The Fundamental Limits of Imitation Learning

Tian Xu
xut@lamda.nju.edu.cn
Nanjing University
Mainly based on:
Toward the Fundamental Limits of Imitation Learning.
Provably Breaking the Quadratic Error Compounding Barrier in Imitation Learning, Optimally

June 25, 2021

Outline

Background

Brief Review

MIMIC-MD

Lower Bound

Summary

Reinforcement Learning (RL)

RL Challenges

Double DQN requires million samples to solve Atari games [van Hasselt et al., 2016].

Robot directly learns from human demonstrations.

- RL aims to learn the (near-) optimal decisions from interactions with environments
- It often requires a large amount of samples.
- It's hard to design proper reward function for each particular task.
- In some real-world scenarios, it is easy to obtain expert-level demonstrations.

Imitation Learning (IL)

- Given trajectories $D=\left\{\left(s_{1}^{i}, a_{1}^{i}, s_{2}^{i}, \cdots, s_{H}^{i}, a_{H}^{i}\right)\right\}_{i=1}^{m}$ collected by expert policy π_{E}, which is (near-) optimal.
- Agent directly learns a policy from D without explicit rewards.
- IL does not rely on trails-and-errors and could be more sample-efficient than RL.

Markov Decision Process

- Consider a finite episodic Markov Decision Process $\left(\mathcal{S}, \mathcal{A}, H,\left\{P_{h}\right\}_{h \in[H]},\left\{r_{h}\right\}_{h \in[H]}, \rho\right)$.
- \mathcal{S} and \mathcal{A} are the finite state and action space, respectively.
- $r_{h}(s, a) \in[0,1]$ is deterministic reward received after taking the action a in state s at step h.
- $P_{h}\left(s^{\prime} \mid s, a\right)$ specifies the transition probability of s^{\prime} conditioned on s and a at step h.
- H is the horizon length.
- The initial state s_{1} is sampled from the initial state distribution ρ.

Markov Decision Process

- A deterministic policy is a collection of functions $\pi_{h}: \mathcal{S} \rightarrow \mathcal{A}$ for all $h \in[H]$. We use $\Pi_{\text {det }}$ to denote the set of all deterministic policies.
- We assume that the expert policy is deterministic.
- The policy value $J(\pi)=\mathbb{E}\left[\sum_{h=1}^{H} r_{h}\left(s_{h}, a_{h}\right)\right]$.

Settings

- There are mainly three settings in IL.
- No-interaction: Provided with expert dataset, the learner is not allowed to interact with the MDP.
- Known-transition: Besides expert dataset, the learner additionally knowns the MDP transition function.
- Active: Without expert dataset in advance, the learner is allowed to interact with the MDP for m episodes and is provided access to an oracle which outputs the expert action $\pi^{*}(s)$ at the learner's current state s.
- Intuitively, the hardness of problems under different settings: No-interaction \geq Known-transition, No-interaction $\geq(\curvearrowleft)$ Active.
- In IL, our objective is to minimize the policy value gap:

$$
\min _{\pi} J\left(\pi_{E}\right)-J(\pi) \quad \Longleftrightarrow \quad \max _{\pi} J(\pi)
$$

- There are mainly two classes of methods: behavioral cloning (BC) [Pomerleau, 1991] and adversarial imitation learning (AIL) [Abbeel and Ng, 2004, Ho and Ermon, 2016].
- BC: mimics expert actions with supervised learning.
- AIL: firstly infers the reward function, then learns a (sub-) optimal policy with the recovered reward.

Outline

Background

Brief Review

MIMIC-MD

Lower Bound

Summary

Behavioral Cloning (BC)

- Given expert demonstrations: $D=\left\{\left(s_{1}^{i}, a_{1}^{i}, s_{2}^{i}, \cdots, s_{H}^{i}, a_{H}^{i}\right)\right\}_{i=1}^{m}$.
- BC reduces IL to supervised learning:
- BC firstly splits trajectories into labeled data with states as inputs and actions as targets.
- Then BC learns a mapping (e.g., neural networks) from state space to action space via any supervised learning methods.
- Mathematically, BC learns a policy to minimize the population $0-1$ risk.

$$
\mathcal{L}_{\text {pop }}\left(\widehat{\pi}, \pi^{*}\right)=\frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_{t} \sim f_{\pi^{*}}^{t}}\left[\mathbb{E}_{a \sim \widehat{\pi}_{t}\left(\cdot \mid s_{t}\right)}\left[\mathbb{I}\left(a \neq \pi_{t}^{*}\left(s_{t}\right)\right)\right]\right],
$$

where $f_{\pi^{*}}^{t}(s)=\operatorname{Pr}_{\pi^{*}}\left(s_{t}=s\right)$.

- With expert dataset D, BC optimizes the following empirical risk.

$$
\mathcal{L}_{\mathrm{emp}}\left(\widehat{\pi}, \pi^{*}\right)=\frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_{t} \sim f_{D}^{t}}\left[\mathbb{E}_{a \sim \widehat{\pi}_{t}\left(\cdot \mid s_{t}\right)}\left[\mathbb{I}\left(a \neq \pi_{t}^{*}\left(s_{t}\right)\right)\right]\right]
$$

where $f_{D}^{t}(s)=\frac{\sum_{i=1}^{m} \mathbb{I}\left(s_{t}^{i}=s\right)}{m}$.

- BC does not need to interact with the MDP and optimizes the empirical risk in an offline manner.
- Given expert dataset D, we define $\Pi_{\text {mimic }}(D)$ as the set of policies which are compatible with D.

$$
\Pi_{\text {mimic }}(D) \triangleq\left\{\pi \in \Pi: \forall t \in[H], s \in \mathcal{S}_{t}(D), \pi_{t}(\cdot \mid s)=\delta_{\pi_{t}^{*}(s)}\right\},
$$

where $\mathcal{S}_{t}(D)=\left\{s_{t}^{i}\right\}_{i=1}^{m}$ and δ_{a} is a distribution over \mathcal{A} which puts all probability mass on a.

- It is easy to check that $\forall \hat{\pi} \in \Pi_{\text {mimic }}(D), \mathcal{L}_{\text {emp }}\left(\pi, \pi^{*}\right)=0$, meaning that the solution of $B C$ lies in $\Pi_{\text {mimic }}(D)$.

Theorem 1

Consider any policy $\hat{\pi} \in \Pi_{\text {mimic }}(D)$,

- The expected sub-optimality is bounded by,

$$
J\left(\pi^{*}\right)-\mathbb{E}[J(\widehat{\pi})] \lesssim \min \left\{H, \frac{|\mathcal{S}| H^{2}}{m}\right\}
$$

- For any $\delta \in(0, \min \{1, H / 10\}]$, w.p. $\geq 1-\delta$, the sub-optimality is bounded by,

$$
J\left(\pi^{*}\right)-J(\widehat{\pi}) \lesssim \frac{|\mathcal{S}| H^{2}}{m}+\frac{\sqrt{|\mathcal{S}|} H^{2} \log (H / \delta)}{m}
$$

- BC enjoys a convergence rate of $\frac{1}{m}$, which is rare in decision-making tasks.
- The sub-optimality of BC grows quadratically w.r.t the horizon, which is referred to the phenomenon of compounding error.
- Connect policy value gap with the population risk [Ross et al., 2011]: $J\left(\pi^{*}\right)-J(\hat{\pi}) \leq H^{2} \mathcal{L}_{\text {pop }}\left(\hat{\pi}, \pi^{*}\right)$.
- Upper bound the population risk with the missing mass: for each $\hat{\pi} \in \Pi_{\text {mimic }}(D)$,

$$
\begin{aligned}
& \mathcal{L}_{\text {pop }}\left(\hat{\pi}, \pi^{*}\right)=\frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_{t} \sim f_{\pi^{*}}^{t}}\left[\mathbb{E}_{a \sim \widehat{\pi}_{t}\left(\cdot \mid s_{t}\right)}\left[\mathbb{I}\left(a \neq \pi_{t}^{*}\left(s_{t}\right)\right)\right]\right] \leq \frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_{t^{\prime} \sim f_{\pi^{*}}^{t}}}\left[\mathbb{I}\left(s_{t} \notin S_{t}(D)\right)\right] \\
& =\frac{1}{H} \sum_{t=1}^{H} \underbrace{\sum_{s \in \mathcal{S}} f_{\pi^{*}}^{t}(s) \mathbb{I}\left(s_{t} \notin S_{t}(D)\right)}_{\text {missing mass }} .
\end{aligned}
$$

- For step $t \in[H]$, we consider the term $\sum_{s \in \mathcal{S}} f_{\pi^{*}}^{t}(s) \mathbb{I}\left(s_{t} \notin S_{t}(D)\right)$, where $S_{t}(D)=\left\{\left(s_{t}^{i}, a_{t}^{i}\right)\right\}_{i=1}^{m}$ are i.i.d. drawn from $f_{\pi^{*}}^{t} \times \pi_{t}^{*}$.

Missing Mass

Definition 1 (Missing Mass)

Let P be the probability distribution over \mathcal{X}. Suppose that X^{m} are i.i.d. drawn from P. Let $n_{x}\left(X^{m}\right)=\sum_{i=1}^{m} \mathbb{I}\left(X^{i}=x\right)$ denote the number of times that the symbol x is observed in X^{m}. Then the missing mass $m_{0}\left(p, X^{m}\right)=\sum_{x \in \mathcal{X}} p(x) \mathbb{I}\left(n_{x}\left(X^{m}\right)=0\right)$ which is defined as the probability mass contributed by symbols are uncovered in X^{m}.

- Faster diminish rate of the expected missing mass:

$$
\mathbb{E}\left[\sum_{s \in \mathcal{S}} f_{\pi^{*}}^{t}(s) \mathbb{I}\left(s_{t} \notin S_{t}(D)\right)\right]=\sum_{s \in \mathcal{S}} f_{\pi^{*}}^{t}(s) \operatorname{Pr}\left(s_{t} \notin S_{t}(D)\right)=\sum_{s \in \mathcal{S}} f_{\pi^{*}}^{t}(s)\left(1-f_{\pi^{*}}^{t}(s)\right)^{m} \leq \frac{4|\mathcal{S}|}{9 m},
$$

- Faster concentration of missing mass [McAllester and Ortiz, 2003]: for any $\delta \in\left(0, \frac{1}{10}\right.$], w.p. $\geq 1-\delta$,

$$
\sum_{s \in \mathcal{S}} f_{\pi^{*}}^{t}(s) \mathbb{I}\left(s_{t} \notin S_{t}(D)\right) \leq \frac{4|\mathcal{S}|}{9 m}+\frac{3 \sqrt{|\mathcal{S}|} \log (H / \delta)}{m} .
$$

- Faster diminish rate of policy value gap: $J\left(\pi^{*}\right)-J(\widehat{\pi}) \gtrsim \widetilde{\mathcal{O}}\left(\frac{H^{2}|S|}{m}\right)$.

Outline

Background

Brief Review

MIMIC-MD

Lower Bound

Summary

- The planning horizon dependency of BC is $\mathcal{O}\left(H^{2}\right)$, causing a large policy value loss on long-horizon tasks.
- Under the non-interaction and active setting, the lower bound for any IL algorithms is of order $\Omega\left(H^{2}\right)$, implying that BC is already minimax optimal.
- Can we break this barrier if more environment information (i.e., the transition function) is provided to the learner?

MIMIC-MD

- Consider that the expert dataset D is equally divided into two parts $D=D_{1} \cup D_{2}$.
- Recall the definition of $\Pi_{\text {mimic }}\left(D_{1}\right)$:

$$
\Pi_{\text {mimic }}\left(D_{1}\right) \triangleq\left\{\pi \in \Pi: \forall t \in[H], s \in \mathcal{S}_{t}\left(D_{1}\right), \pi_{t}(\cdot \mid s)=\delta_{\pi_{t}^{*}(s)}\right\}
$$

- Namely, $\Pi_{\text {mimic }}\left(D_{1}\right)$ is the set of BC policies on D_{1}.

MIMIC-MD

- Fixing $(s, a, t) \in \mathcal{S} \times \mathcal{A} \times[H]$, consider the set of trajectories $\mathcal{T}_{t}^{D_{1}}(s, a)$, each of which visits (s, a) at time t and at some time $\tau \leq t$ visits a state unvisited at time τ in D_{1}.
- Formally, $\mathcal{T}_{t}^{D_{1}}(s, a) \triangleq\left\{\left\{\left(s_{t^{\prime}}, a_{t^{\prime}}\right)\right\}_{t^{\prime}=1}^{H} \mid s_{t}=s, a_{t}=a, \exists \tau \leq t: s_{\tau} \notin \mathcal{S}_{\tau}\left(D_{1}\right)\right\}$.
- Intuitively, $\mathcal{T}_{t}^{D_{1}}(s, a)$ is a set of trajectories that are not completely consistent with some trajectory in D_{1}.

MIMIC-MD

- The objective of MIMIC-MD:

$$
\underset{\pi \in \Pi_{\text {mimic }}\left(D_{1}\right)}{\arg \min } \sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}}\left|\operatorname{Pr}_{\pi}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]-\frac{\sum_{\operatorname{tr} \in D_{2}} \mathbb{I}\left(\operatorname{tr} \in \mathcal{T}_{t}^{D_{1}}(s, a)\right)}{\left|D_{2}\right|}\right|
$$

- Given $D_{1}, \frac{\sum_{\operatorname{trr} D_{2}} \mathbb{I}\left(\operatorname{tr} \mathcal{T}_{t}^{D_{1}}(s, a)\right)}{\left|D_{2}\right|}$ is an estimation of $\operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]$ from the other half dataset D_{2}.
- For $\pi \in \Pi_{\text {mimic }}\left(D_{1}\right), \pi$ exactly takes the expert action on states covered in D_{1}.
- For a trajectory tr that is completely consistent with some trajectory in D_{1} and $\pi \in \Pi_{\text {mimic }}\left(D_{1}\right), \operatorname{Pr}_{\pi^{*}}(\operatorname{tr})=\operatorname{Pr}_{\pi}(\operatorname{tr})$.
- This optimization problem cannot be exactly solved in polynomial time.

MIMIC-MD

Theorem 2

Consider $\widehat{\pi}$ is the solution of the above optimization problem, we have

$$
J\left(\pi^{*}\right)-\mathbb{E}[J(\widehat{\pi}(D, P, \rho))] \lesssim \min \left\{H, \frac{|\mathcal{S}| H^{3 / 2}}{m}\right\}
$$

- MIMIC-MD enjoys a horizon dependency of $\mathcal{O}\left(H^{3 / 2}\right)$, which is an improvement over the quadratic dependency of $B C$.
- MIMIC-MD keeps the faster rate of $\mathcal{O}\left(\frac{1}{m}\right)$ as in BC.

Analysis

Lemma 3

Fixing the expert dataset $D=D_{1} \cup D_{2}$, for any policy $\widehat{\pi} \in \Pi_{\text {mimic }}\left(D_{1}\right)$, we have

$$
J\left(\pi^{*}\right)-J(\widehat{\pi}) \leq \sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}}\left|\operatorname{Pr}_{\hat{\pi}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]-\operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]\right|
$$

- Since $\widehat{\pi}$ exactly takes the expert action on states covered in D_{1}, value loss only occurs on trajectories belong to $\mathcal{T}_{t}^{D_{1}}(s, a)$, a set of trajectories that are not completely agree with some trajectory in D_{1}.
- Given D_{1}, for $t \in[H]$, define $\mathcal{E}_{D_{1}}^{\leq t}=\left\{\exists \tau<t: s_{\tau} \notin \mathcal{S}_{\tau}\left(D_{1}\right)\right\}$ as the event that the policy under consideration visits some state at time $\tau<t$ uncovered in D_{1}.
- $J\left(\pi^{*}\right)-J(\widehat{\pi}(D))=$ $\sum_{t=1}^{H} \mathbb{E}_{\pi^{*}}\left[\left(\mathbb{I}\left(\left(\mathcal{E}_{D_{1}}^{\leq t}\right)^{c}\right)+\mathbb{I}\left(\mathcal{E}_{D_{1}}^{\leq t}\right)\right) \mathbf{r}_{t}\left(s_{t}, a_{t}\right)\right]-\mathbb{E}_{\hat{\pi}}\left[\left(\mathbb{I}\left(\left(\mathcal{E}_{D_{1}}^{\leq t}\right)^{c}\right)+\mathbb{I}\left(\mathcal{E}_{D_{1}}^{\leq t}\right)\right) \mathbf{r}_{t}\left(s_{t}, a_{t}\right)\right]$
- As $\widehat{\pi} \in \Pi_{\text {mimic }}\left(D_{1}\right), \sum_{t=1}^{H} \mathbb{E}_{\pi^{*}}\left[\mathbb{I}\left(\left(\mathcal{E}_{D_{1}}^{\leq t}\right)^{c}\right) \mathrm{r}_{t}\left(s_{t}, a_{t}\right)\right]=\sum_{t=1}^{H} \mathbb{E}_{\widehat{\pi}}\left[\mathbb{I}\left(\left(\mathcal{E}_{D_{1}}^{\leq t}\right)^{c}\right) \mathrm{r}_{t}\left(s_{t}, a_{t}\right)\right]$.
- $J\left(\pi^{*}\right)-J(\widehat{\pi})=$
$\sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \mathbf{r}_{t}(s, a)\left(\operatorname{Pr}_{\pi^{*}}\left[\mathcal{E}_{D_{1}}^{\leq t}, s_{t}=s, a_{t}=a\right]-\operatorname{Pr}_{\hat{\pi}}\left[\mathcal{E}_{D_{1}}^{\leq t}, s_{t}=s, a_{t}=a\right]\right)$

$$
\begin{aligned}
& \leq \sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}}\left|\operatorname{Pr}_{\pi^{*}}\left[\mathcal{E}_{D_{1}}^{\leq t}, s_{t}=s, a_{t}=a\right]-\operatorname{Pr}_{\hat{\pi}}\left[\mathcal{E}_{D_{1}}^{\leq t}, s_{t}=s, a_{t}=a\right]\right| \\
& =\sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}}\left|\operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]-\operatorname{Pr}_{\hat{\pi}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]\right|
\end{aligned}
$$

Analysis

Lemma 4

$$
\sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \mathbb{E}\left[\left|\operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]-\frac{\sum_{\operatorname{tr} \in D_{2}} \mathbb{I}\left(\operatorname{tr} \in \mathcal{T}_{t}^{D_{1}}(s, a)\right)}{\left|D_{2}\right|}\right|\right] \leq \frac{8}{3} \frac{|\mathcal{S}| H^{\frac{3}{2}}}{N}
$$

$$
\begin{aligned}
& \sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \mathbb{E}\left[\left|\operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]-\frac{\sum_{\operatorname{tr} \in D_{2}} \mathbb{I}\left(\operatorname{tr} \in \mathcal{T}_{t}^{D_{1}}(s, a)\right)}{\left|D_{2}\right|}\right|\right] \\
(\underset{\leq}{\leq} & \sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}}\left(\mathbb{E}\left[\left(\operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]-\frac{\sum_{\operatorname{tr} \in D_{2}} \mathbb{I}\left(\operatorname{tr} \in \mathcal{T}_{t}^{D_{1}}(s, a)\right)}{\left|D_{2}\right|}\right)^{2}\right]\right)^{1 / 2} \\
\leq & \sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}}\left(\frac{1}{\left|D_{2}\right|} \operatorname{Var}\left[\mathbb{I}\left(\operatorname{tr}_{1} \in \mathcal{T}_{t}^{D_{1}}(s, a)\right]\right)^{1 / 2}\right) \\
(\underset{\leq}{\leq} & \sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}}\left(\frac{1}{\left|D_{2}\right|} \operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]\right)^{1 / 2}
\end{aligned}
$$

Inequality (1) follows the Jensen Inequality, Inequality (2) follows that $\operatorname{Var}[X]=p(1-p) \leq p$ for a Bernoulli random variable X.

$$
\begin{aligned}
\sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \mathbb{E}\left[\left(\frac{1}{\left|D_{2}\right|} \operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]\right)^{1 / 2}\right] & \leq \sum_{t=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}}\left(\frac{1}{\left|D_{2}\right|} \mathbb{E}\left[\operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]\right]\right)^{1 / 2} \\
& \leq \sum_{t=1}^{H}\left(\frac{|\mathcal{S}|}{\left|D_{2}\right|}\right)^{1 / 2}\left(\sum_{s \in \mathcal{S}, a=\pi_{t}^{*}(s)} \mathbb{E}\left[\operatorname{Pr}_{\pi^{*}}\left[\mathcal{T}_{t}^{D_{1}}(s, a)\right]\right]\right)^{1 / 2} \\
& \leq \sum_{t=1}^{H}\left(\frac{|\mathcal{S}|}{\left|D_{2}\right|}\right)^{1 / 2}\left(\mathbb{E}\left[\operatorname{Pr}_{\pi^{*}}\left[\varepsilon_{D_{1}}^{\leq t}\right]\right]\right)^{1 / 2}
\end{aligned}
$$

- $\operatorname{Pr}_{\pi^{*}}\left[\varepsilon_{D_{1}}^{\leq t}\right]$ is the probability that π^{*} visits a state at some time $\tau \leq t$ uncovered in D_{1}. This term is closely related to the missing mass.
- Connect $\operatorname{Pr}_{\pi^{*}}\left[\mathcal{E}_{D_{1}}^{\leq t}\right]$ with missing mass.

$$
\begin{aligned}
\operatorname{Pr}_{\pi^{*}}\left[\mathcal{E}_{D_{1}}^{\leq t}\right] & =\operatorname{Pr}_{\pi^{*}}\left[\exists \tau \leq t: s_{\tau} \notin \mathcal{S}_{\tau}\left(D_{1}\right)\right]=\sum_{\tau=1}^{t} \operatorname{Pr}_{\pi^{*}}\left[\forall \tau^{\prime}<\tau, s_{\tau^{\prime}} \in \mathcal{S}_{\tau^{\prime}}\left(D_{1}\right), s_{\tau} \notin \mathcal{S}_{\tau}\left(D_{1}\right)\right] \\
& \leq \sum_{\tau=1}^{t} \operatorname{Pr}_{\pi^{*}}\left[s_{\tau} \notin \mathcal{S}_{\tau}\left(D_{1}\right)\right]=\sum_{\tau=1}^{t} \sum_{s \in \mathcal{S}} \operatorname{Pr}_{\pi^{*}}\left[s_{\tau}=s\right] \mathbb{I}\left(s \notin \mathcal{S}_{\tau}\left(D_{1}\right)\right) \\
& \leq \sum_{\tau=1}^{H} \underbrace{\sum_{1 \in \mathcal{S}} \operatorname{Pr}_{\pi^{*}}\left[s_{\tau}=s\right] \mathbb{I}\left(s \notin \mathcal{S}_{\tau}\left(D_{1}\right)\right)}_{\text {missing mass at time } \tau}
\end{aligned}
$$

- We have shown that $\mathbb{E}\left[\sum_{s \in \mathcal{S}} \operatorname{Pr}_{\pi^{*}}\left[s_{\tau}=s\right] \mathbb{I}\left(s \notin \mathcal{S}_{\tau}\left(D_{1}\right)\right)\right] \leq \frac{4|S|}{9\left|D_{1}\right|}$.
- $J\left(\pi^{*}\right)-\mathbb{E}[J(\widehat{\pi})] \leq \sum_{t=1}^{H}\left(\frac{|\mathcal{S}|}{\left|D_{2}\right|}\right)^{1 / 2}\left(\mathbb{E}\left[\operatorname{Pr}_{\pi^{*}}\left[\varepsilon_{D_{1}}^{\leq t}\right]\right]\right)^{1 / 2} \leq \frac{4}{3} \frac{|\mathcal{S}| H^{3 / 2}}{m} \lesssim \frac{|\mathcal{S}| H^{3 / 2}}{m}$.

Outline

Background
Brief Review
MIMIC-MD
Lower Bound

Summary

Theorem 5

Suppose $H \geq 2$ and $N \geq 7$. There exists a three-state MDP \mathcal{M} and an expert policy π^{*} such that, for every learner $\widehat{\pi}$,

$$
\operatorname{Pr}\left(J\left(\pi^{*}\right)-J(\widehat{\pi}) \gtrsim \frac{H^{3 / 2}}{m}\right) \geq c^{\prime},
$$

for some constants $c, c^{\prime}>0$. The probability is taken over the randomness of the expert dataset D.

- The lower bound of $\Omega\left(\frac{H^{3 / 2}}{m}\right)$ implies that MIMIC-MD is minimax optimal when the transition function is known.

Analysis

Lemma 6

Suppose there exist a three-state MDP \mathcal{M} and expert policy π^{*} such that for every learner $\widehat{\pi}$, $\operatorname{Pr}\left(\left|J_{\mathcal{M}}\left(\pi^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \gtrsim \frac{H^{3 / 2}}{m}\right) \geq c^{\prime}$ for some constant $0<c^{\prime} \leq 1$. Then there exist a three-state MDP \mathcal{M} and expert policy π^{*} such that for every learner $\widehat{\pi}$, $\operatorname{Pr}\left(J_{\mathcal{M}}\left(\pi^{*}\right)-J_{\mathcal{M}}(\widehat{\pi}) \gtrsim \frac{H^{3 / 2}}{m}\right) \geq \frac{c^{\prime}}{2}$.

- Given expert policy π^{*}, the learner cannot distinguish between $\mathcal{M}=(\rho, P, r)$ and $\mathcal{M}^{\prime}=(\rho, P, 1-r)$ from expert dataset only with state-action pairs.
- For an arbitrary policy π, we have that $J_{\mathcal{M}}(\pi)+J_{\mathcal{M}^{\prime}}(\pi)=H$. Therefore, the learner needs to upper bound the two-sided error.
- This assumption on the problem class seems strange since the expert policy π^{*} cannot perform good on both \mathcal{M} and \mathcal{M}^{\prime}.

Analysis

- We aim to prove that there exist \mathcal{M} and π^{*}, for every learner $\widehat{\pi}$, $\operatorname{Pr}\left(\left|J_{\mathcal{M}}\left(\pi^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \gtrsim \frac{H^{3 / 2}}{m}\right) \geq c^{\prime}$ for some constant $0<c^{\prime} \leq 1$.
- We consider the following three-state MDP.

Three-state MDP

- There are three states $\mathcal{S}=\{1,2,3\}$ and two actions $\mathcal{A}=\{R, B\}$.
- On state 1 , if the agent takes action R, it deterministically goes to state 2 . Otherwise, it deterministically goes to state 3 .
- On states 2 and 3 , no matter which action is taken, the agent goes to state 1 with a probability of $\frac{2}{m}$ and stays absorbing with a probability of $1-\frac{2}{m}$.

- The reward equals 1 on state 2 and 0 on the other state-action pairs.
- Only actions on state 1 are meaningful and the optimal policy is $\pi_{t}^{*}(\cdot \mid 1)=\left(\pi_{t}^{*}(R \mid 1), \pi_{t}^{*}(B \mid 1)\right)=(1,0)$ for $t \in[H]$.

Analysis

- Given the three-state MDP \mathcal{M}, there exists π^{*}, for every learner $\widehat{\pi}$, $\operatorname{Pr}\left(\left|J_{\mathcal{M}}\left(\pi^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \gtrsim \frac{H^{3 / 2}}{m}\right) \geq c^{\prime}$.
- It suffices to find a prior distribution \mathcal{D} over π^{*} such that $\mathbb{E}_{\pi^{*} \sim \mathcal{D}}\left[\operatorname{Pr}\left(\left|J_{\mathcal{M}}\left(\pi^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \gtrsim \frac{H^{3 / 2}}{m}\right)\right] \geq c^{\prime}$.
- For $t \in[H], \pi_{t}^{*}(r \mid 1) \sim \operatorname{Unif}(\{0,1\})$.

Analysis

Lemma 7
$\mathbb{E}_{\pi^{*} \sim \mathcal{D}}\left[\operatorname{Pr}_{D}\left(\left|J_{\mathcal{M}}\left(\pi^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \precsim \frac{H^{3 / 2}}{m}\right)\right] \leq \frac{1}{2}+\mathbb{E}_{D}\left[\operatorname{Pr}_{\pi_{1}^{*}, \pi_{2}^{*}}\left(\left.\left|J_{\mathcal{M}}\left(\pi_{1}^{*}\right)-J_{\mathcal{M}}\left(\pi_{2}^{*}\right)\right| \lesssim \frac{H^{3 / 2}}{m} \right\rvert\, D\right)\right]$,
where π_{1}^{*} and π_{2}^{*} are two independent samples drawn from the posterior distribution conditioned on the expert dataset D.

$$
\begin{aligned}
& 2 \mathbb{E}_{\pi^{*} \sim \mathcal{D}}\left[\mathbb{E}_{D}\left[\mathbb{I}\left(\left|J_{\mathcal{M}}\left(\pi^{*}\right)-J_{\mathcal{M}}(\widetilde{\pi})\right| \lesssim \frac{H^{3 / 2}}{m}\right)\right]\right]=2 \mathbb{E}_{D}\left[\mathbb{E}_{\pi^{*}}\left[\left.\mathbb{I}\left(\left|J_{\mathcal{M}}\left(\pi^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \lesssim \frac{H^{3 / 2}}{m}\right) \right\rvert\, D\right]\right] \\
&= \mathbb{E}_{D}\left[\mathbb{E}_{\pi_{1}^{*}}\left[\left.\mathbb{I}\left(\left|J_{\mathcal{M}}\left(\pi_{1}^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \lesssim \frac{H^{3 / 2}}{m}\right) \right\rvert\, D\right]\right]+\mathbb{E}_{D}\left[\mathbb{E}_{\pi_{2}^{*}}\left[\left.\mathbb{I}\left(\left|J_{\mathcal{M}}\left(\pi_{2}^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \lesssim \frac{H^{3 / 2}}{m}\right) \right\rvert\, D\right]\right] \\
& \stackrel{(1)}{\leq} 1+\mathbb{E}_{D}\left[\mathbb{E}_{\pi_{1}^{*}, \pi_{2}^{*}}\left[\left.\mathbb{I}\left(\left|J_{\mathcal{M}}\left(\pi_{1}^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right|+\left|J_{\mathcal{M}}\left(\pi_{2}^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \lesssim \frac{H^{3 / 2}}{m}\right) \right\rvert\, D\right]\right] \\
& \stackrel{(2)}{\leq} 1+\mathbb{E}_{D}\left[\mathbb{E}_{\pi_{1}^{*}, \pi_{2}^{*}}\left[\left.\mathbb{I}\left(\left|J_{\mathcal{M}}\left(\pi_{1}^{*}\right)-J_{\mathcal{M}}\left(\pi_{2}^{*}\right)\right| \lesssim \frac{H^{3 / 2}}{m}\right) \right\rvert\, D\right]\right]
\end{aligned}
$$

- Inequality (1) follows that $\mathbb{I}(x \leq a)+\mathbb{I}(y \leq b) \leq 1+\mathbb{I}(x+y \leq a+b)$.
- Inequality (2) follows that $\left|J_{\mathcal{M}}\left(\pi_{1}^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right|+\left|J_{\mathcal{M}}\left(\pi_{2}^{*}\right)-J_{\mathcal{M}}(\widehat{\pi})\right| \lesssim \frac{H^{3 / 2}}{m} \rightarrow$ $\left|J_{\mathcal{M}}\left(\pi_{1}^{*}\right)-J_{\mathcal{M}}\left(\pi_{2}^{*}\right)\right| \lesssim \frac{H^{3 / 2}}{m}$.

Analysis

Lemma 8

Conditioned on the expert dataset D, the expert policy $\pi^{*} \sim \operatorname{Unif}\left(\Pi_{\text {mimic }}(D)\right)$. In other words, at time $t \in[H]$ such that state 1 is unvisited in any trajectory in the expert dataset, $\pi_{t}^{*}(R \mid 1) \sim \operatorname{Unif}(\{0,1\})$.

- Note that for $t \in[H], \operatorname{Pr}_{\pi}\left(s_{t}=1\right)$ is the same for all policies and we denote it as $\operatorname{Pr}\left(s_{t}=1\right)$.
- For a fixed time $t \in[H]$, we consider the random variables $\pi_{t}^{*}(R \mid 1)$ and $D_{t}=\left\{\left(s_{t}^{i}, a_{t}^{i}\right)\right\}_{i=1}^{m}$.
- We list the joint probabilities as follows. $W R$ means that D_{t} contains state 1 and the corresponding action is R and $W O$ means that D_{t} does not cover state 1 .

	$W R$	$W B$	WO
1	$\frac{1}{2}\left(1-\left(1-\operatorname{Pr}\left(s_{t}=1\right)\right)^{m}\right)$	0	$\frac{1}{2}\left(1-\operatorname{Pr}\left(s_{t}=1\right)\right)^{m}$
0	0	$\frac{1}{2}\left(1-\left(1-\operatorname{Pr}\left(s_{t}=1\right)\right)^{m}\right)$	$\frac{1}{2}\left(1-\operatorname{Pr}\left(s_{t}=1\right)\right)^{m}$

- $\operatorname{Pr}\left(\pi_{t}^{*}(R \mid 1)=1 \mid D_{t}=W R\right)=1, \operatorname{Pr}\left(\pi_{t}^{*}(R \mid 1)=0 \mid D_{t}=W B\right)=1$,
$\operatorname{Pr}\left(\pi_{t}^{*}(R \mid 1)=0 \mid D_{t}=W O\right)=\operatorname{Pr}\left(\pi_{t}^{*}(R \mid 1)=0 \mid D_{t}=W O\right)=\frac{1}{2}$.

Analysis

- We want to prove that $\mathbb{E}_{D}\left[\operatorname{Pr}_{\pi_{1}^{*}, \pi_{2}^{*}}\left(\left.\left|J_{\mathcal{M}}\left(\pi_{1}^{*}\right)-J_{\mathcal{M}}\left(\pi_{2}^{*}\right)\right| \gtrsim \frac{H^{3 / 2}}{m} \right\rvert\, D\right)\right] \geq c$ for some constant $0<c \leq 1$.
- It is easy to calculate that

$$
J_{\mathcal{M}}\left(\pi^{*}\right)=\sum_{t=1}^{H-1}\left(\sum_{t^{\prime}=t+1}^{H}\left(1-\frac{2}{m}\right)^{H-t^{\prime}}\right) \operatorname{Pr}\left(s_{t}=1\right) \pi_{t}^{*}(R \mid 1)+\sum_{t=1}^{H}\left(1-\frac{2}{m}\right)^{t-1} .
$$

Analysis

- Conditioned on the expert dataset D,

$$
J_{\mathcal{M}}\left(\pi_{1}^{*}\right)-J_{\mathcal{M}}\left(\pi_{2}^{*}\right)=\sum_{t=1}^{H-1}\left(\sum_{t^{\prime}=t+1}^{H}\left(1-\frac{2}{m}\right)^{H-t^{\prime}}\right) \operatorname{Pr}\left(s_{t}=1\right) X_{t} \mathbb{I}\left(1 \notin \mathcal{S}_{t}(D)\right),
$$

where X_{t} are i.i.d. random variables distributed as

$$
X_{t}= \begin{cases}-1, & \text { w.p. } \frac{1}{4} \\ 0, & \text { w.p. } \frac{1}{2} \\ +1, & \text { w.p. } \frac{1}{4}\end{cases}
$$

- Let $Z_{D}=J_{\mathcal{M}}\left(\pi_{1}^{*}\right)-J_{\mathcal{M}}\left(\pi_{2}^{*}\right)=\sum_{t=1}^{H-1} \kappa_{t} X_{t}, \mathbb{E}\left[Z_{D} \mid D\right]=0$ and $\operatorname{Var}\left[Z_{D} \mid D\right]=\mathbb{E}\left[Z_{D}^{2} \mid D\right]$.

Key Inequality

Lemma 9 (Paley-Zygmund Argument)
For a random variable X, we have that

$$
\operatorname{Pr}(X \geq \theta \mathbb{E}[X]) \geq(1-\theta)^{2} \frac{(\mathbb{E}[X])^{2}}{\mathbb{E}\left[X^{2}\right]}
$$

- A common strategy is to prove a lower bound of $\mathbb{E}[X]$. Set θ as a constant and lower bound $\frac{(\mathbb{E}[X])^{2}}{\mathbb{E}\left[X^{2}\right]}$ by a constant.

Analysis

- Applying Paley-Zygmund Argument on random variable Z_{D}^{2} yields

$$
\operatorname{Pr}\left(Z_{D}^{2} \geq \theta \mathbb{E}\left[Z_{D}^{2} \mid D\right] \mid D\right) \geq(1-\theta)^{2} \frac{\left(\mathbb{E}\left[Z_{D}^{2} \mid D\right]\right)^{2}}{\mathbb{E}\left[Z_{D}^{4} \mid D\right]}
$$

- It is easy to derive that $\frac{\left(\mathbb{E}\left[Z_{D}^{2} \mid D\right]\right)^{2}}{\mathbb{E}\left[Z_{D}^{4} \mid D\right]} \geq \frac{1}{3}$. Choosing $\theta=\frac{1}{10}$ yields

$$
\operatorname{Pr}\left(\left.Z_{D}^{2} \geq \frac{1}{10} \mathbb{E}\left[Z_{D}^{2} \mid D\right] \right\rvert\, D\right) \geq \frac{27}{100} .
$$

- It suffices to prove that $\operatorname{Pr}_{D}\left(\mathbb{E}\left[Z_{D}^{2} \mid D\right] \gtrsim \frac{H^{3}}{m^{2}}\right) \geq c$ for $c>0$.

Analysis

- We first lower bound the prior variance: $\mathbb{E}\left[Z_{D}^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[Z_{D}^{2} \mid D\right]\right] \gtrsim \frac{H^{3}}{m^{2}}$.

$$
\begin{aligned}
& \mathbb{E}\left[Z_{D}^{2} \mid D\right]=\frac{1}{2} \sum_{t=1}^{H} \kappa_{t}^{2}=\frac{1}{2} \sum_{t=1}^{H}\left(\sum_{t^{\prime}=t+1}^{H}\left(1-\frac{2}{N}\right)^{H-t^{\prime}}\right)^{2}\left(\operatorname{Pr}\left(s_{t}=1\right)\right)^{2} \mathbb{I}\left(1 \in \mathcal{S}_{t}(D)\right) \\
& \mathbb{E}\left[Z_{D}^{2}\right]=\frac{1}{2} \sum_{t=1}^{H} \underbrace{\left(\sum_{t^{\prime}=t+1}^{H}\left(1-\frac{2}{N}\right)^{H-t^{\prime}}\right)^{2}}_{\Omega\left(H^{2}\right)} \underbrace{\left(\operatorname{Pr}\left(s_{t}=1\right)\right)^{2}}_{\Omega\left(1 / m^{2}\right)} \operatorname{Pr}\left(1 \in \mathcal{S}_{t}(D)\right) \gtrsim \frac{H^{3}}{m^{2}}
\end{aligned}
$$

- We again utilize the Paley-Zygmund Argument on random variable $\mathbb{E}\left[Z_{D}^{2} \mid D\right]$:

$$
\operatorname{Pr}_{D}\left(\mathbb{E}\left[Z_{D}^{2} \mid D\right] \geq \frac{1}{10} \mathbb{E}\left[Z_{D}^{2}\right]\right) \geq \frac{81}{100} \frac{\left(\mathbb{E}\left[Z_{D}^{2}\right]\right)^{2}}{\mathbb{E}\left[\mathbb{E}\left[Z_{D}^{2} \mid D\right]^{2}\right]} \geq \frac{9}{25}
$$

Analysis

- Now we have (i) $\operatorname{Pr}\left(\left.Z_{D}^{2} \geq \frac{1}{10} \mathbb{E}\left[Z_{D}^{2} \mid D\right] \right\rvert\, D\right) \geq \frac{27}{100}$, (ii) $\operatorname{Pr}_{D}\left(\mathbb{E}\left[Z_{D}^{2} \mid D\right] \gtrsim \frac{H^{3}}{m^{2}}\right) \geq \frac{9}{25}$.
- We want to prove $\mathbb{E}_{D}\left[\operatorname{Pr}\left(\left.Z_{D}^{2} \gtrsim \frac{H^{3}}{m^{2}} \right\rvert\, D\right)\right] \geq c$ for $c>0$. Let \mathcal{E} be the event that $\mathbb{E}\left[Z_{D}^{2} \mid D\right] \gtrsim \frac{H^{3}}{m^{2}}$.

$$
\begin{aligned}
\mathbb{E}_{D}\left[\operatorname{Pr}\left(\left.Z_{D}^{2} \gtrsim \frac{H^{3}}{m^{2}} \right\rvert\, D\right)\right] & \geq \operatorname{Pr}(\mathcal{E}) \mathbb{E}_{D}\left[\left.\operatorname{Pr}\left(\left.Z_{D}^{2} \gtrsim \frac{H^{3}}{m^{2}} \right\rvert\, D\right) \right\rvert\, \mathcal{E}\right] \\
& \geq \operatorname{Pr}(\mathcal{E}) \mathbb{E}_{D}\left[\left.\operatorname{Pr}\left(\left.Z_{D}^{2} \geq \frac{1}{10} \mathbb{E}\left[Z_{D}^{2} \mid D\right] \right\rvert\, D\right) \right\rvert\, \mathcal{E}\right] \\
& \geq \frac{9}{25} \frac{27}{100}
\end{aligned}
$$

Outline

Background
Brief Review
MIMIC-MD
Lower Bound

Summary

Setting		Value gap
No-interaction / Active	BC	$\widetilde{\mathcal{O}}\left(\frac{H^{2} \mid \mathcal{S}}{m}\right)$
	Lower bound	$\widetilde{\Omega}\left(\frac{H^{2} \mid \mathcal{S \|}}{m}\right)$
Known transition	MIMIC-MD	$\widetilde{\mathcal{O}}\left(\frac{H^{3 / 2}\|\mathcal{S}\|}{m}\right)$
	Lower bound	$\widetilde{\Omega}\left(\frac{H^{3 / 2} \mid \mathcal{S \|}}{m}\right)$

Future Direction

- The known transition setting is not practical and a more common setting is that the agent does not know the exact transition function but can interact with the environment.
- The exploration issue in IL: how many environment interactions are required to achieve a desired policy value gap ?
- Upper bound: BC does not need exploration but suffers from the compounding error issue. AIL optimizes policy in each iteration and requires exploration.
- Lower bound: the characteristics of IL, the learner cannot observe true rewards but have access to expert demonstrations.
[Abbeel and $\mathrm{Ng}, 2004$] Abbeel, P. and $\mathrm{Ng}, \mathrm{A} . \mathrm{Y} .(2004)$.
Apprenticeship learning via inverse reinforcement learning.
In Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004),
Banff, Alberta, Canada, July 4-8, 2004, volume 69.
[Ho and Ermon, 2016] Ho, J. and Ermon, S. (2016).
Generative adversarial imitation learning.
In Advances in Neural Information Processing Systems 29 (NeurIPS'16), pages 4565-4573.

Bibliography (cont.)

[McAllester and Ortiz, 2003] McAllester, D. A. and Ortiz, L. E. (2003).
Concentration inequalities for the missing mass and for histogram rule error.
J. Mach. Learn. Res., 4:895-911.
[Pomerleau, 1991] Pomerleau, D. (1991).
Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1):88-97.
[Ross et al., 2011] Ross, S., Gordon, G. J., and Bagnell, D. (2011).
A reduction of imitation learning and structured prediction to no-regret online learning.
In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS'11), pages 627-635.

Bibliography (cont.)

[van Hasselt et al., 2016] van Hasselt, H., Guez, A., and Silver, D. (2016).
Deep reinforcement learning with double q-learning.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 2094-2100. AAAI Press.

Thank you!

Feel free to contact me for more discussions!
xut@lamda.nju.edu.cn

