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Off-Policy Evaluation

Definition: The problem of evaluating a new strategy for behavior, or policy, using
only observations collected during the execution of another policy.
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Motivation

Want to evaluate new method without incurring the risk and cost of actually
implementing this new method/policy.

Existing logs containing huge amounts of historical data based on existing policies.
m It makes economical sense to, if possible, use these logs.

m It makes economical sense to, if possible, not risk the loss of testing out a new
potentially bad policy.

Online ad placement is a good example.
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Motivation
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Importance Sampling

m Naive importance sampling
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m Weighted importance sampling
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Statistical Quantities

Consider a random variable X, the cumulative distribution function and probability
distribution function of which are F'(z) and p(x), respectively.

m Mean E[X].

m Quantile quantile (X) = F ().

m Value at Risk (VaR)  VaR,(X) = quantile,.

m Conditional Value at Risk (CVaR) CVaR,(X) = E[X|X < quantile_(X)].
m Variance [E[(X —EX)2.

m Entropy = [p(z)logp(z)dz.
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[[lustration

Value-at-Risk
(VaR)
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Limitations

m Safety critical applications, e.g., automated healthcare.
Risk-prone metrics: Value at risk (VaR) and conditional value at risk
(CVaR).

m Applications like online recommendations are subject to noisy data
Robust metrics: Median and other quantiles.

m Applications involving direct human-machine interaction, such as robotics and
autonomous driving.
Uncertainty metrics: Variance and entropy.
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How do we develop a universal off-policy method—one that can estimate any desired
performance metrics and can also provide high-confidence bounds that hold
simultaneously with high probability for those metrics?
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Notations

m Partial Observable Markov Decision Process (POMDP) (8,0, A4, P,Q, R, ~,d,).

m D is the data set (H,) , collected using behavior policies (3;)" ;, where H, is
the observed history (O, 4, B(Ay|0y), Ry, O, ... ).

T i
G, := ijo 7R, is the return for H,.
m 7' is the horizon length.

%

G and H_ is the random variables for return s and comlete trajectories under any
policy 7, respectively.

g(h) is the return for trajectory h.

m J{_ is the set of all possible trajectories for policy 7.

T
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Assumptions

Assumption 1

The set D contains independent (not necessarily identically distributed) histories
generated using (3;)!_;, along with the probability of the actions chosen, such that for
some € > 0, (5;(alo) < €) = (mw(alo) =0), forallo € O, a € A, and i € (1,...,n).
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Method

m First estimate its cumulative distribution F_.

m Then use it to estimate its parameter ¢(F).
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Method

m Represent F_ with return G ..

F.(v)=Pr(G,<v)= Z Pr(G,=x)= Z (Z Pr(H, = h) L= x})

zeX,x<v zeX,x<v \heH

m Exchange the order of Sum.

=D Pr(Hy=h) > Typg = Y, Prif=h (Tyme)

heXH . zeX ,xz<v heJ
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Method

m From Assumption 1 V3, 7, C J g,

F,(v)= Y Pr(H,=h)(Lymey)= > Pr(Hy=h) s » (Lggm<ny)
heTl heTt 5 r(Hg =
L T mAl0) - _ B
m Let p; =1L 54 16, which is equal to Pr(H, = h)/Pr(Hgz = h).

~ 1 &
Yv S [R7 Fn(V) = ﬁ Zpiﬂ{GiSV}
i=1
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[[lustration
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Partial Observable Setting

o, O: Observation set for the behavior policy and the evaluation policy.

If O =0 =S8, it becomes MDP setting.

If O =0, as B(alo) = B(ald), one can use density estimation on the available
data, D, to construct an estimator ((alo) of Pr(a|o) = B(al0).

@ + 0, it is only possible to estimate Pr(a|d) = > e, Blalz)Pr(z]0) through
density estimation using data 2.
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Probability Distribution and Inverse CDF

m Let (G(;))i; be the order statistics for samples (G;)i_; and G := G

min*

m Inverse CDF

F. (@) :== min {g € <G(i)>?—1 | F,(g9) > a}

m Probability distribution R
A, (Gy) = F, (Giy) = B (Gi)
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Estimator

s CVaR) (Fn) = é ?:1 dﬁn (G(i)) G(i)ﬂ{G(i)gQg(ﬁ'ﬂ) }
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High-Confidence Bounds

1. It's easy to obtain bounds for a single point.
2. It's hard hard to obtain bounds for a interval.

3. CDF is monotonically non-decreasing.
m Let (x;)K, be any K “key points at which we obtain confidence interval for

(FW(HZ))ZIil
m Generalize to whole interval based on these “key points”.
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Let CI_ (k;,6;) and CI, (k;,0;) be the lower and the upper confidence bounds on
F_ (k;), respectively, such that

Vie(1,..,K), Pr(CL (k;,0;,) <F,(r;) <CL (k;,6;)) >1—¢;

27 7

Based on this constuction, we formulate a lower function F_ and an upper function F:

F ()= 1 if v > Gy
-\ = max, ., CI_(k;,d;) otherwise
0 if v< Gmin
F (v):= { min,, -, CI, (k;,6;) otherwise
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[[lustration
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[[lustration
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llustration
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Bootstrap Bounds!

Algorithm 1: Bootstrap Bounds for 1 (F;)

1 Input: Dataset D, Confidence level 1 — §

2 Bootstrap B datasets (D} )2 | and create (F; )2
3 Bootstrap estimates (v(F* )2 | using (F7 )2,
a Compute (1, 1p ) using BCa((v(F; )2, 6)

s Return (¢_, ¢, )

IB. Efron and R. J. Tibshirani. “An introduction to the Bootstrap”. CRC press, 1994.
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Non-stationary

Assumption 3
For any v, 3w, € R?, such that, Vi € [1, L + /], E@(V) = ¢(i)w,.

m Estimating F7(ri) can now be seen as a time-series forecasting problem.

= Wild bootstrap? provides approximate Cls.

2E. Mammen. “Bootstrap and wild bootstrap for high dimensional linear models.” The Annals of
Statistics, pages 255-285, 1993.
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Setting

m A simulated stationary and a non-stationary recommender system domain,
where the user’s interest for a finite set of items is represented using the
corresponding item'’s reward.

m Type-1 Diabetes Mellitus Simulator (T1DMS) for the treatment of type-1
diabetes.

m A continuous-state Gridworld with partial observability (which also makes the
domain non-Markovian in the observations), stochastic transitions, and eight
discrete actions corresponding to up, down, left, right, and the four diagonal
movements.
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Experiments?
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3P. Thomas, G. Theocharous, and M. Ghavamzadeh. “High confidence policy improvement.”
ICML, 2015.
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Experiments*
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Non-Stationary Domain (speed=2)
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Theorem

m Estimator
n

~ 1
Vv € [R7 Fn(y) = ﬁ Zpiﬂ{GiSV}
i—1
m Theoretical guarantee

Theorem 1. Under Assumption 1, F,, is an unbiased and uniformly consistent estimator of F,

VV € R‘ ED {Fﬂ(y)] = FTn sup ﬁ‘n(:’/) — FF(V) i} U
veR
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Part 1 Unbiasedness

Recall that
Pr(H,=h)
F_ (v) = Pr(H,=h)(1 y Pr(Hy=h) ———=—~ (1 y
h;ﬁ ( {g(h)< }> h;ﬁ ( B >P1" (Hﬂ _ h) ( {g(h)< })

The probability of a trajectory under a policy 7 with partial observations and
non-Markovian structure is

Pr(H,=h) =Pr(sy)Pr(og | so) Pr (o, | 0y, o) Pr(ag | 59,00, 0¢; )
X H PI‘ 7“ |h Pl“( Sit1 ’ hz) PI‘( Oit1 | Sz-i—lvhz) PI“( Oit1 | Si+1,0 H—lahz)

i=

0
x Pr (%‘H ‘ 8i+170i+175i+17hi;7r>) Pr (ry | hr)
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The ratio can be written as

~ T— ~
Pr(H,=h) Pr(agy| sy, 00, 00;m) ! pr (@1 | Sit1s 041504415 g3 )
Pr (HB = h) Pr (ao | 3070075035) g Pr (@i1 | 8iv15 0415 0ip15 i3 B)

Then we have
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)

h) p(h) (Lg0n)<

Z Pr (Hﬁi
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Part 2 Uniform Consistency

~ a.s.
m First we show pointwise consistency, i.e., for all v, F,(v) — F,_(v).

m Then we use this to establish uniform consistency.
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Kolmogorov' Strong Law of Large Numbers

The strong law of large numbers states that the sample average converges almost
surely to the expexted value:

= a.s.
X, — i whenn — o0

if one of the following conditions is satisfied:
1. The random variables are identically distributed;
2. For each n, the variance of X, is finite, and

= Var [X,,
3 [X.]

< 00
n2

n=1
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m Let
X, = p; (Yig <))
m By assumption 1, 5(alo) > € when 7(a|0) > 0. This implies the ratio is bounded
above, and hence X, are bounded above and have a finite variance.

m By Kolmogorov's strong law of large numbers:
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m Some extra notation to tackle discontinuities in CDF F
- 1
Fﬂ(yi) ::Pr<G7r < V) :FTr<l/)_Pr(F7r = V)’ Fn(yi> = gzpz (1{Gi<l/})

m Similarly, we have
~ a.s

E, (v7)— F,_ (v")

n s
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Let ¢; > 0, and let K be any value more than 1/¢;. Let (mi)fio be K key points,

Guin = Ko < K1 S Ry e S kg < K = Gax

which create K intervals such that for all i € (1,..., K — 1),
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For any v, let k;,_; and k; be such that k,_; < v < k;. Then,

F,(v) = F (v) < F, (k7)) — Fy (k)

™

Similarly,
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Then, Yv € R,

Fn (K/i—l)_Fﬂ' (ﬁi—1>_61 < Fn(V>_F7T(V) < n(Hz_>_F (ﬁi_)—i_elv

Let

A s AR (50 = B ()

By the pointwise convergence, we have

A, %0

and thus, R
|Fn(y> _Fﬂ'(y)‘ < An +€1

Finally, since the inequality holds for Vv € R and is valid for any €; > 0, making
€; — 0 gives the desired result,

a.s.

sup’F —F.(v)|—0

veR
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Variance Reduction

m Inspired by weighted importance sampling

VveR, F,(v):= Z@llpj (Z Pi (]1{Gi3u})) :
.

i=1

m Under Assumption 1, F,, may be biased but is a uniformly consistent estimator of
F ’

e

YvER, Eypl|F,(v)] #F, supl|F,(v)—F,(v)] =0

veR
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Part 1 Biased: We prove this using a counter-example. Let n = 1, so

_ 1 1
Vv e [Rv [EQ? [Fn(y>] = ﬂ:D [ 1 (Z pzﬂ{Glgu}>]
Zj:1 pj i=1

[ED []]'{G1 SV}]
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Part 2 Uniform Consistency: First, we will establish pointwise consistency, i.e., for
— a.s.
any v, F, (v) — F_(v), and then we will use this to establish uniform consistency, as

required.
Vv R, Fn(V) Z (Z 102 {G; <1/}>

I 1 ¢
= (nzpj) (t5nte).
J= i=

-1
If both (limn_@ i Z;;l pj) and <lirnn_>OO i ZZ; piﬂ{Gigu}) exist, then using
Slutsky's theorem, Vv € R,

-1
1 R
i B () = (Jgﬁon;pj) (J;nsonii}f%ﬂ{@@})

49/50



Notice using Kolmogorov's strong law of large numbers that the term in the first
parentheses will converge to the expected value of importance ratios, which equals one.
Similarly, we know that the term in the second parentheses will converge to F (v)
almost surely. Therefore,

Vv ER, F,(v) — ()7 (Fr(v) = Fr(v)

n
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