On The Linear Convergence of Policy Gradient Methods

Ziniu Li

ziniuli@link.cuhk.edu.cn

The Chinese University of Hong Kong, Shenzhen, Shenzhen, China

June 11, 2021

Bhandari, Jalaj, and Daniel Russo.
"On the Linear Convergence of Policy Gradient Methods for Finite MDPs.” AISTATS, 2021.

Outline

Background and Notation

Background and Notation 2 /44

Outline

Background and Notation
Markov Decision Process

Background and Notation 3 /44

Markov Decision Process

> An infinite-horizon discounted Markov Decision Process (MDP) [Puterman, 2014] is
described by a tuple M = (S, A, P,R,~,p):
— & and A are the finite state and action space, respectively.
— p(s'|s, a) is the transition probability matrix.
- r:8 x A [0,1] is the deterministic reward function.
— 7 € (0,1) is the discount factor.
— p specifies the initial state distribution.

De0
et

Background and Notation 4/44

Markov Decision Process: Policy

» To interact with MDP, we need a policy 7 to select actions.

— m(als) determines the probability of selecting action a at state s.

» The quality of policy 7 is measured by state value function V7

VT(s) =E nytr(st,at)hr, = (1)

t=0

— V™ (s) measures the the expected long-term discounted reward when starting from state s.
= V7(s) € [0, 1Z5] by definition.

» To take the initial state distribution into account, we define

V() = V7 (p) = Eaguy [V (50)] (2)

Background and Notation 5/44

Markov Decision Process: Value Function

» Sometimes, it is more convenient to introduce state-action value function Q™:

Q" (s,a) = Z’yrst,at)hr so=S,a0=al . (3)

t=0

— Q™ (s,a) measures the the expected long-term discounted reward when starting from state s
with action a.
= V7(s) = Equn(s) [RT (s, a)] by definition.

Background and Notation 6/44

Markov Decision Process: Discounted Stationary Distribution

» To facilitate later analysis, we introduce discounted stationary distribution d™:

d7,(s) = (1=7) Y ~"P(st = sl 50)- (4)

~~ df (s) measures the discounting probability to visit s starting from the initial state so.

» To take the initial state distribution into account, we define dg as
5 (s) = Esgnp [dE, (5)] - (5)

Background and Notation 7/44

Markov Decision Process: Example

» Consider the following MDP example: a; : “up”; as : "right”.

m(az|s1) = 1;

m(ay]s2) = 0.5, w(az|s2) = 0.5.

0.5y2 0.572
d7()=(1—7)(1.7,0
s == (10,0320 50,
g 2 3 05’)/
0.5
Q" (s2,a1) =1, Qﬂ(52,a2)=%’ Vﬂ(52)=m~

Background and Notation 8/44

Outline

Background and Notation

Policy Iteration

Background and Notation 9/44

Policy lteration

» In this section, we consider a well-known algorithm: policy iteration.

Algorithm 1 Policy Iteration

Input: initialization 70 € A(A)IS!.
1: fort=0,1,---, do
2: Q™ < evaluate the state-action value function of 7.
3. witl(s) := argmax,c 4 Q™ (s, a).
4: end for

» The analysis of policy iteration is fundamental to policy optimization.

Background and Notation 10 /44

Policy lteration: Linear Convergence

Theorem 1 (Linear convergence of policy iteration).
For any initialization policy w°, we have

* Tt 1
IV =Vl < 5

exp(—t).

Background and Notation 11/44

Policy Iteration: Proof of Theorem 1

The proof of Theorem 1 relies on the y-contraction of the Bellman optimal operator 7*:

v, HT*Wr v <~ HV" —y

oo
In particular, consider 7’ = 7* and let V* := V™ |

vV, |TVT =TV, <AyIIVT =V¥ - (6)

Hence, performing an Bellman update can improve the value function by a y-multiplicative
factor.

~~ The issue of policy iteration analysis is to bound the improvement of the value function of a
policy (i.e., V’THl) rather than an artificial value function (7V™")!

Background and Notation 12 /44

Policy Iteration: Bellman Operators

» To facilitate later analysis, we define the Bellman operator 77:

T”V(s):sz(| l s, a —|—72 §'|s,a)V (s")

acA s'eS
» The Bellman optimal operator 7* is

T*V(s) = max lr(s, a) +y Z p(s]s,a)V(s")

s'eS

» According to fixed point theory, we have
VP=T"V, Vm;, T*V*=V*

where “=" holds elementwise.

Background and Notation 13 /44

Policy Iteration: Proof of Theorem 1

To facilitate analysis, let us introduce the notation 7:

7t (s) € argmax Q™ (s,a), Vs€S. (M)
acA

In terms of Bellman operators, this can be equivalently expressed as, 7™ V™ = T*V™ with V™
being the state value functions of policy 7. Our first observation is that

VT LT*VT =TV, (8)
The magic is that if we repeatedly apply (8), the RHS goes to yr

VT TV < (T“*)Qv"j-~~5 (77) v =, (9

which implies that the improvement of VP s always better than TV (i.e., the one

obtained by value iteration).

Background and Notation 14 /44

Policy Iteration: Proof of Theorem 1

Based on previous results, we have

(9) (6)
v v < v v s v - v (10)

~~ For policy iteration, 7+ := w'*! and Q™ := Q™ and V7™ := V™',
~ (10) implies

t+1 t

va _yr

> (1) HV”t e

(11)

» (Remark on policy optimization) Though value iteration also enjoy a linear convergence rate,

o0 o0

the induced greedy policy (w.r.t. the e-optimal learned value function) is /(1 —)-optimal.

However, policy iteration does not have such an issue by the monotonicity in (9).

Background and Notation 15 /44

Outline

Policy Gradient Methods

Policy Gradient Methods 16 /44

Outline

Policy Gradient Methods

Connection with Policy Iteration

Policy Gradient Methods 17 /44

Weighted Bellman Objective

» For any policy 7, let us introduce weighted policy iteration or weighted Bellman objective,

defined as

B(Fd™,Q") = > d'(s)Q"(s,a)F(als) = (Q", F)arx1, (12)
(s,a)eSx.A
where (v, upw =2, > v(i, j)u(i, j)W (i, j) and d™ x 1 denotes a weight matrix that
places d™(s) on any state-action pair (s, -).
» Our objective is to maximize such defined weighted Bellman objective,
7t = argmax B(7|d™, Q™).
well

» Now let us check the gradient of B(7|d™, Q™).

OB(FId™, Q) _ ooon

Policy Gradient Methods 18 /44

Weighted Policy Gradient

» Consider the weighted objective function:

Um) = (1=7) Y p(s)V7(s). (13)
s~p
» Recall the policy gradient theorem states that
T miyom
87T(a|8) - d (S)Q (Saa)'

Theorem 2 (Policy Gradient Theorem).

For the direct parameterization and any initial state distribution u, we have

AN RN
or(als) 1—’yd“()Q" (s, 0).

Policy Gradient Methods 19 /44

Connection between Policy Iteration and Policy Gradient

» We see that the gradient of weighted Bellman objective is identical to the gradient of
expected return!

8<Qﬂ—7ﬁ>d7‘><1 _ ag(’”) — d™(s)O™ (s.a
ox(als) On(als) = ()@ (s,a).

» Importantly, we see that the solution of weighted Bellman objective corresponds to a policy

iteration update:

at e argmax(Q", T)ar x1,
™

where 7" is defined as in (7) for policy iteration. Hence, we design policy-gradient
algorithms and analyze them in terms of policy iteration update (i.e., Bellman update).

» p(s) > 0 for any s € S is indispensable to ensure the connection is valid.

Policy Gradient Methods 20/ 44

Outline

Policy Gradient Methods

Algorithms

Policy Gradient Methods 21 /44

Policy Gradient Algorithms

> Frank-wolfe. The key idea of frank-wolfe is to optimize the linearized objective over the

constrained set and then to make a convex combination. More precisely, define
7t = argmax(V/{(7), 7) = argmax(Q™, T) 4= x 1; (14)
7ell mEll
then we update the policy to 7/ = (1 — n)m + nnt for some n € [0,1].
» Projected Gradient Ascent. The core of projected gradient descent is more simple: we
first take a gradient descent update then project the updated policy into the constrained set:
1
= argmax{(Vﬁ(ﬂ),ﬂ) ~ 5 7 — 7T||§}
n

Tell
— I 2
— argmax (Q" a1 — |7 — 72
mEll 2n
We see that as — oo (i.e., there is no regularization), 7’ converges to the solution of (14).

Policy Gradient Methods 22 /44

Policy Gradient Algorithms

» Mirror-descent. The mirror descent method adapts to the geometry of the probability
simplex by using a non-Euclidean regularizer. We focus on using the Kullback-Leibler(KL)
divergence, under which an iteration of mirror descend updates policy 7 to 7’ as

r_ -1 _
w = argénnax {<V€(7r),7r> - nDKL(’IT|7T)} , (15)

where Dy (7||7) = >, cs DkL (7(:[s)||7(:]s)), and
Dxw(pllg) = > cx p(z)log (p(x)/q(x)) for two probability distributions p and q.
» |t is well know that the solution to (15) is the exponentiated gradient update [
Section 6.3],
m(als) exp (nd™(s)Q" (s, a))
> acam(als)exp (nd™(s)Q™(s,a))’
Again, we see that as 7 — oo, m’ converges to a policy iteration update.

' (als) =

Policy Gradient Methods 23 /44

Policy Gradient Algorithms

» Natural policy gradient. We focus on NPG applied to the softmax parameterization for
which it is actually an instance of mirror descent with a specific regularizer. In particular, we

have
1 _ =
7’ = argmax {(Vé(w),) — D%L(ﬂw)} , (17)
well n
where D} (7||m) = 3, cs d™(s)Dkw (7 (¢|s)[|T(-|s)) is a weighted regularizer.
> Again, (17) corresponds to a exponentiated policy update:
r(als) exp (0Q"(s.0)))
> acam(als)exp (nQ7 (s, a))
Note that this update is independent of state distribution d™.

7' (als) =

Policy Gradient Methods 24 /44

Outline

Policy Gradient Methods

Stepsize Choice

Policy Gradient Methods 25 /44

Stepsize Choice

> In this part, we tackle the stepsize issue. Our main focus is exact line search.

» Exact line search will find the “optimal” stepsize by line search; more precisely, 7t+! = wﬁ,‘fl,
where n* = argmax, €(7rf7+1) whenever this maximizer exists. More generally, we define
7't = argmax £(r), (19)
rEHH

where IT"+! = Closure({r/;"' }) denotes the close curve of policies traced out by varying
stepsize 7.

> For example, II*** = {nr’ + (1 — n)x’, : n € [0,1]} is the line segment connecting the
current policy 7' and its policy iteration update 7',. For NPG, II**! = {z/*1} is a curve

t+1 _ ¢ t+1 t ; t ; :
o =m"and m,™" — 7} asn — oo. Since 7 is to attainable under any fixed 7,

where
this curve is not closed. By taking the closure, and define line search via (19), certain

formulas become cleaner.

Policy Gradient Methods 26 / 44

Stepsize Remark

» (Policy parameterization and infima vs minima). The class of softmax policies can
approximately any stochastic policy to arbitrary precision, however, this is nearly the same
as optimizing over II.

» (Policy optimization vs parameter optimization) The above results do not apply to more
naive gradient methods that directly linearize £(mg) with respect to . In that case, a
gradient update to # may not approximate a policy iteration update, no matter how large
the stepsize is chosen to be.

Policy Gradient Methods 27 /44

Outline

Results and Analysis

Results and Analysis 28 /44

Linear Convergence of Policy Optimization |

Suppose one of the first-order algorithms introduced in Section 2 is applied to maximize ¢(r)
over 7 € II with stepsizes {n;}+>0. Let 7 be the initial policy and {7'};>¢. Let 7 denote the
initial policy and {m*};>(denote the sequence of iterates. The following bounds apply [
]
» Exact line search. If either Frank-Wolfe, projected gradient descent, mirror descent, or
NPG is applied with stepsizes chosen by exact line search in (19), then

VTFO _ V*

o

MS(I—QQM@O—ﬂ)tmmgst

> Constant stepsize Frank-Wolfe. Under Frank-Wolfe with constant stepszie n € (0, 1],
* 70 *
[V =Vl < (X =n(t =)' V" =V

t
Hvﬂ' _ V*

o0

Results and Analysis 29 / 44

Linear Convergence of Policy Optimization Il

» Natural policy gradient with softmax policies and adaptive stepsize. Fix any € > 0.
Let a; = argmax, Q’Tt(s,a). Suppose NPG is performed with an adaptive step-size

sequence,

ne(s) > a _27)5 log <7rt(52,a2‘)> .

1
<< +7> HV” -V

Then,

+e€.

oo

vaf _yr

oo

Results and Analysis 30/ 44

Analysis For Linear Convergence: Warm-up

> How to prove the linear convergence for a sequence {f(x)}x? (i.e., what are key steps?)
> One of key step in previous analysis (for policy iteration) is
(Type 1): flora) = f* <y (flan) = 7). (20)

with v € (0, 1).
> What if (20) is hard to verify? We move to the following step:
(Type 1): Flan) = flapsn) = (1=) (flox) = 1)
~ (21) implies (20).

Results and Analysis 31/44

Analysis For Linear Convergence: Warm-up

(Type 1): flak) = f@re1) = (1 =7) (f(2r) =)

f(@rs1) f(zr)
t 1

1 I
0.9

o T

“current improvement”

“total distance”

Message: “current improvement” is at least (1 —) times of “current distance”.

Results and Analysis 32/44

Proof of Exact Line Search |

For each algorithm at iteration ¢, the policy iteration update Wﬁr is contained in IT**1 introduced
as in (19). Therefore, for each algorithm,
1y _ S flrt
Lm" ™) ﬂrenl%ﬁlf(w) > U(m).
Therefore, PG with exact line search is never worse than a policy iteration update. The
remaining step is to monitor the progress in terms of expected return by the linear convergence

of policy iteration that is bounded by £..-norm.
(') — (') = f(ﬂt) = (")

N ols) (Vs = V()

seS

> (1= 7)pmin) (V”i(S) -vr (S))

seS

Results and Analysis 33/44

Proof of Exact Line Search |l
9)
> (I =7)pmin

= o [0) v

Vv

o0

.
> (17 pmm[N ols) (Vs v*())] (V=)

seS

= (L= 7)pmin (£(*) — £("))

Rearranging, we obtain that

O(m*) = £(r™) < (1= (1 = 7)pmin) (€(7*) = £(7")) .
To obtain the guarantee for V* — V(7!*1) instead of ¢(7*) — £(7'T1), we note that
1
V* =V (xtt! < * t+1
VeVl < e () et

Results and Analysis 34 /44

Proof of Exact Line Search Il

(1 — (1 —7)pmin) * t
=TT =) proim (tr) = ¢(m)
< (1 - (1 - 'Y)pmin)t+1

)
o

0
Hv* _ Vﬂ'

Pmin
where the last step follows 3 __ s p(s) (V*(s) —y (s)) < HV* —y
probability simplex.

duetopisa
o0

Results and Analysis

35/ 44

Proof of Constant Stepsize Frank-Wolfe |

Recall that a Frank-Wolfe update amounts to a soft policy iteration update:
m i (s) = (L =)' (s) +nm (s),
where 7!, is the policy iteration update to 7. By linearity, we have that for any state s,
TV () = (L= T V™ (s) + nT™+ V™ (s)
= (L=n)V™ (s) +0T"V™ (s). (22)
Since we have V7' = T*V’rt’, we obtain
TV = =TV 4TV = v
By monotonicity of T we repeatedly apply 77" on both sides:
V= im (T VTR = VT
k—o0

Results and Analysis 36 /44

Proof of Constant Stepsize Frank-Wolfe Il

Therefore, from (22), we get

VT s (L= VT 4TV
To show the linear convergence, we turn to the key step (i.e., the improvement is at least
proportional to current distance):

vet v e (Trv v
= (TV" =V v —vT)
= (- (v =V v —vT)
=n(1—)V*=V"™). (23)

By the previous reasoning, we conclude that
V' = v, < @ =na - [V -v=

oo
Results and Analysis 37 /44

Proof of NPG with Adaptive Stepsize |

Recall the natural policy gradient (NPG) update (see (18)) with an adaptive stepsize takes the

form:

m'(als) exp (nt(s)Q“t (s, a))

TS @l exp (7 ()@ (5,0)

For simplicity, we let ¢ := 2(1 —~)~!, which implies 7;(s) > £log (77“‘(3245))’ where

a} = argmax, Q™ (s, a).

~~ If we can use an infinitely large stepsize, we see that w'™! — 7’ , which puts the probability 1
for the optimal action and the probability 0 for sub-optimal actions.

~~ To guarantee a “minimal improvement”, we need to control probabilities of sub-optimal

actions decrease by a certain factor A € (0, 1) with a finite stepsize.

Results and Analysis 38/44

Proof of NPG with Adaptive Stepsize ||

als) exp(n'(s)Q"(s, a)) _ exp(n'(s)Q' (s, a)) <re(

) Lo m(a]s) exp(nt(s)Qt(s, a’)) Z,
t(sva') S IOg()‘Zt)
(s,a) <
(s,a) <

og ()ﬁrt(af |s) exp(n'(s)Q" (s, af))) < Mlog Z;
og(A" (af|s)) +n'(5)Q" (s, ay)

1 L) (Q'(s,a}) — Q' (s,a
08 (magerryy) < 71OQs.00) - Qo)

In particular, if Q'(s,af) — Q'(s,a) > 4, it suffices to set

n'(s) 2 5 L 1og (M) :

Results and Analysis

0,1).

39 /44

Proof of NPG with Adaptive Stepsize IlI

Step 1: NPG update for sub-optimal actions: Fix some state s € S. Without loss of
generality, we assume the following ordering on the @Q-values:

Q™' (5,1) > Q™ (5,2) > --- > Q™ (s, |.A|), which implies the action 1 is optimal in state s under
policy 7. For error tolerance £ > 0, define O; (s) and O; (s) as

0 (s) = {al@ (5:1) = Q" (s.0) =~}
O;f (s) := {ot|Q”t(s7 1) — Q”t(s,a) < %})

Lemma 1.
wtt! s,a . =
(£0) < 1 vie O (s).

For any state, (s,

S
Z

Results and Analysis 40/ 44

Proof of NPG with Adaptive Stepsize IV

Step 2: NPG updates as soft policy iteration: Lemma 1 shows how an NPG update with
appropriate stepsize decays the probabilities of sub-optimal actions by a multiplicative factor
instead of zeroing them out. This resembles a soft-policy iteration update for the set of actions
Oy (s).

Lemma 2.
Let V™' (s) denote the state-value function for policy w from any starting state s € S.

Then,
TV (6) — V™ () > % (Tv™(5) - V™)) - <. (24)

Results and Analysis 41 /44

Proof of NPG with Adaptive Stepsize V

Step 3: Completing the proof: Lemma 2 clearly quantifies the relationship between an NPG
update with step-size oy and a soft policy iteration update with an additive error £.
~> It remains to prove that TV = V™ so that we can repeatedly apply this relation to
obtain that V™' > T”tHV“t. To this end, we recall that
ﬂ,t
7'l (s) = argmax Q”t(s,a) - L(S)DKL(aHﬂt(s))
a€A(A) n(s)

Since a = 7t is a feasible solution, we have
TV (5) = Q (5,71 (s) > Q" (5,7'(s)) = V™ ().

Hence, we conclude that
TV vt = v ey

Results and Analysis 42 /44

Proof of NPG with Adaptive Stepsize VI

Therefore, by Lemma 2 we get

oo

V) =V 2 5 (T) -V () +
> % (T V™ () = V() + V7 (5) = V™ (5)) + -
> 2= (Vi) -V (5) + 5
This implies
. _ L+ . _ 0 eyt
v = () T+ 5)

1
< +7> HV vl e

where the last step follows our definition that ¢ = 2(1 —~)~!.

o0

Results and Analysis 43 /44

References |

J. Bhandari and D. Russo. On the linear convergence of policy gradient methods for finite mdps.
In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics,
pages 2386—2394, 2021.

S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in
Machine Learning, 8(3-4):231-357, 2015.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

Results and Analysis 44 / 44

	Background and Notation
	Markov Decision Process
	Policy Iteration

	Policy Gradient Methods
	Connection with Policy Iteration
	Algorithms
	Stepsize Choice

	Results and Analysis
	References

