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Literature review

In the average-reward setting, Jaksch et al. (2010) prove Q(v/ DSAT) lower bound
— D: the diameter of the MDP
— T': the total number of steps
In the episodic setting, the total number of steps taken is HT and H is roughly the
equivalent of the diameter D.

Intuitively, the lower bound of Jaksch et al. (2010) should be translated to
Q (\/ HQSAT) for episodic MDPs after T' episodes.

» However, their construction only applies to stationary MDP.

» Jin et al. (2018) claim that the lower bound becomes 2 (\/H3SAT) by using the
construction of Jaksch et al. (2010) and a mixing-time argument, but no complete proof.
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Setting and Performance Measures

Episodic Markov decision process (MDP) M £ (S, A, H, i, p,r).

S :=|S] and A := | A|

A(A): the set of probability distributions over the action set

I = ((S x A1 x S)t_l x (S x A)"~1 x S the set of possible histories up to step h
of episode (not including rewards)

(si,al,s3,a%,...,sk, ... st,al, shab, ... s) €T}

A Markov policy is a function 7 : S x [H] = A(A)

A history-dependent policy is a sequence of functions 7 £ (ﬂ-;z)tZLhe[H] with

I — A(A)

IMarkov and st the sets of Markov and history-dependent policies
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Setting and Performance Measures

A policy 7 interacting with an MDP induces a stochastic process (S}, A

h)
h/t>1,he[H]

Il 2 (S1,AL, S8, AL, ..., S, ... St AL SE AL L, SE): the random history

F}: the o-algebra generated by I,
Pum [If = i) = Ht Lk (s1) Hh L (ah 1ih) pn (shyy | shsah)
Let Eq be the corresponding expectation (implicitly dependent on )

In episode t, the value of a policy 7 in the MDP M is defined as
H
Vet (it s) 2 Enom lz r (ShLAY) | It =it t, S
h=1

; t—1
For Markov policy, the value does not depend on i};

H
V7(s) 2 Ex lz i (Sh, AL) | St = s‘|

h=1

[=s
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Setting and Performance Measures

» The optimal value function V*(s) £ max, e V7 (s) achieved by (Markov) m

» Markov policies suffices

Ve(s) 2 V(i s)
> Define the average value functions over the initial state as
PO ) 2 By [V (i 9)] P R Eenu VT (s)], pt 2T

» The expected regret of an algorithm 7 in an MDP M after T episodes is defined as

T
(ﬂMﬁEﬂMprp Itl))

t=1
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Lower Bound Recipe

» Consider a class C of hard MDPs instances

— the optimal policy is difficult to identify
— close to each other, but the behavior of an algorithm is expected to be different

» Use a change of distribution between two well-chosen MDPs to obtain inequalities on the

expected number of visits of certain state-action pairs in one of them
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Intuition of Hard MDPs

» From a high-level perspective, the family of MDPs behave like MABs with ©(HSA) arms.
» To gain some intuition, assume that S = 4 and consider the MDP in Figure 1

action = ay,

action # ay,

1 1

Figure: lllustration of the class of hard MDPs for S = 4 7/20



Intuition of Hard MDPs

Can stay in s,, up to a stage H < H

a* in state s; increases by e the probability of reaching s;, must be taken at stage h*
Optimal policy: choose the right moment h € [H] to leave s, then choose a* in s
Total of H A possible choices/"“arms”, maximal rewards is ©(H)

By analogy with the existing minimax regret bound for MAB, choosing H = ©(H) yields

Q(HVHAT)
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Generalization to S > 4

Assumption 1.
§>6,A>2;3deNst S=3+ (AY—1) /(A—1) (implying d = O (log, S)); H > 3d.

action = ay

®

Jscton ..

1 rp(sg.a) =1{h>H+d+1}

Figure: lllustration of the class of hard MDPs 9/20



Generalization to S > 4

» H < H — d: a parameter of the class of MDPs.

» £ ={s1,89,...,80}: the set of L leaves of the tree.

> Define an MDP M« ¢« o+ for each (h*,0*,a*) € {1+d,.... H+d} x L x A
» Deterministic transition for each state in the tree.

» The transitions from s,, are given by
DPh (sw ‘ Swaa) él{a:awahgﬁ} and DPh (sroot ‘ swva) é ]-_ph (Sw | Swaa)

> After stage H, the agent has to traverse the tree down to the leaves.
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Generalization to S > 4

The transitions from any leaf s; € L are given by

P (Sg ] 8i,a) £ %—FA(,Z*’@*’Q*) (h,si,a) and  py(sp | si,a) = %—A(h*l*’a*) (h, si,a)
A o= a0y (hy 5i,a) 2T{(h, s5,a) = (h*, sp«,a*)} - €', for some ¢’ € [0,1/2] that is the
second parameter
The reward function depends only on the state
Vae A, ry(s,a) E1{s=s4,h>H+d+1}
Does not miss any reward if it chooses to stay at s,, until stage H.
Optimal policy: choose an action a* at stage h* and leaf ¢*
Define a reference MDP M where A (h, s;,a) = 0 for all (h, s;,a)

. A
Define Cg’gl = {Mo} U {M(h*’é*’a*)}(h*,Z*,a*)€{1+d,... A+dyxLxA”
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Change of Distribution Tools

Lemma 1.
Let M and M’ be two MDPs that are identical except for their transition probabilities. For
any stopping time T with respect to (Fj;),~, that satisfies P47 < oo] =1

KL (PP ) =33 Y Ea [N ] KL(ul: | 5,0).50( | 5,0).
SESaEAhEH 1]
where Nj ., £ 57 T{(S}, A}) = (s,0)}.
Lemma 2 (Lemma 1, Garivier et al., 2019).

Consider a measurable space (), F) equipped with two distributions Py and Py. For any F
-measurable function Z : Q2 — [0, 1], we have

KL (Py,P9) > k1 (E41[Z], Eo[Z]),
12/20
where [£1 and Eo are the expectations under Py and Py respectively.



Regret Lower Bound

Using change of distributions between MDPs in the class Cp . can prove the following result.

Theorem 3.
Under Assumption 1, for any algorithm 7, there exists an MDP M whose transitions depend
on the stage h, such that, for T > HSA

1
Ry (7, My) > ——VH3SAT.
7 (m, M) 486
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Regret of 7 in M p o+

» The mean reward gathered by 7 in M« - o+ is given by

T H T H
]E(h*,é*,a*) [Z Z?"h (SZ,A;L) = ZE(h*’Z*’a*) Z H {S;tL = Sg}
t=1 h=1 t=1 h=H4d+1
~ T
=(H-H=d)Y Pgeiear) [Shyars = 5] -
t=1

> Forany he€ {1+d,...,H +d}

P(h*,é*,a*) [Sft-ﬁ-l = Sg] =
P(h*,é*,a*) [Sfl = Sg] + %P(h*,f*,a*) [Sfl € ﬁ] +]I{h = h*}P(h*,Z*,a*) [SZ = ngAz = a*] E.

> Indeed, if S, = s4, we have either S} = s, or S} | € L.
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Regret of 7 in M p o+

> Using the facts that Py« o o=y [St 4 = 54| =0 and Zhgjﬂd Ppe v 0y [S] € L] =1

H+d
1
P(h*,e*’a*) [S%I+d+1 - Sg] - Z §P(h*,f*,a*) I:SZ S l:] +]I{h - h*}]P)(h*’g*,a*) I:SZ - 8[*’142 -
h=1+d
1
- 5 +€P(h*,€*,a*) [SZ* = Sg*,AZ* = a*] .

> 7*: traverse the tree at step h* — d then go to the leaf sy« and performs action a*
» The optimal value in any of the MDPs is p* = (H — H — d)(1/2 +¢)

» The regret of  in M« ¢+ 4+ is then

_ 1
RT (ﬂvM(h*,Z*,a*)) = T(H - H— d)&" (1 — TE(h*,f*,a*) [N(h*,l*,a*)]) s

where NTi. . o= Y1 I{S}. = sp, A} = a*}.
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Maximum regret of 7 over all possible M, s+ o+

» We first lower bound the maximum of the regret by the mean over all instances

1

R , TN - g—— R s M o ax
(h*n,fﬁﬁ*) T (7T M(h Wil )) = HLA Z T (7" (h*, 0=, ))
(h*,e*,a*)
_ 1 T
>T(H-H-de[1- FLAT (h*; *)E(h*’z*’a*) [N(h*7e*7a*)}

> Need an upper bound on > ;. 4 o) Eqe e+ av) [Nglw*’a*)}

> Relate each expectation to the expectation of the same quantity under M
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Upper bound on Z]E(h,*,é*,a,*) [N(h*,[*,a*)]
> Since N, 4o 4oy/T € [0,1], Lemma gives us

1 T 1 T 5 ik
Kl (TEO {N(h*ﬁa*), ZE (e a0 [N(h*7£*7a*)]> <KL (P Pl e )

» By Pinsker's inequality, (p — q)? < (1/2)kl(p, q), it implies

1 1 T 1 1L IT
TE(h*’Z*’a*) I:N(h*’e*’a*):l S TEO |:N(h*7£*7ax):| + \/2 KL <P0H7P(é*7e*7a*))

> Since Mo and M j« ¢+ 4+ only differ at stage h* when (s,a) = (s¢-,a*), Lemma gives
f oplh T
KL (BB e ) = Bo [N o0y | KI(1L/2,1/2 1)
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Upper bound on ) E ;- s+ o+ [N(h*,z*,a*)]

> For e < 1/4, we have kI(1/2,1/2 + ¢) < 42 (to be checked)

1 1
TE(h*vz*’“*) [N(h*jﬁgﬁ‘)} S f]EO |:N(:Z];*7[*’a*):| + \/55 ]EO [N(j};*’[*’a*)}

» The sum of N£*7Z*7a*) over all instances (h*,¢*,a*) € {1+d,...,H+d} x Lx A'is

T H+d
> Noewrany=>_ >, I{Sh.eLy=T
(h* 0% ,a*) t=1 h*=1+d

» Summing over all instances and using the Cauchy-Schwartz inequality

1
T > Epe e [N(:,;L*,Z*,a*)} S1+V2e Y 3/Eo [Noe ]
(h*,é*7a*) (h*,é*,a*)

<1++V2eVHLAT. 19/20



Discussion

The proof uses Assumption 1 stating that
— there exists an integer d such that S =3+ (A% — 1) /(A—1)
- H > 3d,

They can be relaxed to the case we cannot build a full tree.

» The proof can be easily adapted to stationary case and recover {2 (\/ HQSAT).

» The author also proves a sample complexity lower bound for best policy identification in a

non-stationary MDP.

The proof relies on the same construction of hard MDPs.

20 /20



