Off-Policy Evaluation:
A Distributionally Robust Approach

Speaker: Jie Wang

August 12, 2020




Outline

e Distributionally Robust Optimization
e Tractable formulation, history, theory

¢ A Recent Application in Off-policy Policy Evaluation
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Introduction to Stochastic Optimization
Consider the stochastic optimization problem as follows:
maximizexcx  Ecwp[h(X, ()] (1)

with X' being convex.

Applications:
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Introduction to Stochastic Optimization

Consider the stochastic optimization problem as follows:
maximizexcxy  Ecop[h(X, ()] (2)

with X’ being convex.

¢ Prospective
o Expected value is a good measure of performance;
e Solve by sample average approximation (SAA).

e Challenge

o Difficult to know the exact distribution of ¢;
e Solution can be risky by SAA;
e SAA may result in sub-optimal solutions.




Risky: Stochastic Optimization with Noises

Adversarial attacks for classification problem
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Sub-optimality: the Optimizer’s Curse

« Suppose P, is an unbiased estimator of P:
Eg[Pn] = P.

e The optimization results by SAA approach, i.e., Rsaa, tend
to be pessimistic biased.

Eo [Rasn] = o | mag s, [, Ol

> max Eg [ngﬂ%n [h(x, C)]}

= Rtrue~




Testing Errors for Supervised Learning

Consider the supervised learning problem:

rfTél}r] E(XuV)NPlrue [E( f(X), y)]

People tackle this problem by the SAA approach:

n

‘ . 1
8 Bt B0, where o= 73 Gy
=

Decomposition of errors in machine learning 2:

Generalization Error (Distributional Uncertainty)
Testing Error = ¢ Representation Error
Optimization Error




Motivation for DRO: Distributional Uncertainty

¢ QOut-of-Sample performance of SAA:

E¢p[h(x,C)] - ECN@n[h(x, 3

sup
X

<Gy \kau'[h,(7x,g“)] Co-— [SUPZUI ]

e Distributional Uncertainty: it is difficult to obtain P, but
related samples or statistical information are available.
How to develop an algorithm that
cooperates the distributional uncertainty?




Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) model:
maximizeyc y ugleig Ecp[h(x, ()]

where D denotes a collection of distributions. We call it the
ambiguity set.

Data P, D (]P’,,) S




Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) model:
maximizexcx Hrpeig Ecp[h(x, ()]

where D denotes a collection of distributions. We call it the
ambiguity set.
Guidance for choosing D:

e Tractability (fast algorithm available);
e Statistical Theoretical Guarantees;

e Numerical Performance (compared with the benchmark
cases, such as SAA).




History of DRO

e DRO is first introduced in the context of inventory control
problem with a single random demand variable®.

o DRO with moment bounds?*:

_ (Ep[¢] — o) "Zg " (Epl¢] — 10) < 1
P= {P’ Ep[(¢ — 1o)(¢ > 10)7] = 1250 }

» DRO with KL-divergence/f-divergence balls®:
— {p|D(PIEn) <},

where D(-,-) can be the KL-divergence metric, or
f-divergence metric.

3Scarf, H. (1958) A Min-Max Solution of an Inventory Problem.

“Erick Delage, Y. (2008) Distributionally Robust Optimization under
Moment Uncertainty with Application to Data-Driven Problems 3

®Duchi (2016), Statistics of Robust Optimization: A Generalized Emplncaﬂ S
Likelihood Approach




Introduction to Wasserstein Distance

o We set the ambiguity set to be
D= {IP - W(P,Pp) < 5}

where W(-,-) refers to the Wasserstein metric:

[ atodeo - [ geodarx

e Wasserstein distance is a two-sample formula, and for its
approximation, we need samples from both P and Q.

e |f one of P or Q is given in an explicit density form, the
Wasserstein distance is not convenient to use.

W(P,Q) = sup
g€Lip,




Comparison of Different Probability Metrics

o f-divergence is a two-density formula:
D(PIQ) = | foP/dQ)dg

o Wasserstein distance is a two-sample formula:

/g x)dP(x /g )dQ(x

¢ Stein discrepancy is a one-sample-one-density formula:

W(P,Q) = sup
gelLip,

S(e.@) = sup | [ Arli(01dQ(x
where Ap[f(x)] = f(x)VX log P(x) + Vxf(x).




Introduction to Wasserstein Distance
By the duality theory in LP,

) ~ mis adistribution of 1 and ¢,
W(P, Q) = inf {EW[C(ChCQ)] " with marginals P and Q }

wreet

(a) Observed image with histogram (b) True image with histogram g, ue (c) Pathological image with his- %
v togram ppachol

FIGURE 1. Three images and their gray-scale histograms. For KL divergence, it holds that Ip,; (prue, v) = 5.05 >
L, (Bpathor,v) = 2.33, while in contrast, Wasserstein distance satisfies Wi (pterue, ) = 30.70 < W1 (ipathol, V) = 84.03.



Statistics Properties for DRO with
Wasserstein Distance

Consider the DRO problem

Xp = arger’g}ax {Pngllgn Ec~plh(x, C)]}
with D, = {P: W(P,P,) < 6,} and 6, = O(1/+/n). The
following properties hold:

o Asymptotic guarantee: P°(limp_,00 Xp = X*) = 1;

¢ Finite-sample guarantee: with high probability,

(Rrobust — Atrue)+ = O(1/n);
e Tractability: same complexity class as SAA. %




Tractability of DRO with Wasserstein
Distance

e The goal is to simplify the DRO problem

iy { 2 0]

Define ¢(¢) := h(x, ¢) for fixed x.




Tractability of DRO with Wasserstein
Distance

e The goal is to simplify the DRO problem
iy { 2 0]
Define ¢(¢) := h(x, ¢) for fixed x.
e Reformulate the worse-case expectation problem:
sup Ecplt(¢)]

subjectto  W(P,P,) < 4,

where W(P,Q) = ﬂeirr(lrg o E(¢, co)~r | C(C15C2)]-




Tractability of DRO with Wasserstein
Distance

Assume that the support of P is = := {(y, (2, ...,(k}:

K
max é P(Ck)e(Ck)

min Sy S (G G)

WGR{X"
S.t. 2,521 Tk,j = 15, Vi e [n]
SOy mh,i = P(Ck), Vk € [K].

s.t. < dp

¢ Rewrite expectation in the form of summation;




Tractability of DRO with Wasserstein
Distance

Replace the “min” in the constraint as “exist”:

K

max > P(Ck)A(K)

Ir € RF*" such that

k=1

K n
Z Zﬂk,iC(Ck, i) < on

k=1 i=1

K 1
Zﬁk”. = E’ Vi e [n]
k=1

> i = P(G), Yk € [K].
i=




Tractability of DRO with Wasserstein
Distance

Reformulate the “feasibility problem” as a LP problem:

K
max > P(Ck)A(CK)
k=1

P,reRK*"
K n
st )Y mkic(lk, ) < dn
k=1 i=1
Z”k’ =—, Vie|n]

Zwk,_ ), Vk € [K].




Representation of worse-case expectation
problem

P = candidate
distribution

r = transportation
plan

|

I/// P, = empirical

|

distribution




Tractability of DRO with Wasserstein
Distance

 Eliminate P(¢x) shown in the objective function:

K n
max Y > miil(C)

Kxn
TERLTT k=1 i=1

K n
st D> mhic(G &) < 6n

k=1 i=1

K 1
Zﬂk’i = E, Vi e [n]
k=1




Tractability of DRO with Wasserstein
Distance

 Eliminate P(¢x) shown in the objective function:

K n
max Y > miil(C)

Kxn
TERLTT k=1 i=1

K n
st D> mhic(G &) < 6n

k=1 i=1

K 1
ZTrkJ' = E, Vi e [n]
k=1

¢ By the duality theory for LP,

1 n
inf Aop + — S
ol 272

st Q) -A-e¢.G)<s, vieveez




Tractability of DRO with Wasserstein
Distance

e Worse-case expecation problem is a 1-dimensional convex
programming:

sup Ecp[€(¢)]
P: W(P,Pn)<én

“int it Zsup( -3¢ -l




Tractability of DRO with Wasserstein
Distance

e Worse-case expecation problem is a 1-dimensional convex
programming:

sup Ecp[f(C)]
P: W(P,B,)<dn

i Zsup( -3¢ -l

e The DRO problem can be formulated as a single
minimization:

it it Zsup( - Ni¢ -4l

¢ Finite convex program; .
e resulting problem is in the same complexity class as SAA™




DRO with Wasserstein Distance for Logistic
Regression

e Logistic regression suggests solving the ERM problem:
T
minimize D& N) =By, [0 6 V)]
i=1

where ((x,£,\) = log(1 + e %)
e DRO suggests solving the problem
minimize { sup E(&)\)NP[K(X,f,)\)]}
PeDp

e When labels are assumed to be error-free, DRO reduces
to the regularized logistic regression:

N
o1
min 1 > 00%,&A) + C x|

i=1



Numerical Performance of DRO
Application: portfolio selection problem®:

what we think to get ...

what we actually get ...
or or
« | DrO -
% -1 )
15 15
true
S
-2 -2
10 100 1000 10

100 1000
sample size

sample size

5Blanchet (2018), Distributionally Robust Mean-Variance-Portfolio



Summary of DRO with Wasserstein Distance

e The DRO model gives solution better than SAA.




Summary of DRO with Wasserstein Distance

e The DRO model gives solution better than SAA.

e The DRO model are tractable.




Summary of DRO with Wasserstein Distance

e The DRO model gives solution better than SAA.

e The DRO model are tractable.

e Well-understood in standard stochastic optimization
problem.
o Extension to general problems, e.g., un-supervised
learning, sequential decision problems, etc.
o Recently we are also applying this technique in multi-hop
communication problems. (Ongoing project with Prof.

Shenghao Yang)




Related References

Tractability of DRO model:
o Distributionally Robust Stochastic Optimization with
Wasserstein Distance, 2016.
o Data-driven Robust Optimization with Known Marginal
Distributions, 2017.
Statistical Propeties of DRO model:
o Wasserstein distributionally robust optimization: Theory
and applications in machine learning, 2019.
Applications of DRO model in supervised learning:
o Distributionally robust logistic regression
o Robust Wasserstein profile inference and applications to
machine learning

Introductory Videos about DRO:
https.//www.youtube.com/watch?v=b4lJENGAeEA




Application of Distributionally Robust
Optimization in Off-policy Policy Evaluation

&P GE 1)
TheChiese iy i Kong, Shenhe




Introduction to OPPE

e Data: trajectories collected under a behavior policy mp;
e Question: What would be the expected reward under

target policy 7?

Internet
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MDP Introduction
A MDP Environment: (S, A, P, R, dy) with v € (0,1);
e Expected reward:
E |:ZZ—:0 ’Ytrt]
Rz = lim —————
T—o0 Zt:O fyt
where

So ~ Oy, ar ~ (- | St), 1t :=r(St,ar), Sey1 ~ P(- | 81, ar).




MDP Introduction
A MDP Environment: (S, A, P, R, dy) with v € (0,1);
e Expected reward:
E |:ZZ—:0 ’Ytrt]
Rz = lim —————
T—o00 ZtZO fyt
where
So ~ o, at ~ 7(- | 8t), 1t := r(st, at), Sey1 ~ P(- | st, at).
¢ Average visitation distribution:
T ot
de(s) = lim —Et:O;Y dri(S),
T—o00 tho fyt
It follows that

Rr = E(s.a)a, [1(s,@)] = Zd n(als)r(s.a). P,




Introduction to OPPE

o Historial data {(s}, a}, (s')}){_,}"., induced by the known
behavior policy 7, is available:

Vi, Sp ~ do, ag ~ 7Tb(- ‘ St), St ~ P( ‘ St, at), = 1,. R T—1
e The goal is to evaluate reward for target policy r:

R = E(s 2. [r(sa]—Zd m(al s)r(s, a)

= E(s,a)~a,, [W(S)B(S, a) (s,a)],

where w(s) := 2L and §(s, a) = Z@S)
Oy, (S) 7p(als)




Classical Approach to OPPE

In order to evaluate R;:

R = E(s a)~a,, [W(S)B(s. a)r(s, )],

d.(s) x(als)
a8 = Tals)

with  w(s) =

» Replace d,, with its empirical distribution, based on
historical data;

o Estimate {w(s)}s by making use of the stationary equation:

w(s')d,(s") = (1 —’y)do(sl)—l—’yz d-,(s,a s)B(s, a)w(s), Vs.

s,a




Classical Approach to OPPE
In order to evaluate R;:
R, = E(s,a)wdwb [W(S)ﬁ(s, a)r(s, a)] ’

d.(s) x(als)
dry(s) &= Tals)

with  w(s) =

» Replace d,, with its empirical distribution, based on
historical data;

o Estimate {w(s)}s by making use of the stationary equation:

w(s')d,(s") = (1 —’y)do(sl)—l—’yz d-,(s,a s)B(s, a)w(s), Vs.

s,a

d-(8") = (1 —)do(s




Challenge for Estimating the Ratio

The importance ratio {w(s)}s satisifes stationary equation:

w(8')0r, (') = (1=7)0o(8) 47D _ (s, 2,8)B(s, a)w(s), Vs €.

s,a

e Challenge: Only samples from {d,,(s,a,s')}sas are
available;

o Rescue: Introduce test functions to reduce the variance. ’
The stationary equation holds if and only if for any f,

E(s a,5)~dy, () () =7B(s, @)w(s)f(s)] = (1-7)Esq[f(S)]-

’Qiang, Liu. Breaking the Curse of Horizon: Infinite-Horizon Off-Policy.t2::
Estimation




Distributionally Robust Approach to OPPE

We propose the following distributionally robust and optimistic
formulation:

min/linax R =Y u(s)mp(al s)w(s)s(s, a)r(s, a)

subjectto  w(s')u(s") = (1 —~v)ad(s')
+7) u(s,a s)B(s,aw(s), vs' €S

weP.

« Joint estimation framework for d., and w(s);

« Restrict p, the estiamte for dr,, within the ambiguity set r“’;
e Intractable bilinear optimization problem, but: e




Distributionally Robust Approach to OPPE

We propose the following distributionally robust and optimistic
formulation:

min /max R =Y u(s)mp(a| s)w(s)s(s, a)r(s, a)
Wi s,a
subjectto  w(s')u(s') = (1 —v)do(s')
+7) u(s,a s)B(s,aw(s), vs' €S

weP.

« Joint estimation framework for d., and w(s);

« Restrict p, the estiamte for dr,, within the ambiguity set m
e Intractable bilinear optimization problem, but: e
e w can be uniquely determined for fixed p.




Tractable Formulation to Robust OPPE

e By the change of variable «(s) = u(s)w(s), the max-max
problem can be equivalently formulated as:

max Z k(8) Z?T(a | 8)r(s, a)
subjectto  x(s') = (1 —~)do(s)

ERDILC) [Z M(Z’(Z’)Sl)ﬂ(s, a)|. vs'es

neP




Tractable Formulation to Robust OPPE

e By the change of variable «(s) = u(s)w(s), the max-max
problem can be equivalently formulated as:

max Y k(s)) _m(al| s)r(s, a)

Kol
’ a

subjectto  x(s') = (1 —~)do(s)

+9> k(s) [Z Wﬂ(s, a)}, vs' e S

neP

e Special design of ambiguity set P to ensure tractability:
P = ®sesPs

= @ses{u(- 1 8): W(u(,-| 8). | 8)) <




Tractable Formulation to Robust OPPE

Taking the duality for the inner maximization problem, we have
Max,Min, (1 —7) ) v(s)do(s)

S
subjectto v(s) > Zw(a | $)r(s, a)

+'yz (a8 | s)v(s)B(s a), Vs

(a,s")

e P =oses{u(,-18): W, |8).al|9)) < Vs ).




Tractable Formulation to Robust OPPE

Applying the s-rectangularity of P, we have
Min,  (1-7) ) v(s)do(s)
S
subjectto v(s) > n(a|s)r(s, a)
a

+~ Max_ Y p(a s |s)v(s)B(s,a), Vs
ulsjeps G2

Po={u(,-18): W(n(-|9).a(-| ) < bs .

e Based on the fact that the uncertainty within constriants is
uncoupled.




Tractable Formulation to Robust OPPE

Lemma: LP with Fixed Point Equation

Suppose that f is a component-wise non-decreasing con-
traction mapping with the unique fixed point x*. Then for

fixed c € R7,

max{CTX . xR, x< f(x)} —cTx*.

e Example: the policy evaluation problem in standard MDP
reduces to the following LP problem:

minimize (1 — 7)Y, v(s)do(s)
subjectto v(s) > T[v](s) 55
with  TIV](s) = r:(8) + 7> v(S) > m(al s)P(s' | s, a




Tractable Formulation to Robust OPPE

e By making use of this technique lemma, we argue at
optimality the constraint is tight:

min (1-9) 3 V(s)oh(s)

S

st. v(s) > w(als)r(s,a)+~V(s), Vs €S,

a

where V(s):= max > u(as | s)v(s)B(s,a)
(-5 |8)EPs (a8)

e The solution can be obtained by solving the fixed-point
equation

v(s)=> mw(al|s)r(s,a) +~V(s), Vs € S.

a




Algorithm for Optimistic Value Iteration

For each iteration:
e For each s € S, compute V(s) by:

V(s)= max > u(as |s)v(s)p(s,a)

H(.’.‘S)Eps (a,s’)

= min {)\193—1—
A>0

l ) max {V(S/)ﬁ(&a)—AC((aasl)a(aiaS;))}}

Ng P acA,s'eS
e For each s € S, update

v(s) « Y m(a|s)r(s,a)+~- V(s)




Theoretical Gurantees for Robust OPPE

Lemma: Sensitivity Analysis for Value lteration

e Denote by 7 the Bellman operator with the true
conditional probability d,, (a, s’ | s):

TIVI(s) = YXam(al s)r(s,a) + 7>y Poa v(s))
with P =" dx,(a s | s)B(s, a)
« Denote by 7 a perturbation of 7 so that
* TVI(s) = TIvI(s) + ev(s);
o ¢,(8) <e(s)forallse Sandv.
Let v*, ¥* be the solutions to the fixed point of 7 and 7
respectively. Then

VY < (/—")/Ptrue)idle.




Implications for the Lemma

e Our algorithm is simply the perturbation of the underlying
Bellman operator:

v(s)=> m(a|s)r(s,a)+~V(s), Vs€S

a

V(s)= max Y [u(a, s' | s)3(s, a)] v(s')

u(-Is)ePs 5
~ Z Py v(s)
s/
Ps = { (- 18): W(n(,- | 8). - |8)) < vs .

e Build the uniform bound for the perturbation gives the
theoretical gurantees.




Proof for the Lemma

« Define #(X) as the k-th iteration point for the approximate
value iteration algorithm, then we have the relation
pED — v = T — 71v
= TV — TIv*] + ey
<TI0 = TIv] + e
— 7Ptrue(v(k) o V*) +e

e Applying the relation inductively, we have

V(n Z —k—1 Ptrue n—k— 16+,Yn(Ptrue)n(‘7(0) - V*)
k=0

Taking the limit n — oo completes the proof.



Uniform Bound for Perturbation

e The underlying true value function is returned by solving
the fixed point equation

v(s) =) m(al|s)r(s,a)+y > dr(a s |s)[B(s,a)v(s)], Vs.
a (as)

e The optimistic/robust value iteration is to solve

v(s) = Zw(a\ s)r(s, @)+~ max / min Z w(a, s | s)[p(s,a)v(s)

a H('v"s)eps (a,8)




Uniform Bound for Perturbation
e The underlying true value function is returned by solving
the fixed point equation
v(s) =) (@l s)r(s,a)+y ) d(as | 9)B(s, av(s)], Vs.
a (as')
e The optimistic/robust value iteration is to solve

v(s) = Zw(a\ s)r(s, @)+~ max / min Z w(a, s | s)[p(s,a)v(s)

a LL(‘,"S)EPS (a’s/)
o Define f(a,s’) = 5(s, a)v(s') for fixed s. Then with high
probability,

Ep (@ s)] < max [f(@s)]+ 2
P: W(P,P,) n

B [f(@s)] > min [f(as) -2
P: W(P,B,) n



Theoretical Gurantees for Robust OPPE

Theorem 2: Non-asymptotic Confidence Bounds

Denote Roptimistc and  Rropust @s the reward for opti-
mistic/robust estimate for the underlying reward R,.. With
high probability,

6
R < Roptimistic + B Z (I Ptrue)s s'd (S)

seS,s'eS
6
RTI' > Rrobust - E Z (I 7Ptrue)s s/dO( )
ses,s'eS

Moreover, Roptimistic — Riobust = O(1 /\/ﬁ)




Numerical Simulation
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Numerical Simulation
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Conclusion

e Our contributions involve:
e Exact tractable reformulations for the distributionally robust
and optimistic off-policy evaluation.
o First non-asymptotic confidence interval estimate for
infinite-horizon OPPE.
¢ Generalization bound for Wasserstein distributionally robust

optimization in discrete space.




Conclusion

e Our contributions involve:
e Exact tractable reformulations for the distributionally robust
and optimistic off-policy evaluation.
o First non-asymptotic confidence interval estimate for
infinite-horizon OPPE.
¢ Generalization bound for Wasserstein distributionally robust

optimization in discrete space.
e Future work would be:

o Extend its applicability into general problems;

2|
N

9;

3
b

¢ Design more efficient algorithm to solve the problem fasterg
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