Revisit Minimax Lower Bounds of Episodic Reinforcement Learning in Finite MDPs

Presenter: Hao Liang

The Chinese University of Hong Kong, Shenzhen

July 9, 2021

Mainly based on:

Domingues, Omar Darwiche, et al. "Episodic reinforcement learning in finite mdps: Minimax lower bounds revisited." Algorithmic Learning Theory. PMLR, 2021.

Literature review

ln the average-reward setting, Jaksch et al. (2010) prove $\Omega(\sqrt{DSAT})$ lower bound

- D: the diameter of the MDP
- T: the total number of steps
- ▶ In the episodic setting, the total number of steps taken is *HT* and *H* is roughly the equivalent of the diameter *D*.
- lntuitively, the lower bound of Jaksch et al. (2010) should be translated to $\Omega\left(\sqrt{H^2SAT}\right)$ for episodic MDPs after T episodes.
- However, their construction only applies to stationary MDP.
- ▶ Jin et al. (2018) claim that the lower bound becomes Ω (√H³SAT) by using the construction of Jaksch et al. (2010) and a mixing-time argument, but no complete proof.

Setting and Performance Measures

- ► Episodic Markov decision process (MDP) $\mathcal{M} \triangleq (\mathcal{S}, \mathcal{A}, H, \mu, p, r).$
- $\blacktriangleright \ S:=|\mathcal{S}| \text{ and } A:=|\mathcal{A}|$
- \blacktriangleright $\Delta(\mathcal{A}):$ the set of probability distributions over the action set
- ▶ $\mathcal{I}_{h}^{t} = ((\mathcal{S} \times \mathcal{A})^{H-1} \times \mathcal{S})^{t-1} \times (\mathcal{S} \times \mathcal{A})^{h-1} \times \mathcal{S}$ the set of possible histories up to step h of episode (not including rewards)
- $\blacktriangleright \ \left(s_1^1, a_1^1, s_2^1, a_2^1, \dots, s_H^1, \dots, s_1^t, a_1^t, s_2^t, a_2^t, \dots, s_h^t\right) \in \mathcal{I}_h^t$
- ▶ A Markov policy is a function $\pi : S \times [H] \to \Delta(\mathcal{A})$
- ► A history-dependent policy is a sequence of functions $\pi \triangleq (\pi_h^t)_{t \ge 1, h \in [H]}$ with $\pi_h^t : \mathcal{I}_h^t \to \Delta(\mathcal{A})$
- \blacktriangleright Π_{Markov} and Π_{Hist} the sets of Markov and history-dependent policies

Setting and Performance Measures

- ► A policy π interacting with an MDP induces a stochastic process $(S_h^t, A_h^t)_{t>1, h\in [H]}$
- ▶ $I_h^t \triangleq (S_1^1, A_1^1, S_2^1, A_2^1, \dots, S_H^1, \dots, S_1^t, A_1^t, S_2^t, A_2^t, \dots, S_h^t)$: the random history
- \mathcal{F}_h^t : the σ -algebra generated by I_h^t
- $\blacktriangleright \mathbb{P}_{\mathcal{M}}\left[I_{H}^{T}=i_{H}^{T}\right]=\prod_{t=1}^{T}\mu\left(s_{1}^{t}\right)\prod_{h=1}^{H-1}\pi_{h}^{t}\left(a_{h}^{t}\mid i_{h}^{t}\right)p_{h}\left(s_{h+1}^{t}\mid s_{h}^{t},a_{h}^{t}\right)$
- ▶ Let $\mathbb{E}_{\mathcal{M}}$ be the corresponding expectation (implicitly dependent on π)
- ▶ In episode t, the value of a policy π in the MDP \mathcal{M} is defined as

$$V^{\boldsymbol{\pi},t}\left(i_{H}^{t-1},s\right) \triangleq \mathbb{E}_{\boldsymbol{\pi},\mathcal{M}}\left[\sum_{h=1}^{H} r_{h}\left(S_{h}^{t},A_{h}^{t}\right) \mid I_{H}^{t-1} = i_{H}^{t-1}, S_{1}^{t} = s\right]$$

For Markov policy, the value does not depend on i_H^{t-1}

$$V^{\pi}(s) \triangleq \mathbb{E}_{\pi,\mathcal{M}}\left[\sum_{h=1}^{H} r_h\left(S_h^1, A_h^1\right) \mid S_1^1 = s\right]$$

Setting and Performance Measures

- ▶ The optimal value function $V^*(s) \triangleq \max_{\pi \in \Pi} V^{\pi}(s)$ achieved by (Markov) π^*
- Markov policies suffices

$$V^*(s) \ge V^{\boldsymbol{\pi},t}\left(i_H^{t-1},s\right)$$

Define the average value functions over the initial state as

$$\rho^{\pi,t}\left(i_{H}^{t-1}\right) \triangleq \mathbb{E}_{s \sim \mu}\left[V^{\pi,t}\left(i_{H}^{t-1},s\right)\right], \quad \rho^{\pi} \triangleq \mathbb{E}_{s \sim \mu}\left[V^{\pi}(s)\right], \quad \rho^{*} \triangleq \rho^{\pi^{*}}$$

 \blacktriangleright The expected regret of an algorithm π in an MDP \mathcal{M} after T episodes is defined as

$$\mathcal{R}_{T}(\boldsymbol{\pi}, \mathcal{M}) \triangleq \mathbb{E}_{\boldsymbol{\pi}, \mathcal{M}} \left[\sum_{t=1}^{T} \left(\rho^{*} - \rho^{\boldsymbol{\pi}, t} \left(I_{H}^{t-1} \right) \right) \right]$$

Lower Bound Recipe

- Consider a class C of hard MDPs instances
 - the optimal policy is difficult to identify
 - close to each other, but the behavior of an algorithm is expected to be different
- Use a change of distribution between two well-chosen MDPs to obtain inequalities on the expected number of visits of certain state-action pairs in one of them

Intuition of Hard MDPs

- From a high-level perspective, the family of MDPs behave like MABs with $\Theta(HSA)$ arms.
- To gain some intuition, assume that S = 4 and consider the MDP in Figure 1

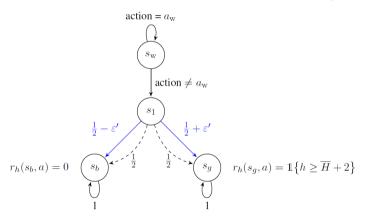


Figure: Illustration of the class of hard MDPs for S = 4

Intuition of Hard MDPs

- $\blacktriangleright\,$ Can stay in $s_{\rm w}$ up to a stage $\bar{H} < H$
- \blacktriangleright a^* in state s_1 increases by ϵ the probability of reaching s_g , must be taken at stage h^*
- \blacktriangleright Optimal policy: choose the right moment $h\in [\bar{H}]$ to leave s_w , then choose a^* in s_1
- ▶ Total of $\bar{H}A$ possible choices/"arms", maximal rewards is $\Theta(\bar{H})$
- ▶ By analogy with the existing minimax regret bound for MAB, choosing $\bar{H} = \Theta(H)$ yields

 $\Omega(H\sqrt{HAT})$

Generalization to S > 4

Assumption 1.

 $S \ge 6, A \ge 2; \exists d \in \mathbb{N} \text{ s.t. } S = 3 + (A^d - 1)/(A - 1) \text{ (implying } d = \Theta(\log_A S)\text{)}; H \ge 3d.$

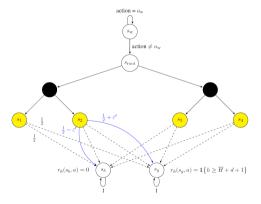


Figure: Illustration of the class of hard MDPs

Generalization to S > 4

- $\bar{H} \leq H d$: a parameter of the class of MDPs.
- $\mathcal{L} = \{s_1, s_2, \dots, s_L\}$: the set of L leaves of the tree.
- ▶ Define an MDP $\mathcal{M}_{(h^*, \ell^*, a^*)}$ for each $(h^*, \ell^*, a^*) \in \{1 + d, \dots, \overline{H} + d\} \times \mathcal{L} \times \mathcal{A}$
- Deterministic transition for each state in the tree.
- The transitions from s_w are given by

 $p_{h}\left(s_{\mathrm{w}} \mid s_{\mathrm{w}}, a\right) \triangleq \mathbb{I}\left\{a = a_{\mathrm{w}}, h \leq \bar{H}\right\} \quad \text{ and } \quad p_{h}\left(s_{\mathrm{root}} \mid s_{\mathrm{w}}, a\right) \triangleq 1 - p_{h}\left(s_{\mathrm{w}} \mid s_{\mathrm{w}}, a\right)$

• After stage \overline{H} , the agent has to traverse the tree down to the leaves.

Generalization to S > 4

• The transitions from any leaf $s_i \in \mathcal{L}$ are given by

$$p_h(s_g \mid s_i, a) \triangleq \frac{1}{2} + \Delta_{(h^*, \ell^*, a^*)}(h, s_i, a) \quad \text{and} \quad p_h(s_b \mid s_i, a) \triangleq \frac{1}{2} - \Delta_{(h^*, \ell^*, a^*)}(h, s_i, a)$$

- ► $\Delta_{(h^*,\ell^*,a^*)}(h,s_i,a) \triangleq \mathbb{I}\{(h,s_i,a) = (h^*,s_{\ell^*},a^*)\} \cdot \varepsilon'$, for some $\varepsilon' \in [0,1/2]$ that is the second parameter
- The reward function depends only on the state

$$\forall a \in \mathcal{A}, \quad r_h(s, a) \triangleq \mathbb{I}\left\{s = s_g, h \ge \bar{H} + d + 1\right\}$$

- ▶ Does not miss any reward if it chooses to stay at s_w until stage \bar{H} .
- ▶ Optimal policy: choose an action a^* at stage h^* and leaf ℓ^*
- ▶ Define a reference MDP \mathcal{M}_0 where $\Delta_0(h, s_i, a) \triangleq 0$ for all (h, s_i, a)

► Define
$$C_{\bar{H},\varepsilon'} \triangleq \{\mathcal{M}_0\} \bigcup \{\mathcal{M}_{(h^*,\ell^*,a^*)}\}_{(h^*,\ell^*,a^*)\in\{1+d,...,\bar{H}+d\}\times\mathcal{L}\times\mathcal{A}}$$
.

Change of Distribution Tools

Lemma 1.

Let \mathcal{M} and \mathcal{M}' be two MDPs that are identical except for their transition probabilities. For any stopping time τ with respect to $(\mathcal{F}_{H}^{t})_{t>1}$ that satisfies $\mathbb{P}_{\mathcal{M}}[\tau < \infty] = 1$

$$\mathrm{KL}\left(\mathbb{P}_{\mathcal{M}}^{I_{H}^{\tau}},\mathbb{P}_{\mathcal{M}'}^{I_{H}^{\tau}}\right) = \sum_{s\in\mathcal{S}}\sum_{a\in\mathcal{A}}\sum_{h\in[H-1]}\mathbb{E}_{\mathcal{M}}\left[N_{h,s,a}^{\tau}\right]\mathrm{KL}\left(p_{h}(\cdot\mid s,a),p_{h}'(\cdot\mid s,a)\right),$$

where $N_{h,s,a}^{\tau} \triangleq \sum_{t=1}^{\tau} \mathbb{I}\{(S_h^t, A_h^t) = (s, a)\}.$

Lemma 2 (Lemma 1, Garivier et al., 2019).

Consider a measurable space (Ω, \mathcal{F}) equipped with two distributions \mathbb{P}_1 and \mathbb{P}_2 . For any \mathcal{F} -measurable function $Z : \Omega \to [0, 1]$, we have

 $\operatorname{KL}(\mathbb{P}_1, \mathbb{P}_2) \ge \operatorname{kl}(\mathbb{E}_1[Z], \mathbb{E}_2[Z]),$

where \mathbb{E}_1 and \mathbb{E}_2 are the expectations under \mathbb{P}_1 and \mathbb{P}_2 respectively.

Regret Lower Bound

Using change of distributions between MDPs in the class $\mathcal{C}_{\bar{H},\varepsilon}$ can prove the following result.

Theorem 3.

Under Assumption 1, for any algorithm π , there exists an MDP \mathcal{M}_{π} whose transitions depend on the stage h, such that, for $T \geq HSA$

$$\mathcal{R}_T(\boldsymbol{\pi}, \mathcal{M}_{\boldsymbol{\pi}}) \geq rac{1}{48\sqrt{6}} \sqrt{H^3 SAT}.$$

Regret of π in $\mathcal{M}_{(h^*,\ell^*,a^*)}$

 \blacktriangleright The mean reward gathered by π in $\mathcal{M}_{(h^*,\ell^*,a^*)}$ is given by

$$\mathbb{E}_{(h^*,\ell^*,a^*)} \left[\sum_{t=1}^T \sum_{h=1}^H r_h \left(S_h^t, A_h^t \right) \right] = \sum_{t=1}^T \mathbb{E}_{(h^*,\ell^*,a^*)} \left[\sum_{h=\bar{H}+d+1}^H \mathbb{I} \left\{ S_h^t = s_g \right\} \right]$$
$$= (H - \bar{H} - d) \sum_{t=1}^T \mathbb{P}_{(h^*,\ell^*,a^*)} \left[S_{\bar{H}+d+1}^t = s_g \right].$$

14/20

Regret of π in $\mathcal{M}_{(h^*,\ell^*,a^*)}$

 \blacktriangleright The mean reward gathered by π in $\mathcal{M}_{(h^*,\ell^*,a^*)}$ is given by

$$\mathbb{E}_{(h^*,\ell^*,a^*)} \left[\sum_{t=1}^T \sum_{h=1}^H r_h \left(S_h^t, A_h^t \right) \right] = \sum_{t=1}^T \mathbb{E}_{(h^*,\ell^*,a^*)} \left[\sum_{h=\bar{H}+d+1}^H \mathbb{I} \left\{ S_h^t = s_g \right\} \right]$$
$$= (H - \bar{H} - d) \sum_{t=1}^T \mathbb{P}_{(h^*,\ell^*,a^*)} \left[S_{\bar{H}+d+1}^t = s_g \right].$$

15/20

Regret of π in $\mathcal{M}_{(h^*,\ell^*,a^*)}$

- ► Using the facts that $\mathbb{P}_{(h^*,\ell^*,a^*)} \left[S_{1+d}^t = s_g \right] = 0$ and $\sum_{h=1+d}^{\bar{H}+d} \mathbb{P}_{(h^*,\ell^*,a^*)} \left[S_h^t \in \mathcal{L} \right] = 1$ $\mathbb{P}_{(h^*,\ell^*,a^*)} \left[S_{\bar{H}+d+1}^t = s_g \right] = \sum_{h=1+d}^{\bar{H}+d} \frac{1}{2} \mathbb{P}_{(h^*,\ell^*,a^*)} \left[S_h^t \in \mathcal{L} \right] + \mathbb{I} \left\{ h = h^* \right\} \mathbb{P}_{(h^*,\ell^*,a^*)} \left[S_h^t = s_{\ell^*}, A_h^t = \frac{1}{2} + \varepsilon \mathbb{P}_{(h^*,\ell^*,a^*)} \left[S_{h^*}^t = s_{\ell^*}, A_{h^*}^t = a^* \right].$
- ▶ π^* : traverse the tree at step $h^* d$ then go to the leaf s_{ℓ^*} and performs action a^*
- \blacktriangleright The optimal value in any of the MDPs is $\rho^* = (H \bar{H} d)(1/2 + \varepsilon)$
- ▶ The regret of π in $\mathcal{M}_{(h^*,\ell^*,a^*)}$ is then

$$\mathcal{R}_T\left(\boldsymbol{\pi}, \mathcal{M}_{(h^*, \ell^*, a^*)}\right) = T(H - \bar{H} - d)\varepsilon\left(1 - \frac{1}{T}\mathbb{E}_{(h^*, \ell^*, a^*)}\left[N_{(h^*, \ell^*, a^*)}\right]\right),$$

where $N_{(h^*,\ell^*,a^*)}^T = \sum_{t=1}^T \mathbb{I}\{S_{h^*}^t = s_{\ell^*}, A_{h^*}^t = a^*\}.$

Maximum regret of π over all possible $\mathcal{M}_{(h^*,\ell^*,a^*)}$

We first lower bound the maximum of the regret by the mean over all instances

$$\max_{(h^*,\ell^*,a^*)} \mathcal{R}_T \left(\boldsymbol{\pi}, \mathcal{M}_{(h^*,\ell^*,a^*)} \right) \geq \frac{1}{\bar{H}LA} \sum_{(h^*,\ell^*,a^*)} \mathcal{R}_T \left(\boldsymbol{\pi}, \mathcal{M}_{(h^*,\ell^*,a^*)} \right)$$
$$\geq T(H - \bar{H} - d) \varepsilon \left(1 - \frac{1}{\bar{H}LAT} \sum_{(h^*,\ell^*,a^*)} \mathbb{E}_{(h^*,\ell^*,a^*)} \left[N_{(h^*,\ell^*,a^*)}^T \right] \right)$$

▶ Need an upper bound on $\sum_{(h^*, \ell^*, a^*)} \mathbb{E}_{(h^*, \ell^*, a^*)} \left[N^T_{(h^*, \ell^*, a^*)} \right]$

 \blacktriangleright Relate each expectation to the expectation of the same quantity under \mathcal{M}_0

Upper bound on $\sum \mathbb{E}_{(h^*,\ell^*,a^*)} \left[N_{(h^*,\ell^*,a^*)} \right]$

• Since
$$N^T_{(h^*,\ell^*,a^*)}/T \in [0,1]$$
, Lemma gives us

$$\operatorname{kl}\left(\frac{1}{T}\mathbb{E}_{0}\left[N_{(h^{*},\ell^{*},a^{*})}^{T},\frac{1}{T}\mathbb{E}_{(h^{*},\ell^{*},a^{*})}\left[N_{(h^{*},\ell^{*},a^{*})}^{T}\right]\right) \leq \operatorname{KL}\left(\mathbb{P}_{0}^{I_{H}^{T}},\mathbb{P}_{(h^{*},\ell^{*},a^{*})}^{I_{H}^{T}}\right)$$

▶ By Pinsker's inequality, $(p-q)^2 \le (1/2) \mathrm{kl}(p,q)$, it implies

$$\frac{1}{T}\mathbb{E}_{(h^*,\ell^*,a^*)}\left[N_{(h^*,\ell^*,a^*)}\right] \le \frac{1}{T}\mathbb{E}_0\left[N_{(h^*,\ell^*,a^*)}^T\right] + \sqrt{\frac{1}{2}}\operatorname{KL}\left(\mathbb{P}_0^{I_H^T}, \mathbb{P}_{(h^*,\ell^*,a^*)}^{I_I^T}\right)$$

▶ Since \mathcal{M}_0 and $\mathcal{M}_{(h^*,\ell^*,a^*)}$ only differ at stage h^* when $(s,a) = (s_{\ell^*},a^*)$, Lemma gives

$$\operatorname{KL}\left(\mathbb{P}_{0}^{I_{H}^{T}},\mathbb{P}_{(h^{*},\ell^{*},a^{*})}^{I_{H}^{T}}\right) = \mathbb{E}_{0}\left[N_{(h^{*},\ell^{*},a^{*})}^{T}\right]\operatorname{kl}(1/2,1/2+\varepsilon)$$

18/20

Upper bound on $\sum \mathbb{E}_{(h^*,\ell^*,a^*)} \left[N_{(h^*,\ell^*,a^*)} \right]$

▶ For $\varepsilon \leq 1/4$, we have $kl(1/2, 1/2 + \varepsilon) \leq 4\varepsilon^2$ (to be checked)

$$\frac{1}{T}\mathbb{E}_{(h^*,\ell^*,a^*)}\left[N_{(h^*,\ell^*,a^*)}\right] \le \frac{1}{T}\mathbb{E}_0\left[N_{(h^*,\ell^*,a^*)}^T\right] + \sqrt{2}\varepsilon\sqrt{\mathbb{E}_0\left[N_{(h^*,\ell^*,a^*)}^T\right]}$$

▶ The sum of $N^T_{(h^*,\ell^*,a^*)}$ over all instances $(h^*,\ell^*,a^*) \in \{1+d,\ldots,\bar{H}+d\} \times \mathcal{L} \times \mathcal{A}$ is

$$\sum_{(h^*,\ell^*,a^*)} N^T_{(h^*,\ell^*,a^*)} = \sum_{t=1}^T \sum_{h^*=1+d}^{\bar{H}+d} \mathbb{I}\left\{S^t_{h^*} \in \mathcal{L}\right\} = T$$

Summing over all instances and using the Cauchy-Schwartz inequality

$$\frac{1}{T} \sum_{(h^*,\ell^*,a^*)} \mathbb{E}_{(h^*,\ell^*,a^*)} \left[N^T_{(h^*,\ell^*,a^*)} \right] \leq 1 + \sqrt{2\varepsilon} \sum_{(h^*,\ell^*,a^*)} \sqrt{\mathbb{E}_0 \left[N_{(h^*,\ell^*,a^*)} \right]} \\
\leq 1 + \sqrt{2\varepsilon} \sqrt{\bar{H}LAT}.$$
19/20

Discussion

- The proof uses Assumption 1 stating that
 - there exists an integer d such that $S = 3 + (A^d 1)/(A 1)$
 - $H \geq 3d$,
- ▶ They can be relaxed to the case we cannot build a full tree.
- The proof can be easily adapted to stationary case and recover $\Omega\left(\sqrt{H^2SAT}\right)$.
- The author also proves a sample complexity lower bound for best policy identification in a non-stationary MDP.
- ▶ The proof relies on the same construction of hard MDPs.