
Reinforcement learning via sequence modeling - Beyond Markovian

assumption

Presenter: Liangqi Liu

The Chinese University of Hong Kong, Shenzhen, China

July 6, 2021



Outline

Basic description

Background requirements

Trajectory Transformer

Experiments

Basic description 2 / 21



Basic description

I View RL as a sequence modeling problem, with the goal being to predict a sequence of

actions that leads to a sequence of high rewards

I Train a single high-capacity sequence model to represent the joint distribution over

sequences of states, actions, and rewards

I Produce a simpler method whose effectiveness is determined by the representational

capacity of the sequence model rather than algorithmic sophistication

I Demonstrate the flexibility of this approach across long-horizon dynamics prediction,

imitation learning, goal-conditioned RL, and offline RL

Basic description 3 / 21



Outline

Basic description

Background requirements

Trajectory Transformer

Experiments

Background requirements 4 / 21



Seq2Seq model

I Sequence-to-Sequence (or Seq2Seq) is a neural net that transforms a given sequence of

elements, such as the sequence of words in a sentence, into another sequence

I Seq2Seq models consist of an encoder and a decoder

Background requirements 5 / 21



Attention

I The attention-mechanism looks at an input sequence and decides at each step which other

parts of the sequence are important

I The Encoder writes down keywords that are important to the semantics of the sentence,

and gives them to the Decoder

Background requirements 6 / 21



Attention

I Scaled Dot-Product Attention: Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

I Q: query, vector representation of one word in the sequence

I K: key, vector representations of all the words in the sequence

I V: value, vector representations of all the words in the sequence

Background requirements 7 / 21



Transformer

I Use self-attention to boost the speed

I Each encoder consists of two layers: Self-attention

and a feed Forward Neural Network

I Self-attention allows the models to associate each

word in the input, to other words

I The pointwise feed-forward network is a couple of

linear layers with a ReLU activation in between

I The residual connections help the network train, by

allowing gradients to flow through the networks

directly

Background requirements 8 / 21



Outline

Basic description

Background requirements

Trajectory Transformer

Experiments

Trajectory Transformer 9 / 21



Basic introduction

I the Trajectory Transformer is a substantially more reliable long-horizon predictor than

conventional dynamics models, even in Markovian environments for which the standard

model parameterization is in principle sufficient

I Trajectory Transformers can attain results on offline reinforcement learning benchmarks that

are competitive with state-of-the-art prior methods designed specifically for that setting

I combined with a modified beam search procedure that decodes trajectories with high

reward, rather than just high likelihood

Trajectory Transformer 10 / 21



Input of the transformer

I A trajectory τ consists of N -dimensional states, M -dimensional actions, and scalar rewards:

τ =
{
s0t , s

1
t , . . . , s

N−1
t ,a0t ,a

1
t , . . . ,a

M−1
t , rt

}T−1
t=0

I each step in the sequence therefore corresponds to a dimension of the state, action, or

reward,such that a trajectory with T time steps would correspond to a sequence of length

T ∗ (N +M + 1)

I For continuous states and actions

sit =

⌊
V
sit − `i

ri − `i

⌋
+ V i

I Use a regular grid with a fixed number of bins per dimension

I Ensure that different state dimensions are represented by disjoint sets of tokens

Trajectory Transformer 11 / 21



Training

I Loss function

L(τ̄) =

T−1∑
t=0

N−1∑
i=0

logPθ
(
sit | s<it , τ̄<t

)
+

M−1∑
j=0

logPθ

(
ajt | a

<j
t , st, τ̄<t

)
+ logPθ (r̄t | at, st, τ̄<t)


I τ̄<t: a shorthand for a tokenized trajectory from timesteps 0 through t1

I probabilities are written as conditional on all preceding tokens in a trajectory

Trajectory Transformer 12 / 21



Testing: Beam search

I V : output dictionary

I τ̄ : trajectory, q: corresponding probability

I Use beam search to search the B predicted

trajectory with the largest likelihood

probability, and then select the trajectory

with the largest reward and reward-to-go as

the final prediction result

I reward-to-go

Rt =

T−1∑
t′=t

γt
′−trt′

Trajectory Transformer 13 / 21



Decision transformer

I Trajectory representation: τ =
(
R̂1, s1, a1, R̂2, s2, a2, . . . , R̂T , sT , aT

)
I Instead of feeding the rewards directly, we feed the model with the returns-to-go:

R̂t =
∑T
t′=t rt′

Trajectory Transformer 14 / 21



Outline

Basic description

Background requirements

Trajectory Transformer

Experiments

Experiments 15 / 21



Experiments: Trajectory predictions

I Predict 100-timestep trajectories from this model after having trained on a dataset collected

by a trained humanoid policy

I Feedward: a feedforward Gaussian dynamics model from PETS, a state-of-the-art planning

algorithm

Experiments 16 / 21



Experiments: Trajectory predictions

I The trajectory Transformer has substantially better error compounding with respect to

prediction horizon than the feedforward model

I The discrete oracle is the maximum log likelihood attainable given the discretization size

I Markovian transformer: a Markovian variant of our same architecture. This ablation has a

truncated context window that prevents it from attending to more than one timestep in the

past

Experiments 17 / 21



Experiments: Attention patterns

I Produced by a first-layer and third-layer attention head

I In the first, both states and actions are dependent primarily on the immediately preceding

transition, corresponding to a model that has learned the Markov property

I In the second, actions depend more on past actions than they do on past states, reminiscent

of the action smoothing used in some trajectory optimization algorithms

Experiments 18 / 21



Experiments: Offline reinforcement learning

I CQL: conservative Q-learning; MOPO: model-based offline policy optimization; MBOP:

model-based offline planning; BC: behavior cloning

I MBOP provides a point of comparison for a planning algorithm that uses a single-step

dynamics model as opposed to a Transformer

Experiments 19 / 21



How well does Decision Transformer model the distribution of returns

I The average sampled return accumulated by the agent over the course of the evaluation

episode for varying values of target return

I The desired target returns and the true observed returns are highly correlated

I Decision Transformer is sometimes capable of extrapolation

Experiments 20 / 21



How can Decision Transformer benefit online RL regimes

I Offline RL and the ability to model behaviors has the potential to enable sample-efficient

online RL for downstream tasks

I Decision Transformer can meaningfully improve online RL methods by serving as a strong

model for behavior generation

I Decision Transformer can serve as a powerful “memorization engine”

Experiments 21 / 21


	Basic description
	Background requirements
	Trajectory Transformer
	Experiments

