

f (dP/dQ)dQ;

• Wasserstein distance is a two-sample formula:

W (P,Q) = sup
g∈Lip1

∣∣∣∣∫ g(x)dP(x)−
∫

g(x)dQ(x)

∣∣∣∣ .
• Stein discrepancy is a one-sample-one-density formula:

S(P,Q) = sup
f∈F

∣∣∣∣∫ AP[f (x)]dQ(x)

∣∣∣∣
where AP[f (x)] = f (x)∇x logP(x) +∇x f (x).



Introduction to Wasserstein Distance
By the duality theory in LP,

W (P,Q) = inf
π

{
Eπ
[
c(ζ1, ζ2)

]
:
π is a distribution of ζ1 and ζ2
with marginals P and Q

}
.



Statistics Properties for DRO with
Wasserstein Distance

Theorem 1

Consider the DRO problem

x̂n = arg max
x∈X

{
min
P∈Dn

Eζ∼P[h(x , ζ)]

}
with Dn = {P : W (P, P̂n) ≤ δn} and δn = O(1/

√
n). The

following properties hold:
• Asymptotic guarantee: P∞(limn→∞ x̂n = x∗) = 1;
• Finite-sample guarantee: with high probability,

(Rrobust − Rtrue)+ = O(1/n);

• Tractability: same complexity class as SAA.



Tractability of DRO with Wasserstein
Distance

• The goal is to simplify the DRO problem

min
x∈X

{
sup
P∈Dn

E[h(x , ζ)]

}
Define `(ζ) := h(x , ζ) for fixed x .

• Reformulate the worse-case expectation problem:

sup
P

Eζ∼P[`(ζ)]

subject to W (P, P̂n) ≤ δn

where W (P,Q) = inf
π∈Γ(P,Q)

E(ζ1,ζ2)∼π
[
c(ζ1, ζ2)

]
.
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Tractability of DRO with Wasserstein
Distance

Assume that the support of P is Ξ := {ζ1, ζ2, . . . , ζK}:

max
P

K∑
k=1

P(ζk )`(ζk )

s.t.


min

π∈RK×n
+

∑K
k=1

∑n
i=1 πk ,ic(ζk , ζ̂i)

s.t.
∑K

k=1 πk ,i = 1
n , ∀i ∈ [n]∑n

i=1 πk ,i = P(ζk ), ∀k ∈ [K ].

 ≤ δn

• Rewrite expectation in the form of summation;
• π is the joint distribution between P and P̂n := 1

n
∑n

i=1 δζ̂i
.



Tractability of DRO with Wasserstein
Distance

Replace the “min” in the constraint as “exist”:

max
P

K∑
k=1

P(ζk )`(ζk )

∃π ∈ RK×n
+ such that

K∑
k=1

n∑
i=1

πk ,ic(ζk , ζ̂i) ≤ δn

K∑
k=1

πk ,i =
1
n
, ∀i ∈ [n]

n∑
i=1

πk ,i = P(ζk ), ∀k ∈ [K ].



Tractability of DRO with Wasserstein
Distance

Reformulate the “feasibility problem” as a LP problem:

max
P,π∈RK×n

+

K∑
k=1

P(ζk )`(ζk )

s.t.
K∑

k=1

n∑
i=1

πk ,ic(ζk , ζ̂i) ≤ δn

K∑
k=1

πk ,i =
1
n
, ∀i ∈ [n]

n∑
i=1

πk ,i = P(ζk ), ∀k ∈ [K ].



Representation of worse-case expectation
problem



Tractability of DRO with Wasserstein
Distance

• Eliminate P(ζk ) shown in the objective function:

max
π∈RK×n

+

K∑
k=1

n∑
i=1

πk ,i`(ζk )

s.t.
K∑

k=1

n∑
i=1

πk ,ic(ζk , ζ̂i) ≤ δn

K∑
k=1

πk ,i =
1
n
, ∀i ∈ [n]

• By the duality theory for LP,

inf
λ≥0,si ,i∈[n]

λδn +
1
n

n∑
i=1

si

s.t. `(ζ)− λ · c(ζ, ζ̂i) ≤ si , ∀i ∈ [n],∀ξ ∈ Ξ
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Tractability of DRO with Wasserstein
Distance

• Worse-case expecation problem is a 1-dimensional convex
programming:

sup
P: W (P,P̂n)≤δn

Eζ∼P[`(ζ)]

= inf
λ≥0

λδn +
1
n

n∑
i=1

sup
ζ

(
`(ζ)− λ‖ζ − ζ̂i‖

)
.

• The DRO problem can be formulated as a single
minimization:

inf
x∈X ,λ≥0

λδn +
1
n

n∑
i=1

sup
ζ

(
h(x , ζ)− λ‖ζ − ζ̂i‖

)
.

• Finite convex program;
• resulting problem is in the same complexity class as SAA
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DRO with Wasserstein Distance for Logistic
Regression

• Logistic regression suggests solving the ERM problem:

minimize
1
n

n∑
i=1

`(x , ξi , λi) := E(ξ,λ)∼P̂n
[`(x , ξ, λ)]

where `(x , ξ, λ) = log(1 + e−λxT ξ)

• DRO suggests solving the problem

minimize
{

sup
P∈Dn

E(ξ,λ)∼P[`(x , ξ, λ)]

}
• When labels are assumed to be error-free, DRO reduces

to the regularized logistic regression:

min
x

1
N

N∑
i=1

`(x , ξi , λi) + C · ‖x‖∗.



Numerical Performance of DRO
Application: portfolio selection problem6:

6Blanchet (2018), Distributionally Robust Mean-Variance Portfolio
Selection with Wasserstein Distances



Summary of DRO with Wasserstein Distance

• The DRO model gives solution better than SAA.

• The DRO model are tractable.

• Well-understood in standard stochastic optimization

problem.

• Extension to general problems, e.g., un-supervised

learning, sequential decision problems, etc.

• Recently we are also applying this technique in multi-hop

communication problems. (Ongoing project with Prof.

Shenghao Yang)
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Related References

• Tractability of DRO model:
• Distributionally Robust Stochastic Optimization with

Wasserstein Distance, 2016.
• Data-driven Robust Optimization with Known Marginal

Distributions, 2017.
• Statistical Propeties of DRO model:

• Wasserstein distributionally robust optimization: Theory
and applications in machine learning, 2019.

• Applications of DRO model in supervised learning:
• Distributionally robust logistic regression
• Robust Wasserstein profile inference and applications to

machine learning

• Introductory Videos about DRO:
https://www.youtube.com/watch?v=b4lJENGAeEA



Application of Distributionally Robust
Optimization in Off-policy Policy Evaluation



Introduction to OPPE
• Data: trajectories collected under a behavior policy πb;

• Question: What would be the expected reward under

target policy π?

.4

Figure: Unmanned Data Collection

.4

Figure: Artwork Optimization at Netflix



MDP Introduction
A MDP Environment: 〈S,A,P,R,d0〉 with γ ∈ (0,1);
• Expected reward:

Rπ := lim
T→∞

E
[∑T

t=0 γ
t rt

]
∑T

t=0 γ
t

where

s0 ∼ d0,at ∼ π(· | st ), rt := r(st ,at ), st+1 ∼ P(· | st ,at ).

• Average visitation distribution:

dπ(s) = lim
T→∞

∑T
t=0 γ

tdπ,t (s)∑T
t=0 γ

t
.

It follows that

Rπ = E(s,a)∼dπ
[r(s,a)] =

∑
s,a

dπ(s)π(a | s)r(s,a).
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Introduction to OPPE

• Historial data {(si
t ,a

i
t , (s

′)i
t )

T
t=0}Ni=1 induced by the known

behavior policy πb is available:

∀i , s0 ∼ d0,at ∼ πb(· | st ), st+1 ∼ P(· | st ,at ), t = 1, . . . ,T−1

• The goal is to evaluate reward for target policy π:

Rπ = E(s,a)∼dπ
[r(s,a)] =

∑
s,a

dπ(s)π(a | s)r(s,a)

= E(s,a)∼dπb

[
w(s)β(s,a)r(s,a)

]
,

where ω(s) := dπ(s)
dπb (s) and β(s,a) = π(a|s)

πb(a|s) .



Classical Approach to OPPE
In order to evaluate Rπ:

Rπ = E(s,a)∼dπb

[
w(s)β(s,a)r(s,a)

]
,

with ω(s) =
dπ(s)

dπb (s)
, β(s,a) =

π(a | s)

πb(a | s)

• Replace dπb with its empirical distribution, based on
historical data;

• Estimate {ω(s)}s by making use of the stationary equation:

w(s′)dπb (s′) = (1−γ)d0(s′)+γ
∑
s,a

dπb (s,a, s′)β(s,a)w(s), ∀s′.

• Substitute dπb (s,a, s′) with dπb (s)πb(a | s)P(a, s′ | s) gives

dπ(s′) = (1− γ)d0(s′) +
∑

s

dπ(s)Pπ(s′ | s), ∀s′.
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Challenge for Estimating the Ratio

The importance ratio {ω(s)}s satisifes stationary equation:

ω(s′)dπb (s′) = (1−γ)d0(s′)+γ
∑
s,a

dπb (s,a, s′)β(s,a)ω(s), ∀s′ ∈ S.

• Challenge: Only samples from {dπb (s,a, s′)}s,a,s′ are
available;

• Rescue: Introduce test functions to reduce the variance. 7

The stationary equation holds if and only if for any f ,

E(s,a,s′)∼dπb
[ω(s′)f (s′)−γβ(s,a)ω(s)f (s)] = (1−γ)Es∼d0 [f (s)].

7Qiang, Liu. Breaking the Curse of Horizon: Infinite-Horizon Off-Policy
Estimation



Distributionally Robust Approach to OPPE
We propose the following distributionally robust and optimistic
formulation:

min /max
w ,µ

Rπ :=
∑
s,a

µ(s)πb(a | s)w(s)β(s,a)r(s,a)

subject to w(s′)µ(s′) = (1− γ)d0(s′)

+ γ
∑
s,a

µ(s,a, s′)β(s,a)w(s), ∀s′ ∈ S

µ ∈ P.

• Joint estimation framework for dπb and ω(s);
• Restrict µ, the estiamte for dπb , within the ambiguity set P;
• Intractable bilinear optimization problem, but:

• w can be uniquely determined for fixed µ.
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Tractable Formulation to Robust OPPE
• By the change of variable κ(s) = µ(s)w(s), the max-max

problem can be equivalently formulated as:

max
κ,µ

∑
s

κ(s)
∑

a

π(a | s)r(s,a)

subject to κ(s′) = (1− γ)d0(s′)

+ γ
∑

s

κ(s)

[∑
a

µ(s,a, s′)
µ(s)

β(s,a)

]
, ∀s′ ∈ S

µ ∈ P

• Special design of ambiguity set P to ensure tractability:

P = ⊗s∈SPs

= ⊗s∈S
{
µ(·, · | s) : W

(
µ(·, · | s), µ̂(·, · | s)

)
≤ ϑs

}
.
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Tractable Formulation to Robust OPPE

Taking the duality for the inner maximization problem, we have

MaxµMinv (1− γ)
∑

s

v(s)d0(s)

subject to v(s) ≥
∑

a

π(a | s)r(s,a)

+ γ
∑

(a,s′)

µ(a, s′ | s)v(s′)β(s,a), ∀s

µ ∈ P = ⊗s∈S
{
µ(·, · | s) : W

(
µ(·, · | s), µ̂(·, · | s)

)
≤ ϑs

}
.



Tractable Formulation to Robust OPPE

Applying the s-rectangularity of P, we have

Minv (1− γ)
∑

s

v(s)d0(s)

subject to v(s) ≥
∑

a

π(a | s)r(s,a)

+ γ Max
µ(·,·|s)∈Ps

∑
(a,s′)

µ(a, s′ | s)v(s′)β(s,a), ∀s

Ps =
{
µ(·, · | s) : W

(
µ(·, · | s), µ̂(·, · | s)

)
≤ ϑs

}
.

• Based on the fact that the uncertainty within constriants is
uncoupled.



Tractable Formulation to Robust OPPE
Lemma: LP with Fixed Point Equation

Suppose that f is a component-wise non-decreasing con-
traction mapping with the unique fixed point x∗. Then for
fixed c ∈ Rn

+,

max

{
cT x : x ∈ Rn

+, x ≤ f (x)

}
= cT x∗.

• Example: the policy evaluation problem in standard MDP
reduces to the following LP problem:

minimize (1− γ)
∑

s v(s)d0(s)
subject to v(s) ≥ T [v ](s)
with T [v ](s) = rπ(s) + γ

∑
s′ v(s)

∑
a π(a | s)P(s′ | s,a)



Tractable Formulation to Robust OPPE
• By making use of this technique lemma, we argue at

optimality the constraint is tight:

min
v

(1− γ)
∑

s

v(s)d0(s)

s.t. v(s) ≥
∑

a

π(a | s)r(s,a) + γV (s), ∀s ∈ S,

where V (s) := max
µ(·,·|s)∈Ps

∑
(a,s′)

µ(a, s′ | s)v(s′)β(s,a)

• The solution can be obtained by solving the fixed-point
equation

v(s) =
∑

a

π(a | s)r(s,a) + γV (s), ∀s ∈ S.



Algorithm for Optimistic Value Iteration
For each iteration:
• For each s ∈ S, compute V (s) by:

V (s) = max
µ(·,·|s)∈Ps

∑
(a,s′)

µ(a, s′ | s)v(s′)β(s,a)

= min
λ≥0

{
λϑs+

1
ns

ns∑
i=1

max
a∈A,s′∈S

{
v(s′)β(s,a)− λc((a, s′), (ai , s′i ))

}}
.

• For each s ∈ S, update

v(s)←
∑

a

π(a | s)r(s,a) + γ · V (s)



Theoretical Gurantees for Robust OPPE
Lemma: Sensitivity Analysis for Value Iteration

• Denote by T the Bellman operator with the true
conditional probability dπb (a, s′ | s):

T [v ](s) =
∑

a π(a | s)r(s,a) + γ
∑

s′ P
true
s,s′ v(s′)

with P true
s,s′ :=

∑
a dπb (a, s′ | s)β(s,a)

• Denote by T̃ a perturbation of T so that
• T̃ [v ](s) = T [v ](s) + εv (s);
• εv (s) ≤ ε(s) for all s ∈ S and v .

Let v∗, ṽ∗ be the solutions to the fixed point of T and T̃
respectively. Then

ṽ∗ − v∗ ≤
(
I − γP true)−1

ε.



Implications for the Lemma

• Our algorithm is simply the perturbation of the underlying
Bellman operator:

v(s) =
∑

a

π(a | s)r(s,a) + γV (s), ∀s ∈ S

V (s) = max
µ(·,·|s)∈Ps

∑
s′

[
µ(a, s′ | s)β(s,a)

]
v(s′)

≈
∑
s′

P true
s,s′ v(s′)

Ps =
{
µ(·, · | s) : W

(
µ(·, · | s), µ̂(·, · | s)

)
≤ ϑs

}
.

• Build the uniform bound for the perturbation gives the
theoretical gurantees.



Proof for the Lemma
• Define ṽ (k) as the k -th iteration point for the approximate

value iteration algorithm, then we have the relation

ṽ (k+1) − v∗ = T̃ [ṽ (k)]− T [v∗]

= T [ṽ (k)]− T [v∗] + εṽ (k)

≤ T [ṽ (k)]− T [v∗] + ε

= γP true(ṽ (k) − v∗) + ε

• Applying the relation inductively, we have

ṽ (n) − v∗ ≤
n−1∑
k=0

γn−k−1(P true)n−k−1ε+ γn(P true)n(ṽ (0) − v∗)

Taking the limit n→∞ completes the proof.



Uniform Bound for Perturbation
• The underlying true value function is returned by solving

the fixed point equation

v(s) =
∑

a

π(a | s)r(s,a)+γ
∑

(a,s′)

dπb (a, s′ | s)[β(s,a)v(s′)], ∀s.

• The optimistic/robust value iteration is to solve

v(s) =
∑

a

π(a | s)r(s,a)+γ max /min
µ(·,·|s)∈Ps

∑
(a,s′)

µ(a, s′ | s)[β(s,a)v(s′)], ∀s.

• Define f (a, s′) = β(s,a)v(s′) for fixed s. Then with high
probability,

EPtrue [f (a, s′)] ≤ max
P: W (P,P̂n)

[f (a, s′)] +
6
n

EPtrue [f (a, s′)] ≥ min
P: W (P,P̂n)

[f (a, s′)]− 6
n



Uniform Bound for Perturbation
• The underlying true value function is returned by solving

the fixed point equation

v(s) =
∑

a

π(a | s)r(s,a)+γ
∑

(a,s′)

dπb (a, s′ | s)[β(s,a)v(s′)], ∀s.

• The optimistic/robust value iteration is to solve

v(s) =
∑

a

π(a | s)r(s,a)+γ max /min
µ(·,·|s)∈Ps

∑
(a,s′)

µ(a, s′ | s)[β(s,a)v(s′)], ∀s.

• Define f (a, s′) = β(s,a)v(s′) for fixed s. Then with high
probability,

EPtrue [f (a, s′)] ≤ max
P: W (P,P̂n)

[f (a, s′)] +
6
n

EPtrue [f (a, s′)] ≥ min
P: W (P,P̂n)

[f (a, s′)]− 6
n



Theoretical Gurantees for Robust OPPE

Theorem 2: Non-asymptotic Confidence Bounds

Denote Roptimistic and Rrobust as the reward for opti-
mistic/robust estimate for the underlying reward Rπ. With
high probability,

Rπ ≤ Roptimistic +
6
n

∑
s∈S,s′∈S

(I − γP true)−1
s,s′d0(s),

Rπ ≥ Rrobust −
6
n

∑
s∈S,s′∈S

(I − γP true)−1
s,s′d0(s).

Moreover, Roptimistic − Rrobust = O(1/
√

n).
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(a) Machine Replacement Problem
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(b) Healthcare Management Problem
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Figure: Plots for the normalized interval length with respect to number
of trajectories and length of truncation.



Conclusion

• Our contributions involve:

• Exact tractable reformulations for the distributionally robust

and optimistic off-policy evaluation.

• First non-asymptotic confidence interval estimate for

infinite-horizon OPPE.

• Generalization bound for Wasserstein distributionally robust

optimization in discrete space.

• Future work would be:

• Extend its applicability into general problems;

• Design more efficient algorithm to solve the problem faster.
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