Revisit Minimax Lower Bounds of Episodic Reinforcement Learning in Finite MDPs

Presenter: Hao Liang

The Chinese University of Hong Kong, Shenzhen

July 9, 2021

Mainly based on:
Domingues, Omar Darwiche, et al. "Episodic reinforcement learning in finite mdps: Minimax lower bounds revisited." Algorithmic Learning Theory. PMLR, 2021.

Literature review

- In the average-reward setting, Jaksch et al. (2010) prove $\Omega(\sqrt{D S A T})$ lower bound
- D : the diameter of the MDP
- T : the total number of steps
- In the episodic setting, the total number of steps taken is $H T$ and H is roughly the equivalent of the diameter D.
- Intuitively, the lower bound of Jaksch et al. (2010) should be translated to $\Omega\left(\sqrt{H^{2} S A T}\right)$ for episodic MDPs after T episodes.
- However, their construction only applies to stationary MDP.
- Jin et al. (2018) claim that the lower bound becomes $\Omega\left(\sqrt{H^{3} S A T}\right)$ by using the construction of Jaksch et al. (2010) and a mixing-time argument, but no complete proof.

Setting and Performance Measures

- Episodic Markov decision process (MDP) $\mathcal{M} \triangleq(\mathcal{S}, \mathcal{A}, H, \mu, p, r)$.
- $S:=|\mathcal{S}|$ and $A:=|\mathcal{A}|$
- $\Delta(\mathcal{A})$: the set of probability distributions over the action set
- $\mathcal{I}_{h}^{t}=\left((\mathcal{S} \times \mathcal{A})^{H-1} \times \mathcal{S}\right)^{t-1} \times(\mathcal{S} \times \mathcal{A})^{h-1} \times \mathcal{S}$ the set of possible histories up to step h of episode (not including rewards)
- $\left(s_{1}^{1}, a_{1}^{1}, s_{2}^{1}, a_{2}^{1}, \ldots, s_{H}^{1}, \ldots, s_{1}^{t}, a_{1}^{t}, s_{2}^{t}, a_{2}^{t}, \ldots, s_{h}^{t}\right) \in \mathcal{I}_{h}^{t}$
- A Markov policy is a function $\pi: \mathcal{S} \times[H] \rightarrow \Delta(\mathcal{A})$
- A history-dependent policy is a sequence of functions $\boldsymbol{\pi} \triangleq\left(\pi_{h}^{t}\right)_{t \geq 1, h \in[H]}$ with $\pi_{h}^{t}: \mathcal{I}_{h}^{t} \rightarrow \Delta(\mathcal{A})$
- $\Pi_{\text {Markov }}$ and $\Pi_{\text {Hist }}$ the sets of Markov and history-dependent policies

Setting and Performance Measures

- A policy π interacting with an MDP induces a stochastic process $\left(S_{h}^{t}, A_{h}^{t}\right)_{t \geq 1, h \in[H]}$
- $I_{h}^{t} \triangleq\left(S_{1}^{1}, A_{1}^{1}, S_{2}^{1}, A_{2}^{1}, \ldots, S_{H}^{1}, \ldots, S_{1}^{t}, A_{1}^{t}, S_{2}^{t}, A_{2}^{t}, \ldots, S_{h}^{t}\right)$: the random history
- \mathcal{F}_{h}^{t} : the σ-algebra generated by I_{h}^{t}
- $\mathbb{P}_{\mathcal{M}}\left[I_{H}^{T}=i_{H}^{T}\right]=\prod_{t=1}^{T} \mu\left(s_{1}^{t}\right) \prod_{h=1}^{H-1} \pi_{h}^{t}\left(a_{h}^{t} \mid i_{h}^{t}\right) p_{h}\left(s_{h+1}^{t} \mid s_{h}^{t}, a_{h}^{t}\right)$
- Let $\mathbb{E}_{\mathcal{M}}$ be the corresponding expectation (implicitly dependent on π)
- In episode t, the value of a policy $\boldsymbol{\pi}$ in the MDP \mathcal{M} is defined as

$$
V^{\boldsymbol{\pi}, t}\left(i_{H}^{t-1}, s\right) \triangleq \mathbb{E}_{\boldsymbol{\pi}, \mathcal{M}}\left[\sum_{h=1}^{H} r_{h}\left(S_{h}^{t}, A_{h}^{t}\right) \mid I_{H}^{t-1}=i_{H}^{t-1}, S_{1}^{t}=s\right]
$$

- For Markov policy, the value does not depend on i_{H}^{t-1}

$$
V^{\pi}(s) \triangleq \mathbb{E}_{\pi, \mathcal{M}}\left[\sum_{h=1}^{H} r_{h}\left(S_{h}^{1}, A_{h}^{1}\right) \mid S_{1}^{1}=s\right]
$$

Setting and Performance Measures

- The optimal value function $V^{*}(s) \triangleq \max _{\pi \in \Pi} V^{\pi}(s)$ achieved by (Markov) π^{*}
- Markov policies suffices

$$
V^{*}(s) \geq V^{\boldsymbol{\pi}, t}\left(i_{H}^{t-1}, s\right)
$$

- Define the average value functions over the initial state as

$$
\rho^{\pi, t}\left(i_{H}^{t-1}\right) \triangleq \mathbb{E}_{s \sim \mu}\left[V^{\boldsymbol{\pi}, t}\left(i_{H}^{t-1}, s\right)\right], \quad \rho^{\pi} \triangleq \mathbb{E}_{s \sim \mu}\left[V^{\pi}(s)\right], \quad \rho^{*} \triangleq \rho^{\pi^{*}}
$$

- The expected regret of an algorithm π in an MDP \mathcal{M} after T episodes is defined as

$$
\mathcal{R}_{T}(\boldsymbol{\pi}, \mathcal{M}) \triangleq \mathbb{E}_{\boldsymbol{\pi}, \mathcal{M}}\left[\sum_{t=1}^{T}\left(\rho^{*}-\rho^{\boldsymbol{\pi}, t}\left(I_{H}^{t-1}\right)\right)\right]
$$

Lower Bound Recipe

- Consider a class \mathcal{C} of hard MDPs instances
- the optimal policy is difficult to identify
- close to each other, but the behavior of an algorithm is expected to be different
- Use a change of distribution between two well-chosen MDPs to obtain inequalities on the expected number of visits of certain state-action pairs in one of them

Intuition of Hard MDPs

- From a high-level perspective, the family of MDPs behave like MABs with $\Theta(H S A)$ arms.
- To gain some intuition, assume that $S=4$ and consider the MDP in Figure 1

Figure: Illustration of the class of hard MDPs for $S=4$

Intuition of Hard MDPs

- Can stay in s_{w} up to a stage $\bar{H}<H$
- a^{*} in state s_{1} increases by ϵ the probability of reaching s_{g}, must be taken at stage h^{*}
- Optimal policy: choose the right moment $h \in[\bar{H}]$ to leave s_{w}, then choose a^{*} in s_{1}
- Total of $\bar{H} A$ possible choices/"arms", maximal rewards is $\Theta(\bar{H})$
- By analogy with the existing minimax regret bound for MAB, choosing $\bar{H}=\Theta(H)$ yields

$$
\Omega(H \sqrt{H A T})
$$

Generalization to $S>4$

Assumption 1.

$$
S \geq 6, A \geq 2 ; \exists d \in \mathbb{N} \text { s.t. } S=3+\left(A^{d}-1\right) /(A-1) \text { (implying } d=\Theta\left(\log _{A} S\right) \text {); } H \geq 3 d
$$

Figure: Illustration of the class of hard MDPs

Generalization to $S>4$

- $\bar{H} \leq H-d$: a parameter of the class of MDPs.
- $\mathcal{L}=\left\{s_{1}, s_{2}, \ldots, s_{L}\right\}$: the set of L leaves of the tree.
- Define an $\operatorname{MDP} \mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}$ for each $\left(h^{*}, \ell^{*}, a^{*}\right) \in\{1+d, \ldots, \bar{H}+d\} \times \mathcal{L} \times \mathcal{A}$
- Deterministic transition for each state in the tree.
- The transitions from s_{w} are given by

$$
p_{h}\left(s_{\mathrm{w}} \mid s_{\mathrm{w}}, a\right) \triangleq \mathbb{I}\left\{a=a_{\mathrm{w}}, h \leq \bar{H}\right\} \quad \text { and } \quad p_{h}\left(s_{\text {root }} \mid s_{\mathrm{w}}, a\right) \triangleq 1-p_{h}\left(s_{\mathrm{w}} \mid s_{\mathrm{w}}, a\right)
$$

- After stage \bar{H}, the agent has to traverse the tree down to the leaves.

Generalization to $S>4$

- The transitions from any leaf $s_{i} \in \mathcal{L}$ are given by
$p_{h}\left(s_{g} \mid s_{i}, a\right) \triangleq \frac{1}{2}+\Delta_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left(h, s_{i}, a\right) \quad$ and $\quad p_{h}\left(s_{b} \mid s_{i}, a\right) \triangleq \frac{1}{2}-\Delta_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left(h, s_{i}, a\right)$
- $\Delta_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left(h, s_{i}, a\right) \triangleq \mathbb{I}\left\{\left(h, s_{i}, a\right)=\left(h^{*}, s_{\ell^{*}}, a^{*}\right)\right\} \cdot \varepsilon^{\prime}$, for some $\varepsilon^{\prime} \in[0,1 / 2]$ that is the second parameter
- The reward function depends only on the state

$$
\forall a \in \mathcal{A}, \quad r_{h}(s, a) \triangleq \mathbb{I}\left\{s=s_{g}, h \geq \bar{H}+d+1\right\}
$$

- Does not miss any reward if it chooses to stay at s_{w} until stage \bar{H}.
- Optimal policy: choose an action a^{*} at stage h^{*} and leaf ℓ^{*}
- Define a reference MDP \mathcal{M}_{0} where $\Delta_{0}\left(h, s_{i}, a\right) \triangleq 0$ for all $\left(h, s_{i}, a\right)$
- Define $\mathcal{C}_{\bar{H}, \varepsilon^{\prime}} \triangleq\left\{\mathcal{M}_{0}\right\} \bigcup\left\{\mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right\}_{\left(h^{*}, \ell^{*}, a^{*}\right) \in\{1+d, \ldots, \bar{H}+d\} \times \mathcal{L} \times \mathcal{A}}$.

Change of Distribution Tools

Lemma 1.

Let \mathcal{M} and \mathcal{M}^{\prime} be two MDPs that are identical except for their transition probabilities. For any stopping time τ with respect to $\left(\mathcal{F}_{H}^{t}\right)_{t \geq 1}$ that satisfies $\mathbb{P}_{\mathcal{M}}[\tau<\infty]=1$

$$
\mathrm{KL}\left(\mathbb{P}_{\mathcal{M}}^{I_{H}^{\tau}}, \mathbb{P}_{\mathcal{M}^{\prime}}^{I_{H}^{\tau}}\right)=\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \sum_{h \in[H-1]} \mathbb{E}_{\mathcal{M}}\left[N_{h, s, a}^{\tau}\right] \operatorname{KL}\left(p_{h}(\cdot \mid s, a), p_{h}^{\prime}(\cdot \mid s, a)\right),
$$

where $N_{h, s, a}^{\tau} \triangleq \sum_{t=1}^{\tau} \mathbb{I}\left\{\left(S_{h}^{t}, A_{h}^{t}\right)=(s, a)\right\}$.
Lemma 2 (Lemma 1, Garivier et al., 2019).
Consider a measurable space (Ω, \mathcal{F}) equipped with two distributions \mathbb{P}_{1} and \mathbb{P}_{2}. For any \mathcal{F} -measurable function $Z: \Omega \rightarrow[0,1]$, we have

$$
\operatorname{KL}\left(\mathbb{P}_{1}, \mathbb{P}_{2}\right) \geq \mathrm{kl}\left(\mathbb{E}_{1}[Z], \mathbb{E}_{2}[Z]\right)
$$

where \mathbb{E}_{1} and \mathbb{E}_{2} are the expectations under \mathbb{P}_{1} and \mathbb{P}_{2} respectively.

Regret Lower Bound

Using change of distributions between MDPs in the class $\mathcal{C}_{\bar{H}, \varepsilon}$ can prove the following result.
Theorem 3.
Under Assumption 1, for any algorithm π, there exists an MDP \mathcal{M}_{π} whose transitions depend on the stage h, such that, for $T \geq H S A$

$$
\mathcal{R}_{T}\left(\boldsymbol{\pi}, \mathcal{M}_{\boldsymbol{\pi}}\right) \geq \frac{1}{48 \sqrt{6}} \sqrt{H^{3} S A T}
$$

Regret of $\boldsymbol{\pi}$ in $\mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}$

- The mean reward gathered by π in $\mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}$ is given by

$$
\begin{aligned}
\mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[\sum_{t=1}^{T} \sum_{h=1}^{H} r_{h}\left(S_{h}^{t}, A_{h}^{t}\right)\right] & =\sum_{t=1}^{T} \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[\sum_{h=\bar{H}+d+1}^{H} \mathbb{I}\left\{S_{h}^{t}=s_{g}\right\}\right] \\
& =(H-\bar{H}-d) \sum_{t=1}^{T} \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{\bar{H}+d+1}^{t}=s_{g}\right] .
\end{aligned}
$$

- For any $h \in\{1+d, \ldots, \bar{H}+d\}$

$$
\begin{aligned}
& \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h+1}^{t}=s_{g}\right]= \\
& \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h}^{t}=s_{g}\right]+\frac{1}{2} \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h}^{t} \in \mathcal{L}\right]+\mathbb{I}\left\{h=h^{*}\right\} \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h}^{t}=s_{\ell^{*}}, A_{h}^{t}=a^{*}\right] \varepsilon .
\end{aligned}
$$

- Indeed, if $S_{h+1}^{t}=s_{g}$, we have either $S_{h}^{t}=s_{g}$ or $S_{h+1}^{t} \in \mathcal{L}$.

Regret of $\boldsymbol{\pi}$ in $\mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}$

- The mean reward gathered by π in $\mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}$ is given by

$$
\begin{aligned}
\mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[\sum_{t=1}^{T} \sum_{h=1}^{H} r_{h}\left(S_{h}^{t}, A_{h}^{t}\right)\right] & =\sum_{t=1}^{T} \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[\sum_{h=\bar{H}+d+1}^{H} \mathbb{I}\left\{S_{h}^{t}=s_{g}\right\}\right] \\
& =(H-\bar{H}-d) \sum_{t=1}^{T} \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{\bar{H}+d+1}^{t}=s_{g}\right] .
\end{aligned}
$$

- For any $h \in\{1+d, \ldots, \bar{H}+d\}$

$$
\begin{aligned}
& \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h+1}^{t}=s_{g}\right]= \\
& \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h}^{t}=s_{g}\right]+\frac{1}{2} \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h}^{t} \in \mathcal{L}\right]+\mathbb{I}\left\{h=h^{*}\right\} \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h}^{t}=s_{\ell^{*}}, A_{h}^{t}=a^{*}\right] \varepsilon .
\end{aligned}
$$

- Indeed, if $S_{h+1}^{t}=s_{g}$, we have either $S_{h}^{t}=s_{g}$ or $S_{h+1}^{t} \in \mathcal{L}$.

Regret of π in $\mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}$

- Using the facts that $\mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{1+d}^{t}=s_{g}\right]=0$ and $\sum_{h=1+d}^{\bar{H}+d} \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h}^{t} \in \mathcal{L}\right]=1$

$$
\begin{aligned}
\mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{\bar{H}+d+1}^{t}=s_{g}\right] & =\sum_{h=1+d}^{\bar{H}+d} \frac{1}{2} \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h}^{t} \in \mathcal{L}\right]+\mathbb{I}\left\{h=h^{*}\right\} \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h}^{t}=s_{\ell^{*}}, A_{h}^{t}\right. \\
& =\frac{1}{2}+\varepsilon \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[S_{h^{*}}^{t}=s_{\ell^{*}}, A_{h^{*}}^{t}=a^{*}\right] .
\end{aligned}
$$

- π^{*} : traverse the tree at step $h^{*}-d$ then go to the leaf $s_{\ell^{*}}$ and performs action a^{*}
- The optimal value in any of the MDPs is $\rho^{*}=(H-\bar{H}-d)(1 / 2+\varepsilon)$
- The regret of $\boldsymbol{\pi}$ in $\mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}$ is then

$$
\mathcal{R}_{T}\left(\boldsymbol{\pi}, \mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right)=T(H-\bar{H}-d) \varepsilon\left(1-\frac{1}{T} \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right]\right),
$$

where $N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}=\sum_{t=1}^{T} \mathbb{I}\left\{S_{h^{*}}^{t}=s_{\ell^{*}}, A_{h^{*}}^{t}=a^{*}\right\}$.

Maximum regret of π over all possible $\mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}$

- We first lower bound the maximum of the regret by the mean over all instances

$$
\begin{aligned}
\max _{\left(h^{*}, \ell^{*}, a^{*}\right)} & \mathcal{R}_{T}\left(\boldsymbol{\pi}, \mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right) \geq \frac{1}{\bar{H} L A} \sum_{\left(h^{*}, \ell^{*}, a^{*}\right)} \mathcal{R}_{T}\left(\boldsymbol{\pi}, \mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right) \\
& \geq T(H-\bar{H}-d) \varepsilon\left(1-\frac{1}{\bar{H} L A T} \sum_{\left(h^{*}, \ell^{*}, a^{*}\right)} \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}\right]\right)
\end{aligned}
$$

- Need an upper bound on $\sum_{\left(h^{*}, \ell^{*}, a^{*}\right)} \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}\right]$
- Relate each expectation to the expectation of the same quantity under \mathcal{M}_{0}

Upper bound on $\sum \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right]$

- Since $N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T} / T \in[0,1]$, Lemma gives us

$$
\operatorname{kl}\left(\frac{1}{T} \mathbb{E}_{0}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}, \frac{1}{T} \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}\right]\right) \leq \operatorname{KL}\left(\mathbb{P}_{0}^{I_{H}^{T}}, \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{I^{T}}\right)\right.
$$

- By Pinsker's inequality, $(p-q)^{2} \leq(1 / 2) \mathrm{kl}(p, q)$, it implies

$$
\frac{1}{T} \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right] \leq \frac{1}{T} \mathbb{E}_{0}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}\right]+\sqrt{\frac{1}{2} \mathrm{KL}\left(\mathbb{P}_{0}^{I_{H}^{T}}, \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{I^{T}}\right)}
$$

- Since \mathcal{M}_{0} and $\mathcal{M}_{\left(h^{*}, \ell^{*}, a^{*}\right)}$ only differ at stage h^{*} when $(s, a)=\left(s \ell^{*}, a^{*}\right)$, Lemma gives

$$
\operatorname{KL}\left(\mathbb{P}_{0}^{I_{H}^{T}}, \mathbb{P}_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{I^{T}}\right)=\mathbb{E}_{0}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}\right] \operatorname{kl}(1 / 2,1 / 2+\varepsilon)
$$

Upper bound on $\sum \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right]$

- For $\varepsilon \leq 1 / 4$, we have $\mathrm{kl}(1 / 2,1 / 2+\varepsilon) \leq 4 \varepsilon^{2}$ (to be checked)

$$
\frac{1}{T} \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right] \leq \frac{1}{T} \mathbb{E}_{0}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}\right]+\sqrt{2} \varepsilon \sqrt{\mathbb{E}_{0}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}\right]}
$$

- The sum of $N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}$ over all instances $\left(h^{*}, \ell^{*}, a^{*}\right) \in\{1+d, \ldots, \bar{H}+d\} \times \mathcal{L} \times \mathcal{A}$ is

$$
\sum_{\left(h^{*}, \ell^{*}, a^{*}\right)} N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}=\sum_{t=1}^{T} \sum_{h^{*}=1+d}^{\bar{H}+d} \mathbb{I}\left\{S_{h^{*}}^{t} \in \mathcal{L}\right\}=T
$$

- Summing over all instances and using the Cauchy-Schwartz inequality

$$
\begin{aligned}
\frac{1}{T} \sum_{\left(h^{*}, \ell^{*}, a^{*}\right)} \mathbb{E}_{\left(h^{*}, \ell^{*}, a^{*}\right)}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}^{T}\right] & \leq 1+\sqrt{2} \varepsilon \sum_{\left(h^{*}, \ell^{*}, a^{*}\right)} \sqrt{\mathbb{E}_{0}\left[N_{\left(h^{*}, \ell^{*}, a^{*}\right)}\right]} \\
& \leq 1+\sqrt{2} \varepsilon \sqrt{\bar{H} L A T} .
\end{aligned}
$$

Discussion

- The proof uses Assumption 1 stating that
- there exists an integer d such that $S=3+\left(A^{d}-1\right) /(A-1)$
- $H \geq 3 d$,
- They can be relaxed to the case we cannot build a full tree.
- The proof can be easily adapted to stationary case and recover $\Omega\left(\sqrt{H^{2} S A T}\right)$.
- The author also proves a sample complexity lower bound for best policy identification in a non-stationary MDP.
- The proof relies on the same construction of hard MDPs.

