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Literature review

▶ In the average-reward setting, Jaksch et al. (2010) prove Ω(
√
DSAT ) lower bound

– D: the diameter of the MDP
– T : the total number of steps

▶ In the episodic setting, the total number of steps taken is HT and H is roughly the
equivalent of the diameter D.

▶ Intuitively, the lower bound of Jaksch et al. (2010) should be translated to
Ω
(√

H2SAT
)

for episodic MDPs after T episodes.
▶ However, their construction only applies to stationary MDP.
▶ Jin et al. (2018) claim that the lower bound becomes Ω

(√
H3SAT

)
by using the

construction of Jaksch et al. (2010) and a mixing-time argument, but no complete proof.
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Setting and Performance Measures

▶ Episodic Markov decision process (MDP) M ≜ (S,A,H, µ, p, r).
▶ S := |S| and A := |A|
▶ ∆(A): the set of probability distributions over the action set
▶ It

h =
(
(S ×A)H−1 × S

)t−1 × (S ×A)h−1 × S the set of possible histories up to step h

of episode (not including rewards)
▶ (
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1, s

t
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t
h

)
∈ It

h

▶ A Markov policy is a function π : S × [H] → ∆(A)

▶ A history-dependent policy is a sequence of functions π ≜ (πt
h)t≥1,h∈[H] with

πt
h : It

h → ∆(A)

▶ ΠMarkov and ΠHist the sets of Markov and history-dependent policies
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Setting and Performance Measures

▶ A policy π interacting with an MDP induces a stochastic process (St
h, A

t
h)t≥1,h∈[H]

▶ Ith ≜
(
S1
1 , A

1
1, S

1
2 , A

1
2, . . . , S

1
H , . . . , St

1, A
t
1, S

t
2, A

t
2, . . . , S

t
h

)
: the random history

▶ F t
h: the σ-algebra generated by Ith

▶ PM
[
ITH = iTH

]
=

∏T
t=1 µ (st1)

∏H−1
h=1 πt

h (a
t
h | ith) ph

(
sth+1 | sth, ath

)
▶ Let EM be the corresponding expectation (implicitly dependent on π)
▶ In episode t, the value of a policy π in the MDP M is defined as

V π,t
(
it−1
H , s

)
≜ Eπ,M

[
H∑

h=1

rh
(
St
h, A

t
h

)
| It−1

H = it−1
H , St

1 = s

]
▶ For Markov policy, the value does not depend on it−1

H

V π(s) ≜ Eπ,M

[
H∑

h=1

rh
(
S1
h, A

1
h

)
| S1

1 = s

]
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Setting and Performance Measures

▶ The optimal value function V ∗(s) ≜ maxπ∈Π V π(s) achieved by (Markov) π∗

▶ Markov policies suffices
V ∗(s) ≥ V π,t

(
it−1
H , s

)
▶ Define the average value functions over the initial state as

ρπ,t
(
it−1
H

)
≜ Es∼µ

[
V π,t

(
it−1
H , s

)]
, ρπ ≜ Es∼µ [V

π(s)] , ρ∗ ≜ ρπ
∗

▶ The expected regret of an algorithm π in an MDP M after T episodes is defined as

RT (π,M) ≜ Eπ,M

[
T∑

t=1

(
ρ∗ − ρπ,t

(
It−1
H

))]
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Lower Bound Recipe

▶ Consider a class C of hard MDPs instances
– the optimal policy is difficult to identify
– close to each other, but the behavior of an algorithm is expected to be different

▶ Use a change of distribution between two well-chosen MDPs to obtain inequalities on the
expected number of visits of certain state-action pairs in one of them
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Intuition of Hard MDPs
▶ From a high-level perspective, the family of MDPs behave like MABs with Θ(HSA) arms.
▶ To gain some intuition, assume that S = 4 and consider the MDP in Figure 1

Figure: Illustration of the class of hard MDPs for S = 4 7 / 20



Intuition of Hard MDPs

▶ Can stay in sw up to a stage H̄ < H

▶ a∗ in state s1 increases by ϵ the probability of reaching sg, must be taken at stage h∗

▶ Optimal policy: choose the right moment h ∈ [H̄] to leave sw, then choose a∗ in s1

▶ Total of H̄A possible choices/“arms”, maximal rewards is Θ(H̄)

▶ By analogy with the existing minimax regret bound for MAB, choosing H̄ = Θ(H) yields

Ω(H
√
HAT )
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Generalization to S > 4

Assumption 1.
S ≥ 6, A ≥ 2; ∃d ∈ N s.t. S = 3 +

(
Ad − 1

)
/(A− 1) (implying d = Θ(logA S)); H ≥ 3d.

Figure: Illustration of the class of hard MDPs 9 / 20



Generalization to S > 4

▶ H̄ ≤ H − d: a parameter of the class of MDPs.
▶ L = {s1, s2, . . . , sL}: the set of L leaves of the tree.
▶ Define an MDPM(h∗,ℓ∗,a∗) for each (h∗, ℓ∗, a∗) ∈ {1 + d, . . . , H̄ + d} × L ×A
▶ Deterministic transition for each state in the tree.
▶ The transitions from sw are given by

ph (sw | sw, a) ≜ I
{
a = aw, h ≤ H̄

}
and ph (sroot | sw, a) ≜ 1− ph (sw | sw, a)

▶ After stage H̄, the agent has to traverse the tree down to the leaves.
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Generalization to S > 4

▶ The transitions from any leaf si ∈ L are given by

ph (sg | si, a) ≜
1

2
+∆(h∗,ℓ∗,a∗) (h, si, a) and ph (sb | si, a) ≜

1

2
−∆(h∗,ℓ∗,a∗) (h, si, a)

▶ ∆(h∗,ℓ∗,a∗) (h, si, a) ≜ I {(h, si, a) = (h∗, sℓ∗ , a
∗)} · ε′, for some ε′ ∈ [0, 1/2] that is the

second parameter
▶ The reward function depends only on the state

∀a ∈ A, rh(s, a) ≜ I
{
s = sg, h ≥ H̄ + d+ 1

}
▶ Does not miss any reward if it chooses to stay at sw until stage H̄.
▶ Optimal policy: choose an action a∗ at stage h∗ and leaf ℓ∗

▶ Define a reference MDP M0 where ∆0 (h, si, a) ≜ 0 for all (h, si, a)
▶ Define CH̄,ε′ ≜ {M0}

∪{
M(h∗,ℓ∗,a∗)

}
(h∗,ℓ∗,a∗)∈{1+d,...,H̄+d}×L×A .
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Change of Distribution Tools

Lemma 1.
Let M and M′ be two MDPs that are identical except for their transition probabilities. For
any stopping time τ with respect to (F t

H)t≥1 that satisfies PM[τ < ∞] = 1

KL
(
PIτ

H

M ,PIτ
H

M′

)
=

∑
s∈S

∑
a∈A

∑
h∈[H−1]

EM
[
Nτ

h,s,a

]
KL (ph(· | s, a), p′h(· | s, a)) ,

where Nτ
h,s,a ≜

∑τ
t=1 I {(St

h, A
t
h) = (s, a)}.

Lemma 2 (Lemma 1, Garivier et al., 2019).
Consider a measurable space (Ω,F) equipped with two distributions P1 and P2. For any F
-measurable function Z : Ω → [0, 1], we have

KL (P1,P2) ≥ kl (E1[Z],E2[Z]) ,

where E1 and E2 are the expectations under P1 and P2 respectively.
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Regret Lower Bound

Using change of distributions between MDPs in the class CH̄,ε can prove the following result.

Theorem 3.
Under Assumption 1, for any algorithm π, there exists an MDP Mπ whose transitions depend
on the stage h, such that, for T ≥ HSA

RT (π,Mπ) ≥
1

48
√
6

√
H3SAT .
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Regret of π in M(h∗,ℓ∗,a∗)

▶ The mean reward gathered by π in M(h∗,ℓ∗,a∗) is given by

E(h∗,ℓ∗,a∗)

[
T∑

t=1

H∑
h=1

rh
(
St
h, A

t
h

)]
=

T∑
t=1

E(h∗,ℓ∗,a∗)

 H∑
h=H̄+d+1

I
{
St
h = sg

}
= (H − H̄ − d)

T∑
t=1

P(h∗,ℓ∗,a∗)

[
St
H̄+d+1 = sg

]
.

▶ For any h ∈ {1 + d, . . . , H̄ + d}
P(h∗,ℓ∗,a∗)

[
St
h+1 = sg

]
=

P(h∗,ℓ∗,a∗) [S
t
h = sg] +

1
2P(h∗,ℓ∗,a∗) [S

t
h ∈ L] + I {h = h∗}P(h∗,ℓ∗,a∗) [S

t
h = sℓ∗ , A

t
h = a∗] ε.

▶ Indeed, if St
h+1 = sg, we have either St

h = sg or St
h+1 ∈ L.
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Regret of π in M(h∗,ℓ∗,a∗)

▶ The mean reward gathered by π in M(h∗,ℓ∗,a∗) is given by

E(h∗,ℓ∗,a∗)

[
T∑

t=1

H∑
h=1

rh
(
St
h, A

t
h

)]
=

T∑
t=1

E(h∗,ℓ∗,a∗)

 H∑
h=H̄+d+1

I
{
St
h = sg

}
= (H − H̄ − d)

T∑
t=1

P(h∗,ℓ∗,a∗)

[
St
H̄+d+1 = sg

]
.

▶ For any h ∈ {1 + d, . . . , H̄ + d}
P(h∗,ℓ∗,a∗)

[
St
h+1 = sg

]
=

P(h∗,ℓ∗,a∗) [S
t
h = sg] +

1
2P(h∗,ℓ∗,a∗) [S

t
h ∈ L] + I {h = h∗}P(h∗,ℓ∗,a∗) [S

t
h = sℓ∗ , A

t
h = a∗] ε.

▶ Indeed, if St
h+1 = sg, we have either St

h = sg or St
h+1 ∈ L.
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Regret of π in M(h∗,ℓ∗,a∗)

▶ Using the facts that P(h∗,ℓ∗,a∗)

[
St
1+d = sg

]
= 0 and

∑H̄+d
h=1+d P(h∗,ℓ∗,a∗) [S

t
h ∈ L] = 1

P(h∗,ℓ∗,a∗)

[
St
H̄+d+1 = sg

]
=

H̄+d∑
h=1+d

1

2
P(h∗,ℓ∗,a∗)

[
St
h ∈ L

]
+ I {h = h∗}P(h∗,ℓ∗,a∗)

[
St
h = sℓ∗ , A

t
h = a∗

]
ε

=
1

2
+ εP(h∗,ℓ∗,a∗)

[
St
h∗ = sℓ∗ , A

t
h∗ = a∗

]
.

▶ π∗: traverse the tree at step h∗ − d then go to the leaf sℓ∗ and performs action a∗

▶ The optimal value in any of the MDPs is ρ∗ = (H − H̄ − d)(1/2 + ε)

▶ The regret of π in M(h∗,ℓ∗,a∗) is then

RT

(
π,M(h∗,ℓ∗,a∗)

)
= T (H − H̄ − d)ε

(
1− 1

T
E(h∗,ℓ∗,a∗)

[
N(h∗,ℓ∗,a∗)

])
,

where NT
(h∗,ℓ∗,a∗) =

∑T
t=1 I {St

h∗ = sℓ∗ , A
t
h∗ = a∗}.
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Maximum regret of π over all possible M(h∗,ℓ∗,a∗)

▶ We first lower bound the maximum of the regret by the mean over all instances

max
(h∗,ℓ∗,a∗)

RT

(
π,M(h∗,ℓ∗,a∗)

)
≥ 1

H̄LA

∑
(h∗,ℓ∗,a∗)

RT

(
π,M(h∗,ℓ∗,a∗)

)

≥ T (H − H̄ − d)ε

1− 1

H̄LAT

∑
(h∗,ℓ∗,a∗)

E(h∗,ℓ∗,a∗)

[
NT

(h∗,ℓ∗,a∗)

]
▶ Need an upper bound on

∑
(h∗,ℓ∗,a∗) E(h∗,ℓ∗,a∗)

[
NT

(h∗,ℓ∗,a∗)

]
▶ Relate each expectation to the expectation of the same quantity under M0
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Upper bound on
∑

E(h∗,ℓ∗,a∗)

[
N(h∗,ℓ∗,a∗)

]
▶ Since NT

(h∗,ℓ∗,a∗)/T ∈ [0, 1], Lemma gives us

kl

(
1

T
E0

[
NT

(h∗,ℓ∗,a∗),
1

T
E(h∗,ℓ∗,a∗)

[
NT

(h∗,ℓ∗,a∗)

])
≤ KL

(
PIT

H
0 ,PIT

H

(h∗,ℓ∗,a∗)

)
▶ By Pinsker’s inequality, (p− q)2 ≤ (1/2)kl(p, q), it implies

1

T
E(h∗,ℓ∗,a∗)

[
N(h∗,ℓ∗,a∗)

]
≤ 1

T
E0

[
NT

(h∗,ℓ∗,a∗)

]
+

√
1

2
KL

(
PIT

H
0 ,PIT

I

(h∗,ℓ∗,a∗)

)
▶ Since M0 and M(h∗,ℓ∗,a∗) only differ at stage h∗ when (s, a) = (sℓ∗ , a

∗), Lemma gives

KL
(
PIT

H
0 ,PIT

H

(h∗,ℓ∗,a∗)

)
= E0

[
NT

(h∗,ℓ∗,a∗)

]
kl(1/2, 1/2 + ε)
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Upper bound on
∑

E(h∗,ℓ∗,a∗)

[
N(h∗,ℓ∗,a∗)

]
▶ For ε ≤ 1/4, we have kl(1/2, 1/2 + ε) ≤ 4ε2 (to be checked)

1

T
E(h∗,ℓ∗,a∗)

[
N(h∗,ℓ∗,a∗)

]
≤ 1

T
E0

[
NT

(h∗,ℓ∗,a∗)

]
+

√
2ε

√
E0

[
NT

(h∗,ℓ∗,a∗)

]
▶ The sum of NT

(h∗,ℓ∗,a∗) over all instances (h∗, ℓ∗, a∗) ∈ {1 + d, . . . , H̄ + d} × L ×A is

∑
(h∗,ℓ∗,a∗)

NT
(h∗,ℓ∗,a∗) =

T∑
t=1

H̄+d∑
h∗=1+d

I
{
St
h∗ ∈ L

}
= T

▶ Summing over all instances and using the Cauchy-Schwartz inequality

1

T

∑
(h∗,ℓ∗,a∗)

E(h∗,ℓ∗,a∗)

[
NT

(h∗,ℓ∗,a∗)

]
≤ 1 +

√
2ε

∑
(h∗,ℓ∗,a∗)

√
E0

[
N(h∗,ℓ∗,a∗)

]
≤ 1 +

√
2ε
√
H̄LAT . 19 / 20



Discussion

▶ The proof uses Assumption 1 stating that
– there exists an integer d such that S = 3 +

(
Ad − 1

)
/(A− 1)

– H ≥ 3d,
▶ They can be relaxed to the case we cannot build a full tree.
▶ The proof can be easily adapted to stationary case and recover Ω

(√
H2SAT

)
.

▶ The author also proves a sample complexity lower bound for best policy identification in a
non-stationary MDP.

▶ The proof relies on the same construction of hard MDPs.
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