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Markov Decision Process

> An infinite-horizon discounted Markov Decision Process (MDP) [Puterman, 2014] is
described by a tuple M = (S, A, P,R,~,p):
— & and A are the finite state and action space, respectively.
— p(s'|s, a) is the transition probability matrix.
- r:8 x A [0,1] is the deterministic reward function.
— 7 € (0,1) is the discount factor.
— p specifies the initial state distribution.
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Markov Decision Process: Policy

» To interact with MDP, we need a policy 7 to select actions.

— m(als) determines the probability of selecting action a at state s.

» The quality of policy 7 is measured by state value function V7

VT(s) =E nytr(st,at)hr, = (1)

t=0

— V™ (s) measures the the expected long-term discounted reward when starting from state s.
= V7(s) € [0, 1Z5] by definition.

» To take the initial state distribution into account, we define

V() = V7 (p) = Eaguy [V (50)] (2)
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Markov Decision Process: Value Function

» Sometimes, it is more convenient to introduce state-action value function Q™:

Q" (s,a) = Z’yrst,at)hr so=S,a0=al . (3)

t=0

— Q™ (s,a) measures the the expected long-term discounted reward when starting from state s
with action a.
= V7(s) = Equn(s) [RT (s, a)] by definition.
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Markov Decision Process: Discounted Stationary Distribution

» To facilitate later analysis, we introduce discounted stationary distribution d™:

d7,(s) = (1=7) Y ~"P(st = sl 50)- (4)

~~ df (s) measures the discounting probability to visit s starting from the initial state so.

» To take the initial state distribution into account, we define dg as
5 (s) = Esgnp [dE, (5)] - (5)
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Markov Decision Process: Example

» Consider the following MDP example: a; : “up”; as : "right”.

m(az|s1) = 1;

m(ay]s2) = 0.5, w(az|s2) = 0.5.

0.5y2 0.572
d7()=(1—7)(1.7,0
s == (10,0320 50,
g 2 3 05’)/
0.5
Q" (s2,a1) =1, Qﬂ(52,a2)=%’ Vﬂ(52)=m~
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Policy lteration

» In this section, we consider a well-known algorithm: policy iteration.

Algorithm 1 Policy Iteration

Input: initialization 70 € A(A)IS!.
1: fort=0,1,---, do
2: Q™ < evaluate the state-action value function of 7.
3. witl(s) := argmax,c 4 Q™ (s, a).
4: end for

» The analysis of policy iteration is fundamental to policy optimization.
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Policy lteration: Linear Convergence

Theorem 1 (Linear convergence of policy iteration).
For any initialization policy w°, we have

* Tt 1
IV =Vl < 5

exp(—t).
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Policy Iteration: Proof of Theorem 1

The proof of Theorem 1 relies on the y-contraction of the Bellman optimal operator 7*:

v, HT*Wr v <~ HV" —y

oo
In particular, consider 7’ = 7* and let V* := V™ |

vV, |TVT =TV, <AyIIVT =V¥ - (6)

Hence, performing an Bellman update can improve the value function by a y-multiplicative
factor.

~~ The issue of policy iteration analysis is to bound the improvement of the value function of a
policy (i.e., V’THl) rather than an artificial value function (7V™")!
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Policy Iteration: Bellman Operators

» To facilitate later analysis, we define the Bellman operator 77:

T”V(s):sz(| l s, a —|—72 §'|s,a)V (s")

acA s'eS
» The Bellman optimal operator 7* is

T*V(s) = max lr(s, a) +y Z p(s]s,a)V(s")

s'eS

» According to fixed point theory, we have
VP=T"V, Vm;, T*V*=V*

where “=" holds elementwise.
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Policy Iteration: Proof of Theorem 1

To facilitate analysis, let us introduce the notation 7:

7t (s) € argmax Q™ (s,a), Vs€S. (M)
acA

In terms of Bellman operators, this can be equivalently expressed as, 7™ V™ = T*V™ with V™
being the state value functions of policy 7. Our first observation is that

VT LT*VT =TV, (8)
The magic is that if we repeatedly apply (8), the RHS goes to yr

VT TV < (T“*)Qv"j-~~5 (77) v =, (9

which implies that the improvement of VP s always better than TV (i.e., the one

obtained by value iteration).
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Policy Iteration: Proof of Theorem 1

Based on previous results, we have

(9) (6)
v v < v v s v - v (10)

~~ For policy iteration, 7+ := w'*! and Q™ := Q™ and V7™ := V™',
~ (10) implies

t+1 t

va _yr

> (1) HV”t e

(11)

» (Remark on policy optimization) Though value iteration also enjoy a linear convergence rate,

o0 o0

the induced greedy policy (w.r.t. the e-optimal learned value function) is /(1 — )-optimal.

However, policy iteration does not have such an issue by the monotonicity in (9).
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Weighted Bellman Objective

» For any policy 7, let us introduce weighted policy iteration or weighted Bellman objective,

defined as

B(Fd™,Q") = > d'(s)Q"(s,a)F(als) = (Q", F)arx1, (12)
(s,a)eSx.A
where (v, upw =2, > v(i, j)u(i, j)W (i, j) and d™ x 1 denotes a weight matrix that
places d™(s) on any state-action pair (s, -).
» Our objective is to maximize such defined weighted Bellman objective,
7t = argmax B(7|d™, Q™).
well

» Now let us check the gradient of B(7|d™, Q™).

OB(FId™, Q) _ ooon
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Weighted Policy Gradient

» Consider the weighted objective function:

Um) = (1=7) Y p(s)V7(s). (13)
s~p
» Recall the policy gradient theorem states that
T miyom
87T(a|8) - d (S)Q (Saa)'

Theorem 2 (Policy Gradient Theorem).

For the direct parameterization and any initial state distribution u, we have

AN RN
or(als) 1—’yd“( )Q" (s, 0).
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Connection between Policy Iteration and Policy Gradient

» We see that the gradient of weighted Bellman objective is identical to the gradient of
expected return!

8<Qﬂ—7ﬁ>d7‘><1 _ ag(’”) — d™(s)O™ (s.a
ox(als)  On(als) = ()@ (s,a).

» Importantly, we see that the solution of weighted Bellman objective corresponds to a policy

iteration update:

at e argmax(Q", T)ar x1,
™

where 7" is defined as in (7) for policy iteration. Hence, we design policy-gradient
algorithms and analyze them in terms of policy iteration update (i.e., Bellman update).

» p(s) > 0 for any s € S is indispensable to ensure the connection is valid.
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Policy Gradient Algorithms

> Frank-wolfe. The key idea of frank-wolfe is to optimize the linearized objective over the

constrained set and then to make a convex combination. More precisely, define
7t = argmax(V/{(7), 7) = argmax(Q™, T) 4= x 1; (14)
7ell mEll
then we update the policy to 7/ = (1 — n)m + nnt for some n € [0,1].
» Projected Gradient Ascent. The core of projected gradient descent is more simple: we
first take a gradient descent update then project the updated policy into the constrained set:
1
= argmax{(Vﬁ(ﬂ),ﬂ) ~ 5 7 — 7T||§}
n

Tell
— I 2
— argmax  (Q" a1 — |7 — 72
mEll 2n
We see that as  — oo (i.e., there is no regularization), 7’ converges to the solution of (14).
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Policy Gradient Algorithms

» Mirror-descent. The mirror descent method adapts to the geometry of the probability
simplex by using a non-Euclidean regularizer. We focus on using the Kullback-Leibler(KL)
divergence, under which an iteration of mirror descend updates policy 7 to 7’ as

r_ -1 _
w = argénnax {<V€(7r),7r> - nDKL(’IT|7T)} , (15)

where Dy (7||7) = >, cs DkL (7(:[s)||7(:]s)), and
Dxw(pllg) = > cx p(z)log (p(x)/q(x)) for two probability distributions p and q.
» |t is well know that the solution to (15) is the exponentiated gradient update [
Section 6.3],
m(als) exp (nd™(s)Q" (s, a))
> acam(als)exp (nd™(s)Q™(s,a))’
Again, we see that as 7 — oo, m’ converges to a policy iteration update.

' (als) =
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Policy Gradient Algorithms

» Natural policy gradient. We focus on NPG applied to the softmax parameterization for
which it is actually an instance of mirror descent with a specific regularizer. In particular, we

have
1 _ =
7’ = argmax {(Vé(w), ) — D%L(ﬂw)} , (17)
well n
where D} (7||m) = 3, cs d™(s)Dkw (7 (¢|s)[|T(-|s)) is a weighted regularizer.
> Again, (17) corresponds to a exponentiated policy update:
r(als) exp (0Q"(s.0)) )
> acam(als)exp (nQ7 (s, a))
Note that this update is independent of state distribution d™.

7' (als) =
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Stepsize Choice

> In this part, we tackle the stepsize issue. Our main focus is exact line search.

» Exact line search will find the “optimal” stepsize by line search; more precisely, 7t+! = wﬁ,‘fl,
where n* = argmax, €(7rf7+1) whenever this maximizer exists. More generally, we define
7't = argmax £(r), (19)
rEHH

where IT"+! = Closure({r/;"' }) denotes the close curve of policies traced out by varying
stepsize 7.

> For example, II*** = {nr’ + (1 — n)x’, : n € [0,1]} is the line segment connecting the
current policy 7' and its policy iteration update 7',. For NPG, II**! = {z/*1} is a curve

t+1 _ ¢ t+1 t ; t ; :
o =m"and m,™" — 7} asn — oo. Since 7 is to attainable under any fixed 7,

where
this curve is not closed. By taking the closure, and define line search via (19), certain

formulas become cleaner.
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Stepsize Remark

» (Policy parameterization and infima vs minima). The class of softmax policies can
approximately any stochastic policy to arbitrary precision, however, this is nearly the same
as optimizing over II.

» (Policy optimization vs parameter optimization) The above results do not apply to more
naive gradient methods that directly linearize £(mg) with respect to . In that case, a
gradient update to # may not approximate a policy iteration update, no matter how large
the stepsize is chosen to be.
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Linear Convergence of Policy Optimization |

Suppose one of the first-order algorithms introduced in Section 2 is applied to maximize ¢(r)
over 7 € II with stepsizes {n;}+>0. Let 7 be the initial policy and {7'};>¢. Let 7 denote the
initial policy and {m*};>( denote the sequence of iterates. The following bounds apply [
]
» Exact line search. If either Frank-Wolfe, projected gradient descent, mirror descent, or
NPG is applied with stepsizes chosen by exact line search in (19), then

VTFO _ V*

o

MS(I—QQM@O—ﬂ)tmmgst

> Constant stepsize Frank-Wolfe. Under Frank-Wolfe with constant stepszie n € (0, 1],
* 70 *
[V =Vl < (X =n(t =)' V" =V

t
Hvﬂ' _ V*

o0
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Linear Convergence of Policy Optimization Il

» Natural policy gradient with softmax policies and adaptive stepsize. Fix any € > 0.
Let a; = argmax, Q’Tt(s,a). Suppose NPG is performed with an adaptive step-size

sequence,

ne(s) > a _27)5 log <7rt(52,a2‘)> .

1
<< +7> HV” -V

Then,

+e€.

oo

vaf _yr

oo
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Analysis For Linear Convergence: Warm-up

> How to prove the linear convergence for a sequence {f(x)}x? (i.e., what are key steps?)
> One of key step in previous analysis (for policy iteration) is
(Type 1): flora) = f* <y (flan) = 7). (20)

with v € (0, 1).
> What if (20) is hard to verify? We move to the following step:
(Type 1): Flan) = flapsn) = (1= ) (flox) = 1)
~ (21) implies (20).
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Analysis For Linear Convergence: Warm-up

(Type 1): flak) = f@re1) = (1 =7) (f(2r) = )

f(@rs1) f(zr)
t 1

1 I
0.9

o T

“current improvement”

“total distance”

Message: “current improvement” is at least (1 — ) times of “current distance”.
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Proof of Exact Line Search |

For each algorithm at iteration ¢, the policy iteration update Wﬁr is contained in IT**1 introduced
as in (19). Therefore, for each algorithm,
1y _ S flrt
Lm" ™) ﬂrenl%ﬁlf(w) > U(m).
Therefore, PG with exact line search is never worse than a policy iteration update. The
remaining step is to monitor the progress in terms of expected return by the linear convergence

of policy iteration that is bounded by £..-norm.
(') — (') = f(ﬂt ) = (")

N ols) (Vs = V()

seS

> (1= 7)pmin ) (V”i(S) -vr (S))

seS
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Proof of Exact Line Search |l
9)
> (I =7)pmin

= o [0 ) v

Vv

o0

.
> (17 pmm[ N ols) (Vs v*())] (V=)

seS

= (L= 7)pmin (£(*) — £("))

Rearranging, we obtain that

O(m*) = £(r™) < (1= (1 = 7)pmin) (€(7*) = £(7")) .
To obtain the guarantee for V* — V(7!*1) instead of ¢(7*) — £(7'T1), we note that
1
V* =V (xtt! < * t+1
VeVl < e () et
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Proof of Exact Line Search Il

(1 — (1 —7)pmin) * t
=TT =) proim (tr) = ¢(m)
< (1 - (1 - 'Y)pmin)t+1

)
o

0
Hv* _ Vﬂ'

Pmin
where the last step follows 3 __ s p(s) (V*(s) —y (s)) < HV* —y
probability simplex.

duetopisa
o0
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Proof of Constant Stepsize Frank-Wolfe |

Recall that a Frank-Wolfe update amounts to a soft policy iteration update:
m i (s) = (L =)' (s) +nm (s),
where 7!, is the policy iteration update to 7. By linearity, we have that for any state s,
TV () = (L= T V™ (s) + nT™+ V™ (s)
= (L=n)V™ (s) +0T"V™ (s). (22)
Since we have V7' = T*V’rt’, we obtain
TV = =TV 4TV = v
By monotonicity of T we repeatedly apply 77" on both sides:
V= im (T VTR = VT
k—o0
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Proof of Constant Stepsize Frank-Wolfe Il

Therefore, from (22), we get

VT s (L= VT 4TV
To show the linear convergence, we turn to the key step (i.e., the improvement is at least
proportional to current distance):

vet v e (Trv v
= (TV" =V v —vT)
= (- (v =V v —vT)
=n(1—)V*=V"™). (23)

By the previous reasoning, we conclude that
V' = v, < @ =na - [V -v=

oo
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Proof of NPG with Adaptive Stepsize |

Recall the natural policy gradient (NPG) update (see (18)) with an adaptive stepsize takes the

form:

m'(als) exp (nt(s)Q“t (s, a))

TS @l exp (7 ()@ (5,0)

For simplicity, we let ¢ := 2(1 —~)~!, which implies 7;(s) > £log (77“‘(3245))’ where

a} = argmax, Q™ (s, a).

~~ If we can use an infinitely large stepsize, we see that w'™! — 7’ , which puts the probability 1
for the optimal action and the probability 0 for sub-optimal actions.

~~ To guarantee a “minimal improvement”, we need to control probabilities of sub-optimal

actions decrease by a certain factor A € (0, 1) with a finite stepsize.
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Proof of NPG with Adaptive Stepsize ||

als) exp(n'(s)Q"(s, a)) _ exp(n'(s)Q' (s, a)) <re(

) Lo m(a]s) exp(nt(s)Qt(s, a’)) Z,
t(sva') S IOg()‘Zt)
(s,a) <
(s,a) <

og ()ﬁrt(af |s) exp(n'(s)Q" (s, af))) < Mlog Z;
og( A" (af|s)) +n'(5)Q" (s, ay)

1 L) (Q'(s,a}) — Q' (s,a
08 (magerryy ) < 71OQs.00) - Qo)

In particular, if Q'(s,af) — Q'(s,a) > 4, it suffices to set

n'(s) 2 5 L 1og (M) :

Results and Analysis

0,1).
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Proof of NPG with Adaptive Stepsize IlI

Step 1: NPG update for sub-optimal actions: Fix some state s € S. Without loss of
generality, we assume the following ordering on the @Q-values:

Q™' (5,1) > Q™ (5,2) > --- > Q™ (s, |.A|), which implies the action 1 is optimal in state s under
policy 7. For error tolerance £ > 0, define O; (s) and O; (s) as

0 (s) = {al@ (5:1) = Q" (s.0) =~}
O;f (s) := {ot|Q”t(s7 1) — Q”t(s,a) < %} )

Lemma 1.
wtt! s,a . =
(£0) < 1 vie O (s).

For any state, (s,

S
Z
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Proof of NPG with Adaptive Stepsize IV

Step 2: NPG updates as soft policy iteration: Lemma 1 shows how an NPG update with
appropriate stepsize decays the probabilities of sub-optimal actions by a multiplicative factor
instead of zeroing them out. This resembles a soft-policy iteration update for the set of actions
Oy (s).

Lemma 2.
Let V™' (s) denote the state-value function for policy w from any starting state s € S.

Then,
TV (6) — V™ () > % (Tv™(5) - V™)) - <. (24)
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Proof of NPG with Adaptive Stepsize V

Step 3: Completing the proof: Lemma 2 clearly quantifies the relationship between an NPG
update with step-size oy and a soft policy iteration update with an additive error £.
~> It remains to prove that TV = V™ so that we can repeatedly apply this relation to
obtain that V™' > T”tHV“t. To this end, we recall that
ﬂ,t
7'l (s) = argmax Q”t(s,a) - L(S)DKL(aHﬂt(s))
a€A(A) n(s)

Since a = 7t is a feasible solution, we have
TV (5) = Q (5,71 (s) > Q" (5,7'(s)) = V™ ().

Hence, we conclude that
TV vt = v ey
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Proof of NPG with Adaptive Stepsize VI

Therefore, by Lemma 2 we get

oo

V) =V 2 5 (T ) -V () +
> % (T V™ () = V() + V7 (5) = V™ (5)) + -
> 2= (Vi) -V (5) + 5
This implies
. _ L+ . _ 0 eyt
v = () T+ 5 )

1
< +7> HV vl e

where the last step follows our definition that ¢ = 2(1 —~)~!.

o0
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