Off-Policy Evaluation: A Distributionally Robust Approach

Speaker: Jie Wang

August 12, 2020

香港ヤえた守(米利) The Chinese University of Hong Kong, Shenzho

Outline

- Distributionally Robust Optimization
 - Tractable formulation, history, theory
- A Recent Application in Off-policy Policy Evaluation
 - Tractable formulation, theory, extensions
- Summary

The talk involves contributions from:

Prof. Rui Gao (UT Austin), Prof. Hongyuan Zha (CUHK-SZ), Prof. Xinyun Chen (CUHK-SZ)

Backgroud about Distributionally Robust Optimization: Tractable Formulation and Statistics

香 港 甲 丈 夫 芽 (珠 圳) The Chinese University of Hong Kong, Shenzho

Introduction to Stochastic Optimization

Consider the stochastic optimization problem as follows:

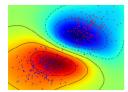
$$maximize_{x \in \mathcal{X}} \qquad \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x, \zeta)] \tag{1}$$

with \mathcal{X} being convex.

Applications:

Supply Chain Mgmt.

Portfolio Mgmt.



Machine Learning

(日)

香港中文大學(深圳) The Chinese University of Hong Kong, Shenah

Introduction to Stochastic Optimization

Consider the stochastic optimization problem as follows:

$$maximize_{x \in \mathcal{X}} \qquad \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x, \zeta)] \tag{2}$$

with \mathcal{X} being convex.

- Prospective
 - Expected value is a good measure of performance;
 - Solve by sample average approximation (SAA).
- Challenge
 - Difficult to know the exact distribution of *ζ*;
 - Solution can be risky by SAA;
 - SAA may result in sub-optimal solutions.

春港中文大學(深圳) The Chinese University of Hong Kong, Shenal

Risky: Stochastic Optimization with Noises

Adversarial attacks for classification problem ¹:

 \boldsymbol{x}

"panda"

57.7% confidence

 $+.007 \times$

$$\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$$

"nematode" 8.2% confidence

 $\begin{array}{c} \boldsymbol{x} + \\ \epsilon \mathrm{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)) \\ \quad \text{``gibbon''} \\ 99.3 \ \% \ \mathrm{confidence} \end{array}$

(a)

春港中文大學(深圳) The Chinese University of Hong Kong, Shenah

¹Ian Goodfellow 2015

Picture for Gibbon

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

Sub-optimality: the Optimizer's Curse

• Suppose $\hat{\mathbb{P}}_n$ is an unbiased estimator of \mathbb{P} :

$$\mathbb{E}_{\otimes}[\hat{\mathbb{P}}_n] = \mathbb{P}.$$

 The optimization results by SAA approach, i.e., R_{SAA}, tend to be *pessimistic biased*:

$$\begin{split} \mathbb{E}_{\otimes}\big[\mathcal{R}_{\mathsf{SAA}}\big] &= \mathbb{E}_{\otimes}\bigg[\max_{x\in\mathcal{X}}\mathbb{E}_{\zeta\sim\hat{\mathbb{P}}_n}[h(x,\zeta)]\bigg] \\ &\geq \max_{x\in\mathcal{X}}\mathbb{E}_{\otimes}\bigg[\mathbb{E}_{\zeta\sim\hat{\mathbb{P}}_n}[h(x,\zeta)]\bigg] \\ &= \mathcal{R}_{\mathsf{true}}. \end{split}$$

香港中丈大学(汛圳) The Chinese University of Hong Kong, Shenzh

Testing Errors for Supervised Learning

Consider the supervised learning problem:

$$\min_{f \in \mathcal{F}} \mathbb{E}_{(x,y) \sim \mathbb{P}_{\text{true}}}[\ell(f(x), y)]$$

People tackle this problem by the SAA approach:

$$\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim \hat{\mathbb{P}}_n}[\ell(f_{\theta}(x), y)], \text{ where } \hat{\mathbb{P}}_n = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}.$$

Decomposition of errors in machine learning ²:

²Ruoyu Sun, Optimization for deep learning: theory and algorithms (2019) ****(3.4)

・ コット (雪) (小田) (コット 日)

Motivation for DRO: Distributional Uncertainty

• Out-of-Sample performance of SAA:

$$\sup_{x} \left| \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x,\zeta)] - \mathbb{E}_{\zeta \sim \hat{\mathbb{P}}_{n}}[h(x,\zeta)] \right|$$

$$\leq C_{1} \sqrt{\frac{\operatorname{Var}[h(x,\zeta)]}{n}} + C_{2} \cdot \frac{1}{n} \mathbb{E} \left[\sup_{x \in \mathcal{X}} \sum_{i=1}^{n} \sigma_{i} h(x,\zeta_{i}) \right].$$

 Distributional Uncertainty: it is difficult to obtain P, but related samples or statistical information are available.

How to develop an algorithm that cooperates the distributional uncertainty?

春 港 中 文 大 學 (深 圳) Te Chinese University of Hong Kong, Shenzh

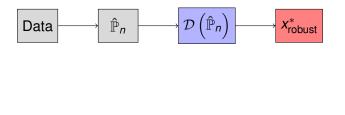
< □ > < □ > < □ > < □ > < □ > < □ >

Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) model:

$$\mathsf{maximize}_{x \in \mathcal{X}} \quad \min_{\mathbb{P} \in \mathcal{D}} \ \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x, \zeta)]$$

where $\ensuremath{\mathcal{D}}$ denotes a collection of distributions. We call it the ambiguity set.



• □ ▶ • □ ▶ • □ ▶ •

Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) model:

 $maximize_{x \in \mathcal{X}} \min_{\mathbb{P} \in \mathcal{D}} \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x, \zeta)]$

where $\ensuremath{\mathcal{D}}$ denotes a collection of distributions. We call it the ambiguity set.

Guidance for choosing \mathcal{D} :

- Tractability (fast algorithm available);
- Statistical Theoretical Guarantees;
- Numerical Performance (compared with the benchmark cases, such as SAA).

春港中文大學(深圳) The Chinese University of Hong Kong, Shenah

イロト 不良 とくほ とくほう 二日

History of DRO

- DRO is first introduced in the context of inventory control problem with a single random demand variable³.
- DRO with moment bounds⁴:

$$\mathcal{D} = \left\{ \mathbb{P} \middle| \begin{array}{l} (\mathbb{E}_{\mathbb{P}}[\zeta] - \mu_0)^T \Sigma_0^{-1} (\mathbb{E}_{\mathbb{P}}[\zeta] - \mu_0) \leq \gamma_1 \\ \mathbb{E}_{\mathbb{P}}[(\zeta - \mu_0)(\zeta - \mu_0)^T] \leq \gamma_2 \Sigma_0 \end{array} \right\}$$

• DRO with KL-divergence/f-divergence balls⁵:

$$\mathcal{D} = \left\{ \mathbb{P} \Big| D(\mathbb{P} \| \hat{\mathbb{P}}_n) \leq \gamma \right\},$$

where $D(\cdot, \cdot)$ can be the KL-divergence metric, or *f*-divergence metric.

 ³Scarf, H. (1958) A Min-Max Solution of an Inventory Problem.
 ⁴Erick Delage, Y. (2008) Distributionally Robust Optimization under Moment Uncertainty with Application to Data-Driven Problems
 ⁵Duchi (2016), Statistics of Robust Optimization: A Generalized Empirical Approach

Introduction to Wasserstein Distance

• We set the ambiguity set to be

$$\mathcal{D} = \left\{ \mathbb{P}: W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \delta \right\}$$

where $W(\cdot, \cdot)$ refers to the Wasserstein metric:

$$W(\mathbb{P},\mathbb{Q}) = \sup_{g\in \operatorname{Lip}_1} \left|\int g(x)d\mathbb{P}(x) - \int g(x)d\mathbb{Q}(x)\right|$$

- Wasserstein distance is a *two-sample* formula, and for its approximation, we need samples from both ℙ and ℚ.
- If one of ℙ or ℚ is given in an explicit density form, the Wasserstein distance is not convenient to use.

春港中文大學(深圳) The Chinese University of Hong Kong, Shenzi

Comparison of Different Probability Metrics

• *f*-divergence is a *two-density* formula:

$$D_f(\mathbb{P}\|\mathbb{Q}) = \int_\Omega f(d\mathbb{P}/d\mathbb{Q})d\mathbb{Q};$$

• Wasserstein distance is a *two-sample* formula:

$$W(\mathbb{P},\mathbb{Q}) = \sup_{g\in Lip_1} \left| \int g(x)d\mathbb{P}(x) - \int g(x)d\mathbb{Q}(x) \right|.$$

• Stein discrepancy is a one-sample-one-density formula:

$$S(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}} \left| \int \mathcal{A}_{\mathbb{P}}[f(x)] d\mathbb{Q}(x) \right|$$

where $\mathcal{A}_{\mathbb{P}}[f(x)] = f(x) \nabla_x \log \mathbb{P}(x) + \nabla_x f(x)$.

香港中文大學(深圳) The Chinese University of Hong Kong, Shenah

Introduction to Wasserstein Distance By the duality theory in LP,

 $W(\mathbb{P},\mathbb{Q}) = \inf_{\pi} \left\{ \mathbb{E}_{\pi} \left[c(\zeta_1,\zeta_2) \right] : \right\}$

 π is a distribution of ζ_1 and ζ_2 with marginals \mathbb{P} and \mathbb{Q} .

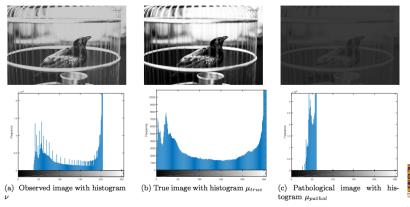


FIGURE 1. Three images and their gray-scale histograms. For KL divergence, it holds that $I_{\phi_{KL}}(\mu_{true},\nu) = 5.05 > \frac{1}{100} I_{\phi_{KL}}(\mu_{pathol},\nu) = 2.33$, while in contrast, Wasserstein distance satisfies $W_1(\mu_{true},\nu) = 30.70 < W_1(\mu_{pathol},\nu) = 84.03$.

of Hong Kong, Sheraher

Statistics Properties for DRO with Wasserstein Distance

Theorem 1

Consider the DRO problem

$$\hat{x}_n = \underset{x \in \mathcal{X}}{\operatorname{arg\,max}} \left\{ \min_{\mathbb{P} \in \mathcal{D}_n} \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x, \zeta)] \right\}$$

with $\mathcal{D}_n = \{\mathbb{P} : W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \delta_n\}$ and $\delta_n = O(1/\sqrt{n})$. The following properties hold:

- Asymptotic guarantee: $\mathbb{P}^{\infty}(\lim_{n\to\infty} \hat{x}_n = x^*) = 1;$
- Finite-sample guarantee: with high probability, $(R_{\text{robust}} - R_{\text{true}})_+ = O(1/n);$
- Tractability: same complexity class as SAA.

・ コット (雪) (小田) (コット 日)

• The goal is to simplify the DRO problem

$$\min_{x\in\mathcal{X}} \left\{ \sup_{\mathbb{P}\in\mathcal{D}_n} \mathbb{E}[h(x,\zeta)] \right\}$$

Define $\ell(\zeta) := h(x, \zeta)$ for fixed *x*.

香港平又大宇(米利) The Chinese University of Hong Kong, Sherush

The goal is to simplify the DRO problem

$$\min_{x\in\mathcal{X}} \left\{ \sup_{\mathbb{P}\in\mathcal{D}_n} \mathbb{E}[h(x,\zeta)] \right\}$$

Define $\ell(\zeta) := h(x, \zeta)$ for fixed *x*.

• Reformulate the worse-case expectation problem:

$$\begin{split} \sup_{\mathbb{P}} & \mathbb{E}_{\zeta \sim \mathbb{P}}[\ell(\zeta)] \\ \text{subject to} & W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \delta_n \\ \text{where} & W(\mathbb{P}, \mathbb{Q}) = \inf_{\pi \in \Gamma(\mathbb{P}, \mathbb{Q})} \mathbb{E}_{(\zeta_1, \zeta_2) \sim \pi} \big[\mathcal{C}(\zeta_1, \zeta_2) \big]. \end{split}$$

香 港 中 文 大 芽 (深 圳) The Chinese University of Hong Kong, Shenzh

Assume that the support of \mathbb{P} is $\Xi := \{\zeta_1, \zeta_2, \dots, \zeta_K\}$:

$$\max_{\mathbb{P}} \sum_{k=1}^{K} \mathbb{P}(\zeta_{k})\ell(\zeta_{k})$$

s.t.
$$\begin{cases} \min_{\pi \in \mathbb{R}_{+}^{K \times n}} \sum_{k=1}^{K} \sum_{i=1}^{n} \pi_{k,i} c(\zeta_{k}, \hat{\zeta}_{i}) \\ \text{s.t.} \sum_{k=1}^{K} \pi_{k,i} = \frac{1}{n}, \forall i \in [n] \\ \sum_{i=1}^{n} \pi_{k,i} = \mathbb{P}(\zeta_{k}), \forall k \in [K]. \end{cases} \leq \delta_{n}$$

- Rewrite expectation in the form of summation;
- π is the joint distribution between \mathbb{P} and $\hat{\mathbb{P}}_n := \frac{1}{n} \sum_{i=1}^n \delta_{\hat{\zeta}_i}$.

香港中文大學(深圳) he Chinese University of Hong Kong, Shenzi

. .

Replace the "min" in the constraint as "exist":

$$\max_{\mathbb{P}} \sum_{k=1}^{K} \mathbb{P}(\zeta_{k})\ell(\zeta_{k})$$
$$\exists \pi \in \mathbb{R}^{K \times n}_{+} \text{ such that } \sum_{k=1}^{K} \sum_{i=1}^{n} \pi_{k,i} \mathcal{C}(\zeta_{k}, \hat{\zeta}_{i}) \leq \delta_{n}$$
$$\sum_{k=1}^{K} \pi_{k,i} = \frac{1}{n}, \ \forall i \in [n]$$
$$\sum_{i=1}^{n} \pi_{k,i} = \mathbb{P}(\zeta_{k}), \ \forall k \in [K].$$

香 港 甲 丈 夫 芽 (采 圳) The Chinese University of Hong Kong, Shenzh

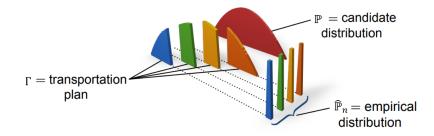
Reformulate the "feasibility problem" as a LP problem:

$$\max_{\mathbb{P}, \pi \in \mathbb{R}^{K \times n}_{+}} \sum_{k=1}^{K} \mathbb{P}(\zeta_{k})\ell(\zeta_{k})$$

s.t.
$$\sum_{k=1}^{K} \sum_{i=1}^{n} \pi_{k,i} c(\zeta_{k}, \hat{\zeta}_{i}) \leq \delta_{n}$$
$$\sum_{k=1}^{K} \pi_{k,i} = \frac{1}{n}, \ \forall i \in [n]$$
$$\sum_{i=1}^{n} \pi_{k,i} = \mathbb{P}(\zeta_{k}), \ \forall k \in [K].$$

香港甲丈夫芽(深圳) The Chinese University of Hong Kong, Shenzh

Representation of worse-case expectation problem



• Eliminate $\mathbb{P}(\zeta_k)$ shown in the objective function:

$$\max_{\pi \in \mathbb{R}_{+}^{K \times n}} \sum_{k=1}^{K} \sum_{i=1}^{n} \pi_{k,i} \ell(\zeta_{k})$$

s.t.
$$\sum_{k=1}^{K} \sum_{i=1}^{n} \pi_{k,i} c(\zeta_{k}, \hat{\zeta}_{i}) \leq \delta_{n}$$
$$\sum_{k=1}^{K} \pi_{k,i} = \frac{1}{n}, \forall i \in [n]$$

香 港 甲 丈 夫 芽 (采 圳) The Chinese University of Hong Kong, Shenzh

• Eliminate $\mathbb{P}(\zeta_k)$ shown in the objective function:

$$\max_{\pi \in \mathbb{R}_{+}^{K \times n}} \sum_{k=1}^{K} \sum_{i=1}^{n} \pi_{k,i} \ell(\zeta_{k})$$

s.t.
$$\sum_{k=1}^{K} \sum_{i=1}^{n} \pi_{k,i} c(\zeta_{k}, \hat{\zeta}_{i}) \leq \delta_{n}$$
$$\sum_{k=1}^{K} \pi_{k,i} = \frac{1}{n}, \ \forall i \in [n]$$

• By the duality theory for LP,

$$\inf_{\substack{\lambda \ge 0, s_i, i \in [n] \\ \text{s.t.}}} \lambda \delta_n + \frac{1}{n} \sum_{i=1}^n s_i$$

$$\text{s.t.} \quad \ell(\zeta) - \lambda \cdot c(\zeta, \hat{\zeta}_i) \le s_i, \ \forall i \in [n], \forall \xi \in \Xi$$

Worse-case expecation problem is a 1-dimensional convex programming:

$$\sup_{\mathbb{P}: W(\mathbb{P}, \hat{\mathbb{P}}_n) \le \delta_n} \mathbb{E}_{\zeta \sim \mathbb{P}}[\ell(\zeta)]$$

=
$$\inf_{\lambda \ge 0} \lambda \delta_n + \frac{1}{n} \sum_{i=1}^n \sup_{\zeta} \left(\ell(\zeta) - \lambda \|\zeta - \hat{\zeta}_i\| \right).$$

春 港 中 文 大 學 (深 圳) The Chinese University of Hong Kong, Shenzh

Worse-case expecation problem is a 1-dimensional convex programming:

$$\sup_{\substack{\mathbb{P}: \ W(\mathbb{P},\hat{\mathbb{P}}_n) \leq \delta_n \\ \lambda \geq 0}} \mathbb{E}_{\zeta \sim \mathbb{P}}[\ell(\zeta)] \\ = \inf_{\lambda \geq 0} \quad \lambda \delta_n + \frac{1}{n} \sum_{i=1}^n \sup_{\zeta} \left(\ell(\zeta) - \lambda \|\zeta - \hat{\zeta}_i\| \right).$$

• The DRO problem can be formulated as a single minimization:

$$\inf_{x\in\mathcal{X},\lambda\geq 0}\lambda\delta_n+\frac{1}{n}\sum_{i=1}^n\sup_{\zeta}\bigg(h(x,\zeta)-\lambda\|\zeta-\hat{\zeta}_i\|\bigg).$$

- Finite convex program;
- resulting problem is in the same complexity class as SAA

DRO with Wasserstein Distance for Logistic Regression

• Logistic regression suggests solving the ERM problem:

$$\begin{array}{ll} \text{minimize} & \displaystyle \frac{1}{n} \sum_{i=1}^{n} \ell(x,\xi_i,\lambda_i) := \mathbb{E}_{(\xi,\lambda) \sim \hat{\mathbb{P}}_n}[\ell(x,\xi,\lambda)] \\ \\ \text{where} & \displaystyle \ell(x,\xi,\lambda) = \log(1 + e^{-\lambda x^T \xi}) \end{array} \end{array}$$

DRO suggests solving the problem

minimize
$$\left\{\sup_{\mathbb{P}\in\mathcal{D}_n}\mathbb{E}_{(\xi,\lambda)\sim\mathbb{P}}[\ell(x,\xi,\lambda)]\right\}$$

• When labels are assumed to be error-free, DRO reduces to the regularized logistic regression:

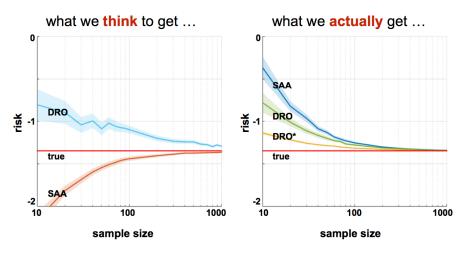
$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} \ell(x,\xi_i,\lambda_i) + C \cdot \|x\|_*.$$

春港中文大學(深圳) he Chinese University of Hong Kong, Shenzhe

イロト イポト イヨト イヨト

Numerical Performance of DRO

Application: portfolio selection problem⁶:



The Chinese University of Hong Kong, Shenzhen

⁶Blanchet (2018), Distributionally Robust Mean-Variance Portfolio (= >

Summary of DRO with Wasserstein Distance

• The DRO model gives solution better than SAA.

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhe

Summary of DRO with Wasserstein Distance

- The DRO model gives solution better than SAA.
- The DRO model are tractable.

春港中文大學(深圳) The Chinese University of Hong Kong, Sheraha

Summary of DRO with Wasserstein Distance

- The DRO model gives solution better than SAA.
- The DRO model are tractable.
- Well-understood in standard stochastic optimization problem.
 - Extension to general problems, e.g., un-supervised learning, sequential decision problems, etc.
 - Recently we are also applying this technique in multi-hop communication problems. (Ongoing project with Prof. Shenghao Yang)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Related References

- Tractability of DRO model:
 - Distributionally Robust Stochastic Optimization with Wasserstein Distance, 2016.
 - Data-driven Robust Optimization with Known Marginal Distributions, 2017.
- Statistical Propeties of DRO model:
 - Wasserstein distributionally robust optimization: Theory and applications in machine learning, 2019.
- Applications of DRO model in supervised learning:
 - Distributionally robust logistic regression
 - Robust Wasserstein profile inference and applications to machine learning
- Introductory Videos about DRO: https://www.youtube.com/watch?v=b4IJENGAeEA

春港中文大學(深圳) The Chinese University of Hong Kong, Shenzh

э

・ロット (雪) ・ (日) ・ (日)

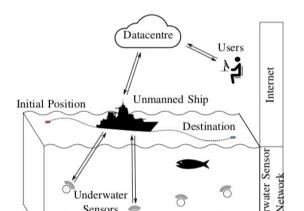
Application of Distributionally Robust Optimization in Off-policy Policy Evaluation

香 港 甲 丈 夫 芽 (栄 圳) The Chinese University of Hong Kong, Shenzhe

Introduction to OPPE

- Data: trajectories collected under a behavior policy π_b;
- Question: What would be the expected reward under

target policy π ?



MDP Introduction

A MDP Environment: $\langle S, A, P, R, d_0 \rangle$ with $\gamma \in (0, 1)$;

• Expected reward:

$$R_{\pi} := \lim_{T \to \infty} \frac{\mathbb{E}\left[\sum_{t=0}^{T} \gamma^t r_t\right]}{\sum_{t=0}^{T} \gamma^t}$$

where

$$s_0 \sim d_0, a_t \sim \pi(\cdot \mid s_t), r_t := r(s_t, a_t), s_{t+1} \sim P(\cdot \mid s_t, a_t).$$

MDP Introduction

A MDP Environment: $\langle S, A, P, R, d_0 \rangle$ with $\gamma \in (0, 1)$;

• Expected reward:

$$R_{\pi} := \lim_{T \to \infty} \frac{\mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r_{t}\right]}{\sum_{t=0}^{T} \gamma^{t}}$$

where

$$s_0 \sim d_0, a_t \sim \pi(\cdot \mid s_t), r_t := r(s_t, a_t), s_{t+1} \sim P(\cdot \mid s_t, a_t).$$

Average visitation distribution:

$$d_{\pi}(s) = \lim_{T \to \infty} rac{\sum_{t=0}^{T} \gamma^t d_{\pi,t}(s)}{\sum_{t=0}^{T} \gamma^t}.$$

It follows that

$$\mathcal{R}_{\pi} = \mathbb{E}_{(s,a)\sim d_{\pi}}\left[r(s,a)
ight] = \sum_{s,a} d_{\pi}(s)\pi(a\mid s)r(s,a).$$

春港中文大學(深圳) he Chinese University of Hong Kong, Shenzh

Introduction to OPPE

• Historial data $\{(s_t^i, a_t^i, (s')_t^i)_{t=0}^T\}_{i=1}^N$ induced by the known behavior policy π_b is available:

$$\forall i, s_0 \sim d_0, a_t \sim \pi_b(\cdot \mid s_t), s_{t+1} \sim P(\cdot \mid s_t, a_t), \quad t = 1, \dots, T-1$$

The goal is to evaluate reward for target policy π:

$$egin{aligned} &\mathcal{R}_{\pi} = \mathbb{E}_{(s,a)\sim d_{\pi}}\left[r(s,a)
ight] = \sum_{s,a} d_{\pi}(s)\pi(a\mid s)r(s,a) \ &= \mathbb{E}_{(s,a)\sim d_{\pi_b}}ig[w(s)eta(s,a)r(s,a)ig], \end{aligned}$$

where $\omega(s) := \frac{d_{\pi}(s)}{d_{\pi_b}(s)}$ and $\beta(s, a) = \frac{\pi(a|s)}{\pi_b(a|s)}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Classical Approach to OPPE

In order to evaluate R_{π} :

$$\begin{aligned} & R_{\pi} = \mathbb{E}_{(s,a) \sim d_{\pi_b}} \big[w(s) \beta(s,a) r(s,a) \big], \\ & \text{with} \quad \omega(s) = \frac{d_{\pi}(s)}{d_{\pi_b}(s)}, \beta(s,a) = \frac{\pi(a \mid s)}{\pi_b(a \mid s)} \end{aligned}$$

- Replace *d*_{πb} with its empirical distribution, based on historical data;
- Estimate {ω(s)}_s by making use of the stationary equation:

$$w(s')d_{\pi_b}(s') = (1-\gamma)d_0(s') + \gamma \sum_{s,a} d_{\pi_b}(s,a,s')\beta(s,a)w(s), \quad \forall s'.$$

香 港 甲 丈 夫 芽 (采 圳) The Chinese University of Hong Kong, Shenzh

Classical Approach to OPPE

In order to evaluate R_{π} :

$$\begin{aligned} & R_{\pi} = \mathbb{E}_{(s,a) \sim d_{\pi_b}} \big[w(s) \beta(s,a) r(s,a) \big], \\ & \text{with} \quad \omega(s) = \frac{d_{\pi}(s)}{d_{\pi_b}(s)}, \beta(s,a) = \frac{\pi(a \mid s)}{\pi_b(a \mid s)} \end{aligned}$$

- Replace *d*_{πb} with its empirical distribution, based on historical data;
- Estimate {ω(s)}_s by making use of the stationary equation:

$$\mathsf{w}(s')\mathsf{d}_{\pi_b}(s') = (1-\gamma)\mathsf{d}_0(s') + \gamma \sum_{s,a} \mathsf{d}_{\pi_b}(s,a,s')eta(s,a)\mathsf{w}(s), \quad orall s'$$

• Substitute $d_{\pi_b}(s, a, s')$ with $d_{\pi_b}(s)\pi_b(a \mid s)P(a, s' \mid s)$ gives

$$d_{\pi}(s') = (1 - \gamma)d_0(s') + \sum_{s} d_{\pi}(s)P^{\pi}(s' \mid s), \quad orall s'$$

春港中文大學(深圳) The Chinese University of Hong Kong, Shenzh

Challenge for Estimating the Ratio

The importance ratio $\{\omega(s)\}_s$ satisifes stationary equation:

$$\omega(s')d_{\pi_b}(s') = (1-\gamma)d_0(s') + \gamma \sum_{s,a} d_{\pi_b}(s,a,s')\beta(s,a)\omega(s), \quad \forall s' \in \mathcal{S}.$$

- Challenge: Only samples from {d_{πb}(s, a, s')}_{s,a,s'} are available;
- **Rescue**: Introduce test functions to reduce the variance. ⁷ The stationary equation holds if and only if for any *f*,

$$\mathbb{E}_{(\boldsymbol{s},\boldsymbol{a},\boldsymbol{s}')\sim d_{\pi_b}}[\omega(\boldsymbol{s}')f(\boldsymbol{s}')-\gamma\beta(\boldsymbol{s},\boldsymbol{a})\omega(\boldsymbol{s})f(\boldsymbol{s})]=(1-\gamma)\mathbb{E}_{\boldsymbol{s}\sim d_0}[f(\boldsymbol{s})].$$

⁷Qiang, Liu. Breaking the Curse of Horizon: Infinite-Horizon Off-Policy

Distributionally Robust Approach to OPPE

We propose the following distributionally robust and optimistic formulation:

$$\begin{split} \min_{\substack{w,\mu \\ w,\mu}} & R_{\pi} := \sum_{s,a} \mu(s) \pi_b(a \mid s) w(s) \beta(s,a) r(s,a) \\ \text{subject to} & w(s') \mu(s') = (1 - \gamma) d_0(s') \\ & + \gamma \sum_{s,a} \mu(s,a,s') \beta(s,a) w(s), \ \forall s' \in \mathcal{S} \\ & \mu \in \mathcal{P}. \end{split}$$

- Joint estimation framework for d_{π_b} and $\omega(s)$;
- Restrict μ , the estiamte for d_{π_b} , within the ambiguity set \mathcal{P} :
- Intractable bilinear optimization problem, but:

香港中文大學(深圳) The Chinese University of Hong Kong, Shenz

・ロット (雪) (日) (日)

Distributionally Robust Approach to OPPE

We propose the following distributionally robust and optimistic formulation:

$$\begin{split} \min_{w,\mu} & \text{max} \quad R_{\pi} := \sum_{s,a} \mu(s) \pi_b(a \mid s) w(s) \beta(s,a) r(s,a) \\ \text{subject to} \quad w(s') \mu(s') = (1 - \gamma) d_0(s') \\ & + \gamma \sum_{s,a} \mu(s,a,s') \beta(s,a) w(s), \ \forall s' \in \mathcal{S} \\ & \mu \in \mathcal{P}. \end{split}$$

- Joint estimation framework for d_{π_b} and $\omega(s)$;
- Restrict μ , the estiamte for d_{π_b} , within the ambiguity set \mathcal{P} :

- Intractable bilinear optimization problem, but:
 - w can be uniquely determined for fixed μ .

 By the change of variable κ(s) = μ(s)w(s), the max-max problem can be equivalently formulated as:

$$\begin{array}{ll} \max_{\kappa,\mu} & \sum_{s} \kappa(s) \sum_{a} \pi(a \mid s) r(s,a) \\ \text{subject to} & \kappa(s') = (1 - \gamma) d_0(s') \\ & + \gamma \sum_{s} \kappa(s) \bigg[\sum_{a} \frac{\mu(s,a,s')}{\mu(s)} \beta(s,a) \bigg], \ \forall s' \in \mathcal{S} \\ & \mu \in \mathcal{P} \end{array}$$

春港中文大學(深圳) The Chinese University of Hong Kong, Shenzi

・ロット (雪) (日) (日)

 By the change of variable κ(s) = μ(s)w(s), the max-max problem can be equivalently formulated as:

$$\begin{array}{ll} \max_{\kappa,\mu} & \sum_{s} \kappa(s) \sum_{a} \pi(a \mid s) r(s, a) \\ \text{subject to} & \kappa(s') = (1 - \gamma) d_0(s') \\ & + \gamma \sum_{s} \kappa(s) \bigg[\sum_{a} \frac{\mu(s, a, s')}{\mu(s)} \beta(s, a) \bigg], \ \forall s' \in \mathcal{S} \\ & \mu \in \mathcal{P} \end{array}$$

• Special design of ambiguity set \mathcal{P} to ensure tractability:

$$\mathcal{P} = \bigotimes_{\boldsymbol{s} \in \mathcal{S}} \mathcal{P}_{\boldsymbol{s}}$$

$$= \bigotimes_{\boldsymbol{s} \in \mathcal{S}} \Big\{ \mu(\cdot, \cdot \mid \boldsymbol{s}) : \boldsymbol{W} \big(\mu(\cdot, \cdot \mid \boldsymbol{s}), \hat{\mu}(\cdot, \cdot \mid \boldsymbol{s}) \big) \leq \vartheta_{\boldsymbol{s}} \Big\} \cdot \underbrace{\mathcal{P}_{\boldsymbol{s} \in \mathcal{S}}}_{\text{homospherical matrix transformed to the product of the states of the state$$

Taking the duality for the inner maximization problem, we have

$$\begin{split} \mathsf{Max}_{\mu}\mathsf{Min}_{\nu} & (1-\gamma)\sum_{s}\nu(s)d_{0}(s)\\ \text{subject to} & \nu(s)\geq \sum_{a}\pi(a\mid s)r(s,a)\\ & +\gamma\sum_{(a,s')}\mu(a,s'\mid s)\nu(s')\beta(s,a), \quad \forall s\\ & \mu\in\mathcal{P}=\otimes_{s\in\mathcal{S}}\Big\{\mu(\cdot,\cdot\mid s): \ W\big(\mu(\cdot,\cdot\mid s),\hat{\mu}(\cdot,\cdot\mid s)\big)\leq\vartheta_{s}\Big\}. \end{split}$$

香港中文大學(深圳) The Chinese University of Hong Kong, Shend

Applying the s-rectangularity of $\mathcal{P},$ we have

$$\begin{split} \mathsf{Min}_{\mathbf{v}} & (1-\gamma)\sum_{s} \mathbf{v}(s) d_0(s) \\ \mathsf{subject to} & \mathbf{v}(s) \geq \sum_{a} \pi(a \mid s) \mathbf{r}(s, a) \\ & + \gamma \mathop{\mathsf{Max}}_{\mu(\cdot, \cdot \mid s) \in \mathcal{P}_s} \sum_{(a, s')} \mu(a, s' \mid s) \mathbf{v}(s') \beta(s, a), \quad \forall s \\ & \mathcal{P}_s = \Big\{ \mu(\cdot, \cdot \mid s) : \ \mathbf{W} \big(\mu(\cdot, \cdot \mid s), \hat{\mu}(\cdot, \cdot \mid s) \big) \leq \vartheta_s \Big\}. \end{split}$$

 Based on the fact that the uncertainty within constriants is uncoupled.

春港中文大學(深圳) The Chinese University of Hong Kong, Shend

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

Lemma: LP with Fixed Point Equation

Suppose that *f* is a component-wise non-decreasing contraction mapping with the unique fixed point x^* . Then for fixed $c \in \mathbb{R}^n_+$,

$$\max\left\{ oldsymbol{c}^{\mathsf{T}} x: \ x \in \mathbb{R}^n_+, x \leq f(x)
ight\} = oldsymbol{c}^{\mathsf{T}} x^*.$$

• Example: the policy evaluation problem in standard MDP reduces to the following LP problem:

minimize
$$(1 - \gamma) \sum_{s} v(s) d_0(s)$$

subject to $v(s) \ge \mathcal{T}[v](s)$
with $\mathcal{T}[v](s) = r_{\pi}(s) + \gamma \sum_{s'} v(s) \sum_{a} \pi(a \mid s) P(s' \mid s, a)$

香港甲丈夫芽(深圳) The Chinese University of Hong Kong, Sheruba

イロト イポト イラト イラ

• By making use of this technique lemma, we argue at optimality the constraint is tight:

$$\begin{split} \min_{V} & (1-\gamma)\sum_{s} v(s)d_0(s) \\ \text{s.t.} & v(s) \geq \sum_{a} \pi(a \mid s)r(s,a) + \gamma V(s), \; \forall s \in \mathcal{S}, \\ \text{where} & V(s) \coloneqq \max_{\mu(\cdot,\cdot \mid s) \in \mathcal{P}_s} \sum_{(a,s')} \mu(a,s' \mid s)v(s')\beta(s,a) \end{split}$$

• The solution can be obtained by solving the fixed-point equation

$$\mathbf{v}(\mathbf{s}) = \sum_{\mathbf{a}} \pi(\mathbf{a} \mid \mathbf{s}) \mathbf{r}(\mathbf{s}, \mathbf{a}) + \gamma \mathbf{V}(\mathbf{s}), \ \forall \mathbf{s} \in \mathcal{S}.$$

Algorithm for Optimistic Value Iteration

For each iteration:

• For each $s \in S$, compute V(s) by:

$$V(s) = \max_{\mu(\cdot, \cdot | s) \in \mathcal{P}_s} \sum_{(a, s')} \mu(a, s' | s) v(s') \beta(s, a)$$

=
$$\min_{\lambda \ge 0} \left\{ \lambda \vartheta_s + \frac{1}{n_s} \sum_{i=1}^{n_s} \max_{a \in \mathcal{A}, s' \in \mathcal{S}} \left\{ v(s') \beta(s, a) - \lambda c((a, s'), (a_i, s'_i)) \right\} \right\}$$

• For each $s \in S$, update

$$V(s) \leftarrow \sum_{a} \pi(a \mid s) r(s, a) + \gamma \cdot V(s)$$

春港中文大學(深圳) The Chinese University of Hong Kong, Shenah

イロト イポト イヨト イヨト

Theoretical Gurantees for Robust OPPE

Lemma: Sensitivity Analysis for Value Iteration

Denote by *T* the Bellman operator with the true conditional probability d_{πb}(a, s' | s):

$$\begin{array}{l} \mathcal{T}[v](s) = \sum_{a} \pi(a \mid s) r(s, a) + \gamma \sum_{s'} P_{s,s'}^{\mathsf{true}} v(s') \\ \mathsf{with} \quad P_{s,s'}^{\mathsf{true}} := \sum_{a} d_{\pi_b}(a, s' \mid s) \beta(s, a) \end{array}$$

- Denote by $\tilde{\mathcal{T}}$ a perturbation of \mathcal{T} so that

•
$$\tilde{\mathcal{T}}[v](s) = T[v](s) + \epsilon_v(s);$$

• $\epsilon_v(s) \leq \epsilon(s)$ for all $s \in S$ and v.

Let v^*, \tilde{v}^* be the solutions to the fixed point of \mathcal{T} and $\tilde{\mathcal{T}}$ respectively. Then

$$\tilde{\boldsymbol{v}}^* - \boldsymbol{v}^* \leq (\boldsymbol{I} - \gamma \boldsymbol{P}^{\text{true}})^{-1} \epsilon.$$

Implications for the Lemma

• Our algorithm is simply the perturbation of the underlying Bellman operator:

$$\begin{split} \mathbf{v}(\mathbf{s}) &= \sum_{\mathbf{a}} \pi(\mathbf{a} \mid \mathbf{s}) \mathbf{r}(\mathbf{s}, \mathbf{a}) + \gamma \mathbf{V}(\mathbf{s}), \ \forall \mathbf{s} \in \mathcal{S} \\ \mathbf{V}(\mathbf{s}) &= \max_{\mu(\cdot, \cdot \mid \mathbf{s}) \in \mathcal{P}_{\mathbf{s}}} \sum_{\mathbf{s}'} \left[\mu(\mathbf{a}, \mathbf{s}' \mid \mathbf{s}) \beta(\mathbf{s}, \mathbf{a}) \right] \mathbf{v}(\mathbf{s}') \\ &\approx \sum_{\mathbf{s}'} \mathbf{P}_{\mathbf{s}, \mathbf{s}'}^{\mathsf{true}} \mathbf{v}(\mathbf{s}') \\ \mathcal{P}_{\mathbf{s}} &= \left\{ \mu(\cdot, \cdot \mid \mathbf{s}) : \ \mathbf{W}(\mu(\cdot, \cdot \mid \mathbf{s}), \hat{\mu}(\cdot, \cdot \mid \mathbf{s})) \leq \vartheta_{\mathbf{s}} \right\}. \end{split}$$

 Build the uniform bound for the perturbation gives the theoretical gurantees.

香港中文大學(深圳) The Chinese University of Hong Kong, Shenah

Proof for the Lemma

• Define $\tilde{v}^{(k)}$ as the *k*-th iteration point for the approximate value iteration algorithm, then we have the relation

$$\begin{split} \tilde{\boldsymbol{\nu}}^{(k+1)} - \boldsymbol{v}^* &= \tilde{\mathcal{T}}[\tilde{\boldsymbol{\nu}}^{(k)}] - \mathcal{T}[\boldsymbol{v}^*] \\ &= \mathcal{T}[\tilde{\boldsymbol{\nu}}^{(k)}] - \mathcal{T}[\boldsymbol{v}^*] + \epsilon_{\tilde{\boldsymbol{\nu}}^{(k)}} \\ &\leq \mathcal{T}[\tilde{\boldsymbol{\nu}}^{(k)}] - \mathcal{T}[\boldsymbol{v}^*] + \epsilon \\ &= \gamma \boldsymbol{P}^{\mathsf{true}}(\tilde{\boldsymbol{\nu}}^{(k)} - \boldsymbol{v}^*) + \epsilon \end{split}$$

Applying the relation inductively, we have

$$ilde{\boldsymbol{v}}^{(n)} - \boldsymbol{v}^* \leq \sum_{k=0}^{n-1} \gamma^{n-k-1} (\boldsymbol{P}^{ ext{true}})^{n-k-1} \epsilon + \gamma^n (\boldsymbol{P}^{ ext{true}})^n (ilde{\boldsymbol{v}}^{(0)} - \boldsymbol{v}^*)$$

Taking the limit $n \to \infty$ completes the proof.

Uniform Bound for Perturbation

• The underlying true value function is returned by solving the fixed point equation

$$\mathbf{v}(\mathbf{s}) = \sum_{\mathbf{a}} \pi(\mathbf{a} \mid \mathbf{s}) \mathbf{r}(\mathbf{s}, \mathbf{a}) + \gamma \sum_{(\mathbf{a}, \mathbf{s}')} \mathbf{d}_{\pi_b}(\mathbf{a}, \mathbf{s}' \mid \mathbf{s}) [\beta(\mathbf{s}, \mathbf{a}) \mathbf{v}(\mathbf{s}')], \quad \forall \mathbf{s}.$$

• The optimistic/robust value iteration is to solve

$$v(s) = \sum_{a} \pi(a \mid s) r(s, a) + \gamma \max_{\mu(\cdot, \cdot \mid s) \in \mathcal{P}_s} \sum_{(a, s')} \mu(a, s' \mid s) [\beta(s, a) v(s' \mid s)]$$

Uniform Bound for Perturbation

• The underlying true value function is returned by solving the fixed point equation

$$\mathbf{v}(\mathbf{s}) = \sum_{\mathbf{a}} \pi(\mathbf{a} \mid \mathbf{s}) \mathbf{r}(\mathbf{s}, \mathbf{a}) + \gamma \sum_{(\mathbf{a}, \mathbf{s}')} \mathbf{d}_{\pi_b}(\mathbf{a}, \mathbf{s}' \mid \mathbf{s}) [\beta(\mathbf{s}, \mathbf{a}) \mathbf{v}(\mathbf{s}')], \quad \forall \mathbf{s}.$$

The optimistic/robust value iteration is to solve

$$\mathbf{v}(\mathbf{s}) = \sum_{\mathbf{a}} \pi(\mathbf{a} \mid \mathbf{s}) \mathbf{r}(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mu(\cdot, \cdot \mid \mathbf{s}) \in \mathcal{P}_{\mathbf{s}}} \sum_{(\mathbf{a}, \mathbf{s}')} \mu(\mathbf{a}, \mathbf{s}' \mid \mathbf{s}) [\beta(\mathbf{s}, \mathbf{a}) \mathbf{v}(\mathbf{s}')]$$

Define f(a, s') = β(s, a)v(s') for fixed s. Then with high probability,

$$\mathbb{E}_{\mathbb{P}_{\mathsf{true}}}[f(a,s')] \leq \max_{\mathcal{P}: \ W(\mathbb{P},\hat{\mathbb{P}}_n)}[f(a,s')] + rac{6}{r} \\ \mathbb{E}_{\mathbb{P}_{\mathsf{true}}}[f(a,s')] \geq \min_{\mathcal{P}: \ W(\mathbb{P},\hat{\mathbb{P}}_n)}[f(a,s')] - rac{6}{r} \end{cases}$$

春 港 中 文 大 芽 (深 圳) The Chinese University of Hong Kong, Shenzh

Theoretical Gurantees for Robust OPPE

Theorem 2: Non-asymptotic Confidence Bounds

Denote $R_{\text{optimistic}}$ and R_{robust} as the reward for optimistic/robust estimate for the underlying reward R_{π} . With high probability,

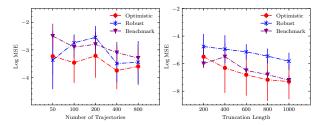
$$egin{aligned} &R_{\pi} \leq R_{ ext{optimistic}} + rac{6}{n} \sum_{s \in \mathcal{S}, s' \in \mathcal{S}} (I - \gamma P^{ ext{true}})_{s, s'}^{-1} d_0(s) \ &R_{\pi} \geq R_{ ext{robust}} - rac{6}{n} \sum_{s \in \mathcal{S}, s' \in \mathcal{S}} (I - \gamma P^{ ext{true}})_{s, s'}^{-1} d_0(s). \end{aligned}$$

Moreover, $R_{\text{optimistic}} - R_{\text{robust}} = O(1/\sqrt{n})$.

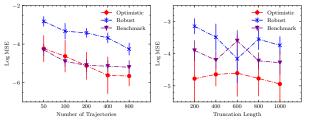
香港中文大學(深圳) The Chinese University of Hong Kong, Sherah

イロト イ理ト イヨト イヨト

Numerical Simulation



(a) Machine Replacement Problem



(b) Healthcare Management Problem

春港中文大學(深圳) The Chinese University of Hong Kong, Shenzhe

Numerical Simulation

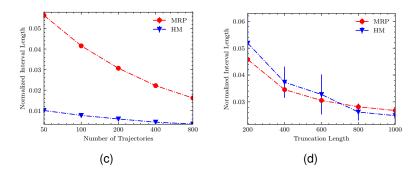


Figure: Plots for the normalized interval length with respect to number of trajectories and length of truncation.

ヘロト ヘ戸ト ヘヨト ヘ

Conclusion

- Our contributions involve:
 - Exact tractable reformulations for the distributionally robust and optimistic off-policy evaluation.
 - First non-asymptotic confidence interval estimate for infinite-horizon OPPE.
 - Generalization bound for Wasserstein distributionally robust optimization in discrete space.

春 港 中 文 大 學 (深 圳) The Chinese University of Hong Kong, Shenzh

ヘロト ヘポト ヘヨト ヘヨト

Conclusion

- Our contributions involve:
 - Exact tractable reformulations for the distributionally robust and optimistic off-policy evaluation.
 - First non-asymptotic confidence interval estimate for infinite-horizon OPPE.
 - Generalization bound for Wasserstein distributionally robust optimization in discrete space.
- Future work would be:
 - Extend its applicability into general problems;
 - Design more efficient algorithm to solve the problem faster

ヘロト ヘポト ヘヨト ヘヨト