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Reinforcement Learning (RL)

Proposed policy 
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Decisions with disagreement 
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Blood pressure 
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Figure 3: The top and middle rows show value estimates by DQN (orange) and Double DQN (blue) on six Atari games. The
results are obtained by running DQN and Double DQN with 6 different random seeds with the hyper-parameters employed by
Mnih et al. (2015). The darker line shows the median over seeds and we average the two extreme values to obtain the shaded
area (i.e., 10% and 90% quantiles with linear interpolation). The straight horizontal orange (for DQN) and blue (for Double
DQN) lines in the top row are computed by running the corresponding agents after learning concluded, and averaging the actual
discounted return obtained from each visited state. These straight lines would match the learning curves at the right side of the
plots if there is no bias. The middle row shows the value estimates (in log scale) for two games in which DQN’s overoptimism
is quite extreme. The bottom row shows the detrimental effect of this on the score achieved by the agent as it is evaluated
during training: the scores drop when the overestimations begin. Learning with Double DQN is much more stable.

The ground truth averaged values are obtained by running
the best learned policies for several episodes and computing
the actual cumulative rewards. Without overestimations we
would expect these quantities to match up (i.e., the curve to
match the straight line at the right of each plot). Instead, the
learning curves of DQN consistently end up much higher
than the true values. The learning curves for Double DQN,
shown in blue, are much closer to the blue straight line rep-
resenting the true value of the final policy. Note that the blue
straight line is often higher than the orange straight line. This
indicates that Double DQN does not just produce more ac-
curate value estimates but also better policies.

More extreme overestimations are shown in the middle
two plots, where DQN is highly unstable on the games As-
terix and Wizard of Wor. Notice the log scale for the values
on the y-axis. The bottom two plots shows the correspond-
ing scores for these two games. Notice that the increases in
value estimates for DQN in the middle plots coincide with
decreasing scores in bottom plots. Again, this indicates that
the overestimations are harming the quality of the resulting
policies. If seen in isolation, one might perhaps be tempted
to think the observed instability is related to inherent in-
stability problems of off-policy learning with function ap-
proximation (Baird 1995, Tsitsiklis and Van Roy 1997, Maei

no ops human starts
DQN DDQN DQN DDQN DDQN

(tuned)
Median 93% 115% 47% 88% 117%
Mean 241% 330% 122% 273% 475%

Table 1: Summarized normalized performance on 49 games
for up to 5 minutes with up to 30 no ops at the start of each
episode, and for up to 30 minutes with randomly selected
human start points. Results for DQN are from Mnih et al.
(2015) (no ops) and Nair et al. (2015) (human starts).

2011, Sutton et al. 2015). However, we see that learning is
much more stable with Double DQN, suggesting that the
cause for these instabilities is in fact Q-learning’s overopti-
mism. Figure 3 only shows a few examples, but overestima-
tions were observed for DQN in all 49 tested Atari games,
albeit in varying amounts.

Quality of the learned policies

Overoptimism does not always adversely affect the quality
of the learned policy. For example, DQN achieves optimal

2098

Double DQN requires million samples to solve Atari
games [van Hasselt et al., 2016].

Robot directly learns from human demonstrations.

▸ RL aims to learn the (near-) optimal decisions from interactions with environments
● It often requires a large amount of samples.

● It’s hard to design proper reward function for each particular task.

▸ In some real-world scenarios, it is easy to obtain expert-level demonstrations.
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Imitation Learning (IL)

⇡(a|s)
<latexit sha1_base64="qBV+Za0JbUuQwUylFLhcnFQI/p4="></latexit>

(s, a) ⇠ ⇡E
<latexit sha1_base64="jz+ybFblCcdOOp+3MEW0em98KOs="></latexit>

Learner Expert

▸ Given trajectories D = {(si1, ai1, si2,⋯, siH , aiH)}mi=1 collected by expert policy πE, which is
(near-) optimal.

▸ Agent directly learns a policy from D without explicit rewards.

▸ IL does not rely on trails-and-errors and could be more sample-efficient than RL.
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Markov Decision Process

▸ Consider a finite episodic Markov Decision Process (S,A,H,{Ph}h∈[H] ,{rh}h∈[H] , ρ).
● S and A are the finite state and action space, respectively.

● rh(s, a) ∈ [0,1] is deterministic reward received after taking the action a in state s at step h.

● Ph(s′∣s, a) specifies the transition probability of s′ conditioned on s and a at step h.

● H is the horizon length.

● The initial state s1 is sampled from the initial state distribution ρ.
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Markov Decision Process

▸ A deterministic policy is a collection of functions πh ∶ S → A for all h ∈ [H]. We use Πdet

to denote the set of all deterministic policies.

▸ We assume that the expert policy is deterministic.

▸ The policy value J(π) = E [∑H
h=1 rh(sh, ah)].
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Settings

▸ There are mainly three settings in IL.
● No-interaction: Provided with expert dataset, the learner is not allowed to interact with the

MDP.

● Known-transition: Besides expert dataset, the learner additionally knowns the MDP
transition function.

● Active: Without expert dataset in advance, the learner is allowed to interact with the MDP
for m episodes and is provided access to an oracle which outputs the expert action π∗(s) at
the learner’s current state s.

▸ Intuitively, the hardness of problems under different settings: No-interaction ≥
Known-transition, No-interaction ≥ (≍) Active.
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Overview

▸ In IL, our objective is to minimize the policy value gap:

min
π

J(πE) − J(π) ⇐⇒ max
π

J(π)

▸ There are mainly two classes of methods: behavioral cloning (BC) [Pomerleau, 1991] and
adversarial imitation learning (AIL) [Abbeel and Ng, 2004, Ho and Ermon, 2016].
● BC: mimics expert actions with supervised learning.

● AIL: firstly infers the reward function, then learns a (sub-) optimal policy with the recovered
reward.
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Behavioral Cloning (BC)

(s0, a0)
(s1, a1)
(s2, a2)

⋯
s

<latexit sha1_base64="MPoN5FQNIwqsvYx0RJ66cFTPvmQ="></latexit>

a
<latexit sha1_base64="GRf28WiBy1mmZte9TetlOdRZo1o=">AAACxnicjVHLTsJAFD3UF+ILdemmEUxckRYXuiS6YYlRHgkS0w4DTihtM51qCDHxB9zqpxn/QP/CO2NJVGJ0mrZnzr3nzNx7/TgQiXKc15y1sLi0vJJfLaytb2xuFbd3WkmUSsabLAoi2fG9hAci5E0lVMA7seTe2A942x+d6Xj7lstEROGlmsS8N/aGoRgI5imiLspe+bpYciqOWfY8cDNQQrYaUfEFV+gjAkOKMThCKMIBPCT0dOHCQUxcD1PiJCFh4hz3KJA2pSxOGR6xI/oOadfN2JD22jMxakanBPRKUto4IE1EeZKwPs028dQ4a/Y376nx1Heb0N/PvMbEKtwQ+5dulvlfna5FYYATU4OgmmLD6OpY5pKaruib21+qUuQQE6dxn+KSMDPKWZ9to0lM7bq3nom/mUzN6j3LclO861vSgN2f45wHrWrFPapUz6ul2mk26jz2sI9DmucxaqijgSZ5D/GIJzxbdSu0UuvuM9XKZZpdfFvWwwcsZI/E</latexit>

▸ Given expert demonstrations: D = {(si1, ai1, si2,⋯, siH , aiH)}mi=1.
▸ BC reduces IL to supervised learning:

● BC firstly splits trajectories into labeled data with states as inputs and actions as targets.

● Then BC learns a mapping (e.g., neural networks) from state space to action space via any
supervised learning methods.
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Behavioral Cloning

▸ Mathematically, BC learns a policy to minimize the population 0 − 1 risk.

Lpop (π̂, π∗) =
1

H

H

∑
t=1

Est∼ft
π∗
[Ea∼π̂t(⋅∣st) [I (a ≠ π

∗
t (st))]] ,

where f t
π∗(s) = Prπ∗(st = s).

▸ With expert dataset D, BC optimizes the following empirical risk.

Lemp (π̂, π∗) =
1

H

H

∑
t=1

Est∼ft
D
[Ea∼π̂t(⋅∣st) [I (a ≠ π

∗
t (st))]] ,

where f t
D(s) =

∑m
i=1 I(sit=s)

m
.
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Behavioral Cloning

▸ BC does not need to interact with the MDP and optimizes the empirical risk in an offline
manner.

▸ Given expert dataset D, we define Πmimic(D) as the set of policies which are compatible
with D.

Πmimic(D) ≜ {π ∈ Π ∶ ∀t ∈ [H], s ∈ St(D), πt(⋅ ∣ s) = δπ∗t (s)} ,

where St(D) = {sit}mi=1 and δa is a distribution over A which puts all probability mass on a.

▸ It is easy to check that ∀π̂ ∈ Πmimic(D), Lemp (π,π∗) = 0, meaning that the solution of
BC lies in Πmimic(D).

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning June 25, 2021 13 / 54



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Upper Bound of BC

Theorem 1
Consider any policy π̂ ∈ Πmimic(D),
▸ The expected sub-optimality is bounded by,

J (π∗) −E[J(π̂)] ≲min{H,
∣S ∣H2

m
}

▸ For any δ ∈ (0,min{1,H/10}], w.p. ≥ 1 − δ, the sub-optimality is bounded by,

J (π∗) − J(π̂) ≲ ∣S ∣H
2

m
+
√
∣S ∣H2 log(H/δ)

m
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Upper bound of BC

▸ BC enjoys a convergence rate of 1
m

, which is rare in decision-making tasks.

▸ The sub-optimality of BC grows quadratically w.r.t the horizon, which is referred to the
phenomenon of compounding error.
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Faster convergence of BC

▸ Connect policy value gap with the population risk [Ross et al., 2011]:
J(π∗) − J(π̂) ≤H2Lpop(π̂, π∗).

▸ Upper bound the population risk with the missing mass: for each π̂ ∈ Πmimic(D),

Lpop(π̂, π∗) =
1

H

H

∑
t=1

Est∼ft
π∗
[Ea∼π̂t(⋅∣st) [I (a ≠ π

∗
t (st))]] ≤

1

H

H

∑
t=1

Est∼ft
π∗
[I(st /∈ St(D))]

= 1

H

H

∑
t=1
∑
s∈S

f t
π∗(s)I(st /∈ St(D))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
missing mass

.

▸ For step t ∈ [H], we consider the term ∑s∈S f
t
π∗(s)I(st /∈ St(D)), where

St(D) = {(sit, ait)}mi=1 are i.i.d. drawn from f t
π∗ × π∗t .

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning June 25, 2021 16 / 54



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Missing Mass

Definition 1 (Missing Mass)

Let P be the probability distribution over X . Suppose that Xm are i.i.d. drawn from P . Let
nx(Xm) = ∑m

i=1 I(Xi = x) denote the number of times that the symbol x is observed in Xm.
Then the missing mass m0(p,Xm) = ∑x∈X p(x)I (nx(Xm) = 0) which is defined as the
probability mass contributed by symbols are uncovered in Xm.
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Missing Mass

▸ Faster diminish rate of the expected missing mass:

E [∑
s∈S

f t
π∗(s)I(st /∈ St(D))] = ∑

s∈S
f t
π∗(s)Pr(st /∈ St(D)) = ∑

s∈S
f t
π∗(s)(1 − f t

π∗(s))m ≤
4∣S ∣
9m

,

▸ Faster concentration of missing mass [McAllester and Ortiz, 2003]: for any δ ∈ (0, 1
10
],

w.p. ≥ 1 − δ,

∑
s∈S

f t
π∗(s)I (st /∈ St(D)) ≤

4∣S ∣
9m
+
3
√
∣S ∣ log(H/δ)

m
.

▸ Faster diminish rate of policy value gap: J (π∗) − J(π̂) ≿ Õ (H
2∣S∣
m
).
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Compounding Error

▸ The planning horizon dependency of BC is O (H2), causing a large policy value loss on
long-horizon tasks.

▸ Under the non-interaction and active setting, the lower bound for any IL algorithms is of
order Ω (H2), implying that BC is already minimax optimal.

▸ Can we break this barrier if more environment information (i.e., the transition function) is
provided to the learner?
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MIMIC-MD

▸ Consider that the expert dataset D is equally divided into two parts D =D1 ∪D2.

▸ Recall the definition of Πmimic (D1):

Πmimic(D1) ≜ {π ∈ Π ∶ ∀t ∈ [H], s ∈ St(D1), πt(⋅ ∣ s) = δπ∗t (s)} ,

▸ Namely, Πmimic (D1) is the set of BC policies on D1.
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MIMIC-MD

▸ Fixing (s, a, t) ∈ S ×A × [H], consider the set of trajectories T D1
t (s, a), each of which

visits (s, a) at time t and at some time τ ≤ t visits a state unvisited at time τ in D1.

▸ Formally, T D1
t (s, a) ≜ {{(st′ , at′)}Ht′=1 ∣ st = s, at = a,∃τ ≤ t ∶ sτ ∉ Sτ (D1)}.

▸ Intuitively, T D1
t (s, a) is a set of trajectories that are not completely consistent with some

trajectory in D1.
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MIMIC-MD

▸ The objective of MIMIC-MD:

argmin
π∈Πmimic(D1)

H

∑
t=1

∑
(s,a)∈S×A

RRRRRRRRRRR
Prπ [T D1

t (s, a)] −
∑tr∈D2

I (tr ∈ T D1
t (s, a))

∣D2∣

RRRRRRRRRRR

▸ Given D1, ∑tr∈D2
I(tr∈T D1

t (s,a))
∣D2∣ is an estimation of Prπ∗ [T D1

t (s, a)] from the other half
dataset D2.

▸ For π ∈ Πmimic(D1), π exactly takes the expert action on states covered in D1.

▸ For a trajectory tr that is completely consistent with some trajectory in D1 and
π ∈ Πmimic(D1), Prπ∗(tr) = Prπ(tr).

▸ This optimization problem cannot be exactly solved in polynomial time.
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MIMIC-MD

Theorem 2
Consider π̂ is the solution of the above optimization problem, we have

J (π∗) −E[J(π̂(D,P, ρ))] ≲min{H,
∣S ∣H3/2

m
}

▸ MIMIC-MD enjoys a horizon dependency of O (H3/2), which is an improvement over the
quadratic dependency of BC.

▸ MIMIC-MD keeps the faster rate of O ( 1
m
) as in BC.
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Analysis

Lemma 3
Fixing the expert dataset D =D1 ∪D2, for any policy π̂ ∈ Πmimic(D1), we have

J(π∗) − J(π̂) ≤
H

∑
t=1

∑
(s,a)∈S×A

∣Prπ̂ [T D1
t (s, a)] −Prπ∗ [T D1

t (s, a)]∣

▸ Since π̂ exactly takes the expert action on states covered in D1, value loss only occurs on
trajectories belong to T D1

t (s, a), a set of trajectories that are not completely agree with
some trajectory in D1.
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Proof

▸ Given D1, for t ∈ [H], define E≤tD1
= {∃τ < t ∶ sτ ∉ Sτ (D1)} as the event that the policy

under consideration visits some state at time τ < t uncovered in D1.

▸ J (π∗) − J(π̂(D)) =
∑H

t=1Eπ∗ [(I ((E≤tD1
)c) + I (E≤tD1

)) rt (st, at)] −Eπ̂ [(I ((E≤tD1
)c) + I (E≤tD1

)) rt (st, at)]

▸ As π̂ ∈ Πmimic(D1), ∑H
t=1Eπ∗ [I ((E≤tD1

)c) rt (st, at)] = ∑H
t=1Eπ̂ [I ((E≤tD1

)c) rt (st, at)].

▸ J (π∗) − J (π̂) =
∑H

t=1∑(s,a)∈S×A rt(s, a) (Prπ∗ [E≤tD1
, st = s, at = a] −Prπ̂ [E≤tD1

, st = s, at = a])

≤
H

∑
t=1

∑
(s,a)∈S×A

∣Prπ∗ [E≤tD1
, st = s, at = a] −Prπ̂ [E≤tD1

, st = s, at = a]∣

=
H

∑
t=1

∑
(s,a)∈S×A

∣Prπ∗ [T D1
t (s, a)] −Prπ̂ [T D1

t (s, a)]∣
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Analysis

Lemma 4

H

∑
t=1

∑
(s,a)∈S×A

E
⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR
Prπ∗ [T D1

t (s, a)] −
∑tr∈D2

I (tr ∈ T D1
t (s, a))

∣D2∣

RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
≤ 8

3

∣S ∣H 3
2

N
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Proof

H

∑
t=1

∑
(s,a)∈S×A

E
⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR
Prπ∗ [T D1

t (s, a)] −
∑tr∈D2

I (tr ∈ T D1
t (s, a))

∣D2∣

RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦

(1)
≤

H

∑
t=1

∑
(s,a)∈S×A

⎛
⎜
⎝
E
⎡⎢⎢⎢⎢⎣

⎛
⎝
Prπ∗ [T D1

t (s, a)] −
∑tr∈D2

I (tr ∈ T D1
t (s, a))

∣D2∣
⎞
⎠

2⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠

1/2

≤
H

∑
t=1

∑
(s,a)∈S×A

( 1

∣D2∣
Var [I (tr1 ∈ T D1

t (s, a)])
1/2
)

(2)
≤

H

∑
t=1

∑
(s,a)∈S×A

( 1

∣D2∣
Prπ∗ [T D1

t (s, a)])
1/2

Inequality (1) follows the Jensen Inequality, Inequality (2) follows that Var[X] = p(1 − p) ≤ p
for a Bernoulli random variable X.
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Proof

H

∑
t=1

∑
(s,a)∈S×A

E
⎡⎢⎢⎢⎢⎣
( 1

∣D2∣
Prπ∗ [T D1

t (s, a)])
1/2⎤⎥⎥⎥⎥⎦
≤

H

∑
t=1

∑
(s,a)∈S×A

( 1

∣D2∣
E [Prπ∗ [T D1

t (s, a)]])
1/2

≤
H

∑
t=1
( ∣S ∣
∣D2∣
)
1/2 ⎛
⎝ ∑
s∈S,a=π∗t (s)

E [Prπ∗ [T D1
t (s, a)]]

⎞
⎠

1/2

≤
H

∑
t=1
( ∣S ∣
∣D2∣
)
1/2

(E [Prπ∗ [ε≤tD1
]])1/2

▸ Prπ∗ [ε≤tD1
] is the probability that π∗ visits a state at some time τ ≤ t uncovered in D1.

This term is closely related to the missing mass.
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Proof

▸ Connect Prπ∗ [E≤tD1
] with missing mass.

Prπ∗ [E≤tD1
] = Prπ∗ [∃τ ≤ t ∶ sτ ∉ Sτ (D1)] =

t

∑
τ=1

Prπ∗ [∀τ ′ < τ, sτ ′ ∈ Sτ ′ (D1) , sτ ∉ Sτ (D1)]

≤
t

∑
τ=1

Prπ∗ [sτ ∉ Sτ (D1)] =
t

∑
τ=1
∑
s∈S

Prπ∗ [sτ = s] I (s ∉ Sτ (D1))

≤
H

∑
τ=1
∑
s∈S

Prπ∗ [sτ = s] I (s ∉ Sτ (D1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
missing mass at time τ

▸ We have shown that E [∑s∈S Prπ∗ [sτ = s] I (s ∉ Sτ (D1))] ≤ 4∣S∣
9∣D1∣ .

▸ J(π∗) −E [J(π̂)] ≤ ∑H
t=1 (

∣S∣
∣D2∣)

1/2
(E [Prπ∗ [ε≤tD1

]])1/2 ≤ 4
3
∣S∣H3/2

m
≾ ∣S∣H

3/2

m
.
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Lower Bound

Theorem 5
Suppose H ≥ 2 and N ≥ 7. There exists a three-state MDP M and an expert policy π∗ such
that, for every learner π̂,

Pr(J(π∗) − J(π̂) ≿ H3/2

m
) ≥ c′,

for some constants c, c′ > 0. The probability is taken over the randomness of the expert dataset
D.

▸ The lower bound of Ω (H3/2

m
) implies that MIMIC-MD is minimax optimal when the

transition function is known.
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Analysis

Lemma 6
Suppose there exist a three-state MDP M and expert policy π∗ such that for every learner π̂,
Pr (∣JM(π∗) − JM(π̂)∣ ≿ H3/2

m
) ≥ c′ for some constant 0 < c′ ≤ 1. Then there exist a

three-state MDP M and expert policy π∗ such that for every learner π̂,
Pr (JM(π∗) − JM(π̂) ≿ H3/2

m
) ≥ c′

2
.

▸ Given expert policy π∗, the learner cannot distinguish between M = (ρ,P, r) and
M′ = (ρ,P,1 − r) from expert dataset only with state-action pairs.

▸ For an arbitrary policy π, we have that JM(π) + JM′(π) =H. Therefore, the learner
needs to upper bound the two-sided error.

▸ This assumption on the problem class seems strange since the expert policy π∗ cannot
perform good on both M and M′.
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Analysis

▸ We aim to prove that there exist M and π∗, for every learner π̂,
Pr (∣JM(π∗) − JM(π̂)∣ ≿ H3/2

m
) ≥ c′ for some constant 0 < c′ ≤ 1.

▸ We consider the following three-state MDP.

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning June 25, 2021 34 / 54



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Three-state MDP
*,leit䳔!棥䨉

"我

会

otoszn
▸ There are three states S = {1,2,3} and two actions A = {R,B}.

▸ On state 1, if the agent takes action R, it deterministically goes to state 2. Otherwise, it
deterministically goes to state 3.

▸ On states 2 and 3, no matter which action is taken, the agent goes to state 1 with a
probability of 2

m
and stays absorbing with a probability of 1 − 2

m
.
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Three-state MDP *,leit䳔!棥䨉
"我

会

otoszn
▸ The reward equals 1 on state 2 and 0 on the other state-action pairs.

▸ Only actions on state 1 are meaningful and the optimal policy is
π∗t (⋅∣1) = (π∗t (R∣1), π∗t (B∣1)) = (1,0) for t ∈ [H].
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Analysis

▸ Given the three-state MDP M, there exists π∗, for every learner π̂,
Pr (∣JM(π∗) − JM(π̂)∣ ≿ H3/2

m
) ≥ c′.

▸ It suffices to find a prior distribution D over π∗ such that
Eπ∗∼D [Pr (∣JM(π∗) − JM(π̂)∣ ≿ H3/2

m
)] ≥ c′.

▸ For t ∈ [H], π∗t (r ∣ 1) ∼ Unif({0,1}).

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning June 25, 2021 37 / 54



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analysis

Lemma 7

Eπ∗∼D [PrD (∣JM(π∗) − JM(π̂)∣ ≾
H3/2

m
)] ≤ 1

2
+ED [Prπ∗1 ,π∗2 (∣JM(π

∗
1) − JM(π∗2)∣ ≾

H3/2

m
∣D)] ,

where π∗1 and π∗2 are two independent samples drawn from the posterior distribution
conditioned on the expert dataset D.
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Proof

2Eπ∗∼D [ED [I(∣JM(π∗) − JM(π̂)∣ ≾
H3/2

m
)]] = 2ED [Eπ∗ [I(∣JM(π∗) − JM(π̂)∣ ≾

H3/2

m
) ∣D]]

= ED [Eπ∗1
[I(∣JM(π∗1) − JM(π̂)∣ ≾

H3/2

m
) ∣D]] +ED [Eπ∗2

[I(∣JM(π∗2) − JM(π̂)∣ ≾
H3/2

m
) ∣D]]

(1)
≤ 1 +ED [Eπ∗1 ,π

∗
2
[I(∣JM(π∗1) − JM(π̂)∣ + ∣JM(π∗2) − JM(π̂)∣ ≾

H3/2

m
) ∣D]]

(2)
≤ 1 +ED [Eπ∗1 ,π

∗
2
[I(∣JM(π∗1) − JM(π∗2)∣ ≾

H3/2

m
) ∣D]]

▸ Inequality (1) follows that I(x ≤ a) + I(y ≤ b) ≤ 1 + I(x + y ≤ a + b).

▸ Inequality (2) follows that ∣JM(π∗1) − JM(π̂)∣ + ∣JM(π∗2) − JM(π̂)∣ ≾ H3/2

m
→

∣JM(π∗1) − JM(π∗2)∣ ≾ H3/2

m
.
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Analysis

Lemma 8
Conditioned on the expert dataset D, the expert policy π∗ ∼ Unif (Πmimic(D)). In other
words, at time t ∈ [H] such that state 1 is unvisited in any trajectory in the expert dataset,
π∗t (R ∣ 1) ∼ Unif({0,1}).
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Proof

▸ Note that for t ∈ [H], Prπ(st = 1) is the same for all policies and we denote it as
Pr(st = 1).

▸ For a fixed time t ∈ [H], we consider the random variables π∗t (R∣1) and Dt = {(sit, ait)}mi=1.

▸ We list the joint probabilities as follows. WR means that Dt contains state 1 and the
corresponding action is R and WO means that Dt does not cover state 1.

WR WB WO
1 1

2
(1 − (1 −Pr(st = 1))m) 0 1

2
(1 −Pr(st = 1))m

0 0 1
2
(1 − (1 −Pr(st = 1))m) 1

2
(1 −Pr(st = 1))m

▸ Pr(π∗t (R∣1) = 1∣Dt =WR) = 1,Pr(π∗t (R∣1) = 0∣Dt =WB) = 1,

Pr(π∗t (R∣1) = 0∣Dt =WO) = Pr(π∗t (R∣1) = 0∣Dt =WO) = 1
2
.
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Analysis

▸ We want to prove that ED [Prπ∗1 ,π∗2 (∣JM(π
∗
1) − JM(π∗2)∣ ≿ H3/2

m
∣D)] ≥ c for some

constant 0 < c ≤ 1.

▸ It is easy to calculate that
JM (π∗) = ∑H−1

t=1 (∑
H
t′=t+1 (1 − 2

m
)H−t

′

)Pr (st = 1)π∗t (R ∣ 1) +∑
H
t=1 (1 − 2

m
)t−1.
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Analysis

▸ Conditioned on the expert dataset D,

JM(π∗1) − JM(π∗2) =
H−1
∑
t=1
(

H

∑
t′=t+1

(1 − 2

m
)
H−t′

)Pr (st = 1)XtI (1 /∈ St(D)) ,

where Xt are i.i.d. random variables distributed as

Xt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1, w.p. 1
4

0, w.p. 1
2

+1, w.p. 1
4

.

▸ Let ZD = JM(π∗1) − JM(π∗2) = ∑
H−1
t=1 κtXt, E [ZD ∣D] = 0 and Var [ZD ∣D] = E [Z2

D ∣D].
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Key Inequality

Lemma 9 (Paley-Zygmund Argument)

For a random variable X, we have that

Pr (X ≥ θE [X]) ≥ (1 − θ)2 (E [X])
2

E [X2]
.

▸ A common strategy is to prove a lower bound of E[X]. Set θ as a constant and lower
bound (E[X])2

E[X2] by a constant.
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Analysis

▸ Applying Paley-Zygmund Argument on random variable Z2
D yields

Pr (Z2
D ≥ θE [Z2

D ∣D] ∣D) ≥ (1 − θ)2
(E [Z2

D ∣D])
2

E [Z4
D ∣D]

.

▸ It is easy to derive that (E[Z
2
D ∣D])

2

E[Z4
D
∣D] ≥

1
3
. Choosing θ = 1

10
yields

Pr(Z2
D ≥

1

10
E [Z2

D ∣D] ∣D) ≥
27

100
.

▸ It suffices to prove that PrD (E [Z2
D ∣D] ≿ H3

m2 ) ≥ c for c > 0.
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Analysis

▸ We first lower bound the prior variance: E [Z2
D] = E [E [Z2

D ∣D]] ≿ H3

m2 .

E [Z2
D ∣D] =

1

2

H

∑
t=1

κ2
t =

1

2

H

∑
t=1
(

H

∑
t′=t+1

(1 − 2

N
)
H−t′

)
2

(Pr (st = 1))2 I(1 ∈ St(D))

E [Z2
D] =

1

2

H

∑
t=1
(

H

∑
t′=t+1

(1 − 2

N
)
H−t′

)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ω(H2)

(Pr (st = 1))2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ω(1/m2)

Pr (1 ∈ St(D)) ≿
H3

m2

▸ We again utilize the Paley-Zygmund Argument on random variable E [Z2
D ∣D]:

PrD (E [Z2
D ∣D] ≥

1

10
E [Z2

D]) ≥
81

100

(E [Z2
D])2

E [E [Z2
D ∣D]

2]
≥ 9

25
.
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Analysis

▸ Now we have (i) Pr (Z2
D ≥ 1

10
E [Z2

D ∣D] ∣D) ≥ 27
100

, (ii) PrD (E [Z2
D ∣D] ≿ H3

m2 ) ≥ 9
25

.

▸ We want to prove ED [Pr(Z2
D ≿ H3

m2 ∣D)] ≥ c for c > 0. Let E be the event that

E [Z2
D ∣D] ≿ H3

m2 .

ED [Pr(Z2
D ≿

H3

m2
∣D)] ≥ Pr(E)ED [Pr(Z2

D ≿
H3

m2
∣D) ∣E]

≥ Pr(E)ED [Pr(Z2
D ≥

1

10
E [Z2

D ∣D] ∣D) ∣E]

≥ 9

25

27

100
.
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Summary

Setting Value gap

No-interaction / Active BC Õ (H
2∣S∣
m
)

Lower bound Ω̃ (H
2∣S∣
m
)

Known transition MIMIC-MD Õ (H
3/2∣S∣
m
)

Lower bound Ω̃(H
3/2∣S∣
m
)
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Future Direction

▸ The known transition setting is not practical and a more common setting is that the agent
does not know the exact transition function but can interact with the environment.

▸ The exploration issue in IL: how many environment interactions are required to achieve a
desired policy value gap ?
● Upper bound: BC does not need exploration but suffers from the compounding error issue.

AIL optimizes policy in each iteration and requires exploration.

● Lower bound: the characteristics of IL, the learner cannot observe true rewards but have
access to expert demonstrations.
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Thank you!
Feel free to contact me for more discussions!

xut@lamda.nju.edu.cn
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