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Reinforcement Learning (RL)
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RL Challenges
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Double DQN requires million samples to solve Atari Robot directly learns from human demonstrations.

games [van Hasselt et al., 2016].

» RL aims to learn the (near-) optimal decisions from interactions with environments
® |t often requires a large amount of samples.
® |t's hard to design proper reward function for each particular task.

> In some real-world scenarios, it is easy to obtain expert-level demonstrations.
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Imitation Learning (IL)

-
Learner Expert
7(als) (s,a) ~ g

> Given trajectories D = {(s},a}, 4, s%,a%;)} ", collected by expert policy g, which is
(near-) optimal.

» Agent directly learns a policy from D without explicit rewards.

> IL does not rely on trails-and-errors and could be more sample-efficient than RL.
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Markov Decision Process

» Consider a finite episodic Markov Decision Process (S,A, H, {Ph}he[H] , {Th}he[H] ,p).
® S and A are the finite state and action space, respectively.

® ri(s,a) €[0,1] is deterministic reward received after taking the action a in state s at step h.

P,,(s'|s,a) specifies the transition probability of s conditioned on s and a at step h.

® H is the horizon length.

The initial state s; is sampled from the initial state distribution p.
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Markov Decision Process

> A deterministic policy is a collection of functions 7, : S - A for all h e [H]. We use ITget

to denote the set of all deterministic policies.
> We assume that the expert policy is deterministic.

» The policy value J(7) = E [ZhH:1 rh(sh,ah)].
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Settings

» There are mainly three settings in IL.

® No-interaction: Provided with expert dataset, the learner is not allowed to interact with the
MDP.

® Known-transition: Besides expert dataset, the learner additionally knowns the MDP

transition function.

® Active: Without expert dataset in advance, the learner is allowed to interact with the MDP
for m episodes and is provided access to an oracle which outputs the expert action 7*(s) at

the learner’s current state s.

> Intuitively, the hardness of problems under different settings: No-interaction >

Known-transition, No-interaction > (x) Active.
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> In IL, our objective is to minimize the policy value gap:

mﬂin J(rg)-J(r) <— max J(m)

» There are mainly two classes of methods: behavioral cloning (BC) [Pomerleau, 1991] and
adversarial imitation learning (AIL) [Abbeel and Ng, 2004, Ho and Ermon, 2016].

® BC: mimics expert actions with supervised learning.

¢ AIL: firstly infers the reward function, then learns a (sub-) optimal policy with the recovered

reward.
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Behavioral Cloning (BC)

(507 ao)
(s, ay)

(527 ﬂz)

» Given expert demonstrations: D = {(s},al, sb, -, s%, a%; )},
» BC reduces IL to supervised learning:
® BC firstly splits trajectories into labeled data with states as inputs and actions as targets.

® Then BC learns a mapping (e.g., neural networks) from state space to action space via any
supervised learning methods.
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Behavioral Cloning

> Mathematically, BC learns a policy to minimize the population 0 -1 risk.
. 1 & "
Lpop (7, 7*) = E;Ew;* [Eqmr, (fs) [L(a = 77 (s:))]],

where fI.(s) = Prp«(s; = s).

> With expert dataset D, BC optimizes the following empirical risk.
1 H
Lemp (7, 7*) = I Z Eswf}:, [Eaﬁr‘t(-\a) [I(a= Ty (St))” )
t=1

where f4(s) = W
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Behavioral Cloning

» BC does not need to interact with the MDP and optimizes the empirical risk in an offline

manner.

> Given expert dataset D, we define Il,,imic(D) as the set of policies which are compatible
with D.
HmimiC(D)é{WGH:Vte[ ],5€Si(D), m(- | s) = (S)}

where S;(D) = {si}™, and &, is a distribution over A which puts all probability mass on a.

* It is easy to check that V7 € Il yimic(D), Lemp (7, 7*) = 0, meaning that the solution of
BC lies in I nimic(D).
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Upper Bound of BC

Consider any policy # € I yimic(D),

> The expected sub-optimality is bounded by,

(%) - BLI) s min 11 S}

» For any 6 € (0, min{1, H/10}], w.p. > 1 -4, the sub-optimality is bounded by,

(") - I 8 |87|52 , VISIH? log(H/5)

m
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Upper bound of BC

» BC enjoys a convergence rate of % which is rare in decision-making tasks.

> The sub-optimality of BC grows quadratically w.r.t the horizon, which is referred to the

phenomenon of compounding error.
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Faster convergence of BC

» Connect policy value gap with the population risk [Ross et al., 2011]:
J(m*) = J(7) € H?Lpop (7, 77).
» Upper bound the population risk with the missing mass: for each 7 € I,imic (D),

H

H
LPOp(fT,W*) = %;Est"f:;* [ a~Te (+|st) []I (a * 7rt (St)) ] Z se~fl, H(st ¢ St(D))]

H
Z Z thr*(S)]I(St ¢£Si(D)).

t=1 seS

missing mass

» For step t € [H], we consider the term ¥, s fL.(s)I(s; ¢ S;(D)), where
Si(D) ={(si,ai)}™, arei.id. drawn from fi, x 7.
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Missing Mass

Definition 1 (Missing Mass)
Let P be the probability distribution over X. Suppose that X™ are i.i.d. drawn from P. Let
ngz(X™) = ¥ I(X* = ) denote the number of times that the symbol z is observed in X™.

Then the missing mass mo(p, X™) = ¥ sex P(2)I(n,(X™) = 0) which is defined as the
probability mass contributed by symbols are uncovered in X™.

The Fundamental Limits of Imitation Learning June 25, 2021 17 / 54

Tian Xu (Nanjing University)



> Faster diminish rate of the expected missing mass:

E[Z ffr*(s)ﬂ(stsést(D))] > S (Prse #8:(D)) = X L1 ()0 - ()™ < g 4|S'

seS

» Faster concentration of missing mass [McAllester and Ortiz, 2003]: for any § € (0
w.p. >1-6,

’10:|

z ft ()L (st ¢ S:(D)) <

seS

4|8| , 3V/[S[log(H/5)

» Faster diminish rate of policy value gap: J (7*) - J(7) % 5(H18
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MIMIC-MD
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Compounding Error

» The planning horizon dependency of BC is (’)(Hz), causing a large policy value loss on
long-horizon tasks.

> Under the non-interaction and active setting, the lower bound for any IL algorithms is of

order Q2 (HZ) implying that BC is already minimax optimal.

» Can we break this barrier if more environment information (i.e., the transition function) is

provided to the learner?
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MIMIC-MD

» Consider that the expert dataset D is equally divided into two parts D = Dy u Ds.

> Recall the definition of T imic (D1):

Hmimic(Dl) 2 {’/T ell:Vte [H],S € St(Dl),’/Tt(- | 8) = 6#2’(5)}7

> Namely, Inimic (D1) is the set of BC policies on Dj.
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MIMIC-MD

> Fixing (s,a,t) € S x A x [H], consider the set of trajectories 7;”*(s,a), each of which
visits (s,a) at time ¢ and at some time 7 < ¢ visits a state unvisited at time 7 in Dj.

> Formally, 7,7 (s,a) = {{(stf,atf)}f,lzl | st =s,a,=a,IT<t:s, ¢S, (Dl)}.

> Intuitively, 7;D1(s,a) is a set of trajectories that are not completely consistent with some

trajectory in Dy.
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MIMIC-MD

> The objective of MIMIC-MD:

H

ZtreDQ I (tI‘ € 7;D1 (57 a))
| D2

arg min
Tellmimic(D1) t=1(s,a)eSx.A

Pr [T7 (s,0)] -

Sren, [(tre7,71 (5,0)
| D2

v

Given Dy,
dataset D5.

is an estimation of Pr, - [7;D1(s,a)] from the other half

v

For 7 € I nimic(D1), 7 exactly takes the expert action on states covered in Dj.

> For a trajectory tr that is completely consistent with some trajectory in D; and
€ Hmimic(Dl)x Pr‘n—* (tI‘) = PI'ﬂ—(tI').

v

This optimization problem cannot be exactly solved in polynomial time.
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MIMIC-MD

Consider T is the solution of the above optimization problem, we have

J (w*) ~E[J(F(D, P,p))] § min {H ’ |S|ZB/2}

» MIMIC-MD enjoys a horizon dependency of O (H3/2), which is an improvement over the
quadratic dependency of BC.

> MIMIC-MD keeps the faster rate of (’)( ) as in BC.

1
m
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Analysis

Fixing the expert dataset D = Dy U Dy, for any policy T € I pimic(D1), we have

H
J@)=J@ <> Y|P [TP (s,0)] - Proe [P (5,0) ]|

t=1(s,a)eSxA

» Since T exactly takes the expert action on states covered in Dy, value loss only occurs on
trajectories belong to ’EDI (s,a), a set of trajectories that are not completely agree with

some trajectory in Dy.
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> Given Dy, for t € [H], define €7 = {37 <t:s; ¢S, (D1)} as the event that the policy
under consideration visits some state at time 7 < ¢ uncovered in D;.

» T (5) - JR(D)) = C
210 B [(E((654)7) + 1(65,) s (v - Ba [(1((E5,))  1(650)) v (51.00)]
> As T € Himimic(D1), L5y Ene [T((E5) ) e (s0,a0)] = DL B [T((E5,)°) ve (50, a0)].

» J(7*)-J(F) =
Zgl Y (s.a)esxATt(s,a) (Prﬂ* [é'gl,st =s,as = a] Pr: [SD , St =S,a4 = a])

Z |Pr7r* [Ef)tl,st =8,a4 = a] - Pr; [gétl,st =8,a4 = a]|
1(s,a)eSxA

Z |Pr7r* [7;D1 (s,a)] - Pr; [7;D1 (s, a)]|

1(s,a)eSxA

M=z

t

||Mm
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Analysis

Tuep, L(tre ;7 (s,0)) || _ 8 |5|H?
3 N

| D]

Z Z ]E{ Pr,- [7;D1(s,a)] =

t=1(s,a)eSxA
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(é) > > (El(Prﬂ* ['T (s,a)] - ZWEDJ(TDEQF 1(5,@))) ]

ZtrsDz I (tI‘ € 7;D1 (S? G,))
| D

>y El Pr. [T,”"(s,a0)] -

t=1(s,a)eSxA

1/2

t=1(s,a)eSxA

r T (vl e o))

t=1(s,a)eSx.A

@ X

2% v (|D2|pr,r*[7 (s, a)])1/2

t=1(s,a)eSxA

Inequality (1) follows the Jensen Inequality, Inequality (2) follows that Var[X]=p(1-p) <p
for a Bernoulli random variable X.
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t_i(s,a%fl(wzfr”*v “ “)])ﬂgi et “)”)m
I 1/2
< t; ( |D2|) (ses,a;r;(s)]E [Pres [T (e a)”)
1/2
(i) e 510"

1/2

> Pr,- [agl] is the probability that 7* visits a state at some time 7 < ¢ uncovered in D;.
This term is closely related to the missing mass.

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning June 25, 2021 29 / 54



» Connect Pr [Sgl] with missing mass.

t
Pr« [c‘,’fjtl]:Pr7r [Fr<t:s: ¢S, (D1)] :Z (V7' <78 €S (D1),s, ¢S, (D1)]

=1

« 87 ¢ Sr ( Z::Z;g r=5]I(s ¢S, (Dy))

IN

<2l
H
Z Prre [sr = 5]1(s ¢S, (D1))

c,,M

missing mass at time 7

» We have shown that E[¥ s Pro« [s- =s]I(s ¢S, (D1))] < QTLSII

> I -EU@] <3 (2)" @ [Pre [51]) 7 <
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Lower Bound

Theorem 5

Suppose H > 2 and N > 7. There exists a three-state MDP M and an expert policy ™ such
that, for every learner 7,

H3/2
Pr(J(W*)—J(ﬁ)z )Zc',
m

for some constants c,c’ > 0. The probability is taken over the randomness of the expert dataset
D.

> The lower bound of 2 (=) implies that MIMIC-MD is minimax optimal when the
transition function is known.
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Analysis

Lemma 6
Suppose there exist a three-state MDP M and expert policy m* such that for every learner 7,
Pr (|JM (*) = Im(T)| 2 %/2) > ¢’ for some constant 0 < ¢ < 1. Then there exist a
three-state MDP M and expert policy 7 such that for every learner T,

o L 3/2 U
Pr(Jpm(r*) = Im(®) 2 £2) 2 5.

» Given expert policy 7, the learner cannot distinguish between M = (p, P,r) and
M’ =(p,P,1-r) from expert dataset only with state-action pairs.

> For an arbitrary policy m, we have that Ja((7) + Jap () = H. Therefore, the learner
needs to upper bound the two-sided error.

» This assumption on the problem class seems strange since the expert policy 7* cannot
perform good on both M and M’.

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning June 25, 2021 33 /54



Analysis

» We aim to prove that there exist M and 7%, for every learner 7,
Pr(|JM( V= Jm(T)| 2 )>c for some constant 0 < ¢’ < 1.

> We consider the following three-state MDP.
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Three-state MDP

» There are three states S = {1,2,3} and two actions A = {R, B}.

» On state 1, if the agent takes action R, it deterministically goes to state 2. Otherwise, it

deterministically goes to state 3.

» On states 2 and 3, no matter which action is taken, the agent goes to state 1 with a
probability of % and stays absorbing with a probability of 1 - %
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Three-state MDP

» The reward equals 1 on state 2 and 0 on the other state-action pairs.

> Only actions on state 1 are meaningful and the optimal policy is
77 (1) = (77 (B[1), 7} (B[1)) = (1,0) for t € [H].
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> Given the three-state MDP M, there exists 7*, for every learner 7,
. 3/2
Pr () = Jmn(®)| 2 £25) 2 ¢

> It suffices to find a prior distribution D over 7* such that
" - 3/2
Erep [Pr (|Ja (") = Im(R)] 2 £2)] 2 '
» Forte[H], nf (r]1) ~Unif({0,1}).
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Analysis

Lemma 7

3/2

).

* —_ H3/2 1 * *
Bevon [ Poo (1340 - Taa@ 3 2= )| € 3B [ Prag g a1 - () 5

where 7 and 75 are two independent samples drawn from the posterior distribution

conditioned on the expert dataset D.
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gl
gl

2E,,*ND[ED[H(IJm(W*)—JM(?ﬂ5HsQ)H QED[ [('JM( )_JM(ﬁ)lsHZQ)
ol e s 021527

dl

-5 B [1 (1) - ama 5 )

(1) . _ . . H3?
S 1+ Ep [Ers o | THIMm(77) = I (@) + [T (73) = Tm(F)] 5 -

]

H3/2
& 10 B |1 () - Sl 5 2 )
» Inequality (1) follows that I(z < a) +I(y <b) <1+I(x+y <a+b).

» Inequality (2) follows that |Jaq(77) = Jm(T)| + |[Tm(73) = Tma(T)] 5 sz -
3/2
[T (7} = T (ms)] s o=
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Analysis

Lemma 8

Conditioned on the expert dataset D, the expert policy ©* ~ Unif (I imic(D)). In other
words, at time t € [H ] such that state 1 is unvisited in any trajectory in the expert dataset,
7y (R|1) ~ Unif({0,1}).
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» Note that for t € [H], Pr,(s; =1) is the same for all policies and we denote it as
Pr(s;=1).

» For a fixed time ¢ € [H], we consider the random variables 7} (|1) and D; = {(si,ai)}™,.

> We list the joint probabilities as follows. W R means that D; contains state 1 and the

corresponding action is R and WO means that D; does not cover state 1.

WR WB WO
boz(-@-Prla =)™ 0 L(1-Pr(s,=1))™
b 2(1=(=Pr(se=1))")  3(1-Pr(se=1))"

» Pr (W;(RH) =1

Dt:WB):l,

D, = WR) =1,Pr (wt*(R|1) =0

1
3

Pr (W:(RH) =0

Dt :WO) =

D, = WO) =Pr (wf(R|1) =0
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3/2
» We want to prove that Ep [Prﬂf,ﬂg (|JM(7rf) - Jm(m3)| % HT

constant 0 < c < 1.

D)] > ¢ for some

> It is easy to calculate that
- H-t' " t-1
Ti(7) = S (St (1= 2) ) Pr o= s (RID + B2 (1- 2)7

m
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» Conditioned on the expert dataset D,

H-1 9 H-t
I (D) = T =t21(t,§1(1—m) )Pr(stzl)xtulfést(D)x

where X; are i.i.d. random variables distributed as

-1, w.p. i
Xt = O, W.p. %
+1,  w.p. 1

> Let Zp = Ju(n}) = J(ms) = X1 ke Xy, E[Zp|D] = 0 and Var[Zp|D] = E[Z3|D].
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Key Inequality

Lemma 9 (Paley-Zygmund Argument)
For a random variable X, we have that

2
Pr(X 2 0E[X]) > (1 —9)2(5523.

» A common strategy is to prove a lower bound of E[X]. Set 0 as a constant and lower

(EB[Xx])?
bound [x2]

by a constant.
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» Applying Paley-Zygmund Argument on random variable Z3, yields

E[z2|D])?
Pr (2} > 0E[Z}|D]|D) > (1 - G)Z(E[[Z‘*HD]])'

. . (E[z%|D])® _ 1 .
> It is easy to derive that W 3. Choosing 6 = ylelds

27
Pr(ZD > E[Z3|D] |D) >

* It suffices to prove that Prp ( [Z3|D] = ) > ¢ for ¢> 0.
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> We first lower bound the prior variance: E[Z3 ] =E[E[Z3|D]] 2 g—;

7\ 2

1 H 1 H H 2 H-t 5
E[Z,%|D]:2;mf:2;(,_zl(l—]v) ) (Pr (s; = 1))21(1 € S,(D))
H( H H-t'\2 3
]E[ZZD]:;;(,_Z (1—%) ) (Pr(stzl))2Pr(1€St(D))z%
=1 \t'=t+1 T(l/,mT/
Q(H?)

> We again utilize the Paley-Zygmund Argument on random variable IE[Z%|D]:

2ip1s Lrize)s 5L ELZD” 9
PrD(E[ZD|D]210E[ZD])sz[E[Z;D]2]225.
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> Now we have (i) Pr (2, > SE[Z3|D]|D) > 2, (ii) Prp (E[23|D] = ) > 2.

m2

. 2 o 1
We want to prove Ep [Pr| Z7 %

D)] >c for ¢>0. Let £ be the event that

)]

>Pr(&)Ep [Pr (Zf7 > 1—101143 [Z3|D] ‘D) H

E[73|D] z £

3

H 3
Ep [Pr(Z,% % —

D)] > Pr(&)Ep [Pr (ZE7 % %

m2

9 27
> ——.
25100
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Outline

Summary

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning June 25 1 48 / 54



Summary

Setting Value gap
~ 2
BC O (H1s!
No-interaction / Active _ (HTS )
Lower bound Q(—W‘L |)
. ~ H3/2|5\
Known transition MIMIC-MD @ pon
Lower bound | ( Hi:l‘sl)
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Future Direction

» The known transition setting is not practical and a more common setting is that the agent

does not know the exact transition function but can interact with the environment.

> The exploration issue in IL: how many environment interactions are required to achieve a
desired policy value gap ?

® Upper bound: BC does not need exploration but suffers from the compounding error issue.

AIL optimizes policy in each iteration and requires exploration.

® |ower bound: the characteristics of IL, the learner cannot observe true rewards but have

access to expert demonstrations.
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Thank you!

Feel free to contact me for more discussions!

xut@lamda.nju.edu.cn
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