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Motivation Example

How to solve this decision-making problem? i.e., the shortest path finding.

[figure from wiki]

I Just enumerate all paths and find the shortest path.
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Motivation Example

How to solve this decision-making problem? i.e., the shortest path finding + eating

items.

I (Still) enumerate all paths and find the most valuable path.
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Motivation Example

How to solve this decision-making problem? i.e., the shortest path from Beijing to

Shenzhen with a cheap tool.

I It is intractable to enumerate all paths and picks up the best one.

I How to efficiently solve large-scale sequential decision making tasks?
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Dynamic Programming and Markov Decision Process

Approach: Dynamic Programming + Markov Decision Process

R. E. Bellman (1920-1984) Ronald A. Howard (1934-)

I Bellman Optimality Equation:

V (s) = max
a∈A

Q(s, a) (1a)

Q(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)V (s′) (1b)

I It reduces the “multi-stage” maximization problem to “sing-stage” optimization

sub-problems.
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Value Iteration

How to solve Bellman Optimality Equation?

I (Method 1) Value Iteration.

V k+1 = T V k with (T V )(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

]
.

What about the control/policy?

I Derive the greedy policy w.r.t. Q̂, i.e., π(s) = argmaxa∈A Q̂(s, a),∀s ∈ S.

Disadvantage of Method 1

I (Issue 1a) Suboptimality: an ε-optimal Q̂ induces an ε/(1− γ)-optimal greedy policy π.

I (Issue 1b) It is not clear how to obtain the greedy policy under the case where action space

is continuous.
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Policy Iteration

Policy Iteration is an algorithm based on DP to directly solve the optimal policy.

I Firstly evaluate action-value function Qπ:

Qπ(s, a) = Ea∼π(·|s),s′∼P (·|s,a),s′∼π(·|s′) [r(s, a) + γQπ(s′, a′)]

I Secondly improve the policy by one-stage optimization:

πk+1(a|s)← argmax
a∈A

Qπ
k

(s, a).

Remark

I We optimize the decision from a “discrete” view.

– We operate with deterministic policies, which corresponds to a “path” in the shortest path

problem.
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Motivation For Policy Gradient Methods

Can we model the optimization as a mathematical programming problem?

min
x∈Rn

f(x) =⇒ max
π

V (π) :=
∑
s∼ρ

ρ(s)V π(s).

I where ρ is the initial state distribution.

What is the parameter?

I (Approach 1) Direct parameterization: π ∈ R|S|×|A| with π(a|s) being the probability of

selecting action a at state s.

a1 a2 a3

s1 0.3 0.4 0.3

s2 0.5 0 0.5
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Policy Gradient Method I

max
π

V (π) s.t. π ∈ ∆(A)|S| (2)

Is (2) differentiable?

I Yes! It’s gradient can be computed as

∂V (π)

∂π(a|s)
=

1

1− γ
dπ(s)Qπ(s, a),

where dπ(s) = (1− γ)
∑∞
t=0 γ

tP(st = s).

Is (2) smooth?

I Yes! For all policies π, π′, we have∥∥∥∇πV (π)− V π
′
∥∥∥

2
≤ 2γ|A|

(1− γ)3
‖∇π − π′‖2 .
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Policy Gradient Method II

Is (2) concave?

I No! There are some MDPs such that (2) is nonconcave.

Why (2) is nonconcave?

I Let us consider a simple function:

f(x, y) = xy, ∇f(x) =

[
y

x

]
, ∇2f(x, y) =

[
0 1

1 0

]
(3)

♠ : this function is convex/concave w.r.t x or y, but is neither convex or concave w.r.t.

(x, y).

I Informally, expected return =
∑

trajectory P(trajectory)×R(trajectory).

I We see that P(trajectory) =
∏∞
t=0 π(at|st)p(st+1|st, at) could have the structure in (3);

therefore, we expect it is nonconcave for policy optimization.
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Policy Gradient Method Historical Remark

Before 2020, people believe that policy gradient methods are not important because

they could converge to the local solution.

I There are total 17 chapters in the book [Sutton and Barto, 2018] but only Chapter 13 is for

policy gradient methods.

Since 2015, deep policy gradient methods (with neural networks) attracts more

interests due to its superior performance.
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Global Convergence of Policy Gradient Methods

Claim 1: the policy gradient method by direct parameterization can linearly converge to the

global optimization even though it is a nonconcave optimization problem [Bhandari and Russo,

2021].

I Concavity is just a sufficient condition to derive the global convergence.

Jalaj Bhandari (PhD student of Columbia
University)

Daniel Russo (Assistant Professor at Columbia
University)

Claim 2: Policy gradient methods with direct parameterization can be viewed the soft policy

iteration [Bhandari and Russo, 2021].
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Weighted Bellman Objective and Soft Policy Iteration I

Weighted Bellman Objective: For any policy π, let us introduce weighted Bellman objective,

defined as

B(π|dπ, Qπ) =
∑

(s,a)∈S×A

dπ(s)Qπ(s, a)π(a|s) = 〈Qπ, π〉dπ×1, (4)

I Note the decision variable is π with π being fixed.

I Our objective is to maximize such defined weighted Bellman objective,

π+ = argmax
π∈∆(A)|S|

B(π|dπ, Qπ).

I At state s, the optimal solution is π+(s) = argmaxa∈AQ
π(a|s), which is identical with

policy iteration.
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Weighted Bellman Objective and Soft Policy Iteration II

I The gradient of Bellman objective function is

∂B(π|dπ, Qπ)

∂π(a|s)
= dπ(s)Qπ(s, a).

Scaled Objective Function:

`(π) := (1− γ)V (π) = (1− γ)
∑
s∼ρ

ρ(s)V π(s). (5)

I Recall the policy gradient theorem states that

∂`(π)

∂π(a|s)
= dπ(s)Qπ(s, a).

The gradient of scaled objective function is same as the weighted Bellman objective.
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Projected Gradient Algorithms I

I The iterate of policy gradient methods on `(π) can be translated to the one by maximizing

the Bellman objective function.

Example 1 Frank Wolfe

1) optimize the linearized objective over the constrained set;

π+ = argmax
π∈Π

〈∇`(π), π〉 = argmax
π∈Π

〈Qπ, π〉dπ×1;

2) make a convex combination update:

π′ = (1− η)π + ηπ+ with η ∈ [0, 1]
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Projected Gradient Algorithms II

Example 2 Projected Gradient Ascent

We first take a gradient descent update then project the updated policy into the constrained

set:

π′ = argmax
π∈Π

{
〈∇`(π), π〉 − 1

2η
‖π − π‖22

}
= argmax

π∈Π

{
〈Qπ, π〉dπ×1 −

1

2η
‖π − π‖22

}
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Projected Gradient Algorithms III

Example 3 Mirror Ascent

We replace the `-2 norm “regularization” to a geometry-aware “regularization”:

π′ = argmax
π∈Π

{
〈∇`(π), π〉 − 1

η
DKL(π‖π)

}
.

where DKL(π‖π) =
∑
s∈S DKL (π(·|s)‖π(·|s)), and DKL(p‖q) =∑

x∈X p(x) log (p(x)/q(x)) for two probability distributions p and q.

It is well know that the solution is the exponentiated gradient update [Bubeck, 2015,

Section 6.3],

π′(a|s) =
π(a|s) exp (ηdπ(s)Qπ(s, a))∑
a∈A π(a|s) exp (ηdπ(s)Qπ(s, a))

.
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Summary of Part II

I Policy gradient methods with direct parameterization can be viewed an soft policy

iteration (especially frank-wolfe based algorithm).

I By well-designed stepsizes (line search or constant stepsize), policy gradient methods can

linearly converge to the global optimization solution.

People never use direct parameterization in practice!

I We cannot do any function approximation with direct parameterization.

I It is tiresome to implement the simplex projection.
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Motivation For Softmax Parameterization

I Given the state/observation s, we learn a feature extractor to obtain the hidden state h,

then we use h to predict control action a.

I Softmax parameterization: π(i|s) = exp(Wh)[i]/
∑
i exp(Wh)[i].

I Importantly, we do not need consider the constraint! The policy optimization becomes an

unconstrained optimization problem.

[Figure from [Schulman et al., 2015].]
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Softmax Policy Optimization

Problem Formulation

I For simplicity, we assume that θ ∈ R|S|×|A| so that there is no function approximation error.

I Furthermore, we mainly focus on 1-state MDP problems to illustrate challenges, concepts

and ideas. Under this case, θ ∈ R|A| and πθ(a) = exp(θ[a])/
∑
a exp(θ[a]).

Now, our problems becomes

max
θ∈R|A|

π>θ r :=
∑
a∈A

πθ(a)r(a).

I We assume that r(a) ∈ [0, 1],∀a ∈ A.

I Yes, this problem seems trivial just like you are asked to find a classifier that shatters two

points (1, class A) and (−1, class B). However, the idea can be extended to general MDP

problems; see the full paper [Mei et al., 2020].
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Softmax Policy Optimization I

max
θ∈R|A|

π>θ r :=
∑
a∈A

πθ(a)r(a). (6)

Q1: Is (6) differentiable?

I Yes. The gradient is

∇θπ>θ r =
(
diag(πθ)− πθπ>θ

)
r

Q2: Is (6) smooth?

I Yes. For any θ, θ′ ∈ R|A|, we have∥∥∇θπ>θ r −∇θπ>θ′r∥∥ ≤ 5

2
‖θ − θ′‖2 .

Q3: Is (6) concave?

I No! For some 1-state MDPs, (6) is nonconcave.
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Softmax Policy Optimization II

Q4: Why (6) nonconcave?

I (Sigmoid Example) Consider the case where r = (1.0, 0.2) and the parameterization (θ, 0),

i.e., the second parameter is fixed.

π>θ r = σ(θ) + 0.2(1− σ(θ)) = 0.2 + 0.8σ(θ),

where σ(θ) = exp(θ)/(1 + exp(θ)) is the sigmoid function.
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Softmax Policy Optimization III

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ob
je

ct
iv

e 
va

lu
e

[Objective function 0.2 + 0.8σ(θ), which is neither concave nor convex.]
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Softmax Policy Optimization IV

[Objective function for π>θ r with r = (1.0, 0.2) and θ = (θ1, θ2). In addition, there are 3 trajectories by
gradient ascent with stepsize η = 2/5, which corresponds to different initialization: (0, 5), (0, 0), (−5, 5).]
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Softmax Policy Optimization V

I Even though it is a nonconcave optimization problem, gradient ascent is supposed to work.

Why gradient ascent work?

I (Conjecture 1) Connection with soft policy iteration?

– No! Gradient ascent directly optimize θ rather πθ so that the iterate is not close to the one of

policy iteration.

I (Conjecture 2) Error bound (or gradient domination) regularity?

– Yes and no! It indeed satisfies certain  Lojasiewicz condition but the parameter vanishes!
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Softmax Policy Optimization VI

Lemma 1 Non-uniform  Lojasiewicz condition for 1-state MDP [Mei et al., 2020]

Consider the 1-state MDP and assume r(a) ∈ [0, 1],∀a ∈ A has one unique optimal

action. Let π∗ := argmaxπ∈∆ π>r. Then∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a∗) · (π∗ − πθ)>r︸ ︷︷ ︸
optimality gap

,

where a∗ := argmaxa∈[K] r(a) is the optimal action.

I Lemma 1: if we reach a stationary point θ with πθ(a
∗) > 0, then this stationary point is a

globally optimal solution.
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Softmax Policy Optimization VII

Lemma 2 Pseudo-convergence rate for 1-state MDP [Mei et al., 2020]

Consider the policy gradient with the softmax parameterization, in which the stepsize

η = 2/5 is employed. Then for all t > 0

(π∗ − πθt)>r ≤ 5/(t · c2t ),
where ct := min1≤`≤t πθ`(a

∗) > 0, also
T∑
t=1

(π∗ − πθt)>r ≤ min
{√

5T/cT , (5 log T )/c2T + 1
}
.

I (Observation 1) In the previous example, there are two stationary points but gradient

ascent always pickup the correction direction so that πθ(a
∗) ≥ πθ0(a∗) > 0, which explains

why gradient ascent works.
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Does Observation 1 Hold for General Cases?

I No! In the previous example, there are only two actions so that π(a) ↓=⇒ π(a∗) ↑.
I For general case, π(a) ↓ 6=⇒ π(a∗) ↑ due to sub-optimal actions and bad initialization.
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[Illustration for the bad initialization [Mei et al., 2020]. r = (1.0, 0.9, 0.1) with θ1 = (0.01, 0.05, 0.94).
For this bad initialization, the second near-optimal action dominates in the initial stage.]
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Convergence Result For Softmax Parameterization

Lemma 3 [Mei et al., 2020]: For 1-state MDP with the softmax parameterization, we have

inft≥1 πθt(a
∗) > 0.

Proposition 1 [Mei et al., 2020]: For any initialization, there exists t0 > 0 such that for any

t ≥ t0, t 7→ πθt(a
∗) is increasing. In particular, t0 = 1 when πθ1 is the uniform distribution.

Corollary 1 True convergence rate for 1-state MDP [Mei et al., 2020]

With softmax parameterization, for all t > 0,

(π∗ − πθt)
>
r ≤ C/t,

where 1/C = [inft≥1 πθt(a
∗)]2 > 0 is a constant that depends on r and θ1, but it does

not depend on the time t.
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Intuition Behind Lemma 3 and Proposition 1

Goal: we want to argue that after some t0, πθt(a
∗) is increasing, ∀t ≥ t0.

I (Step 1): We have to identify some “nice” region R1 = {θt} so that for any θt ∈ R: 1)

θt+1 ∈ R1; 2) πθt+1
(a∗) ≥ πθt(a∗).

– (Claim 1): “gradient domination” guarantees R1; i.e.,

R1 :=

{
θ :

dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)
, ∀a 6= a∗

}
.

I (Step 2) Show that R1 contains a subset Nc such that πθ(a
∗) > c′:

Nc :=

{
θ : πθ(a

∗) ≥ c

c+ 1

}
,

where c = g(|A|,∆) with ∆ = r(a∗)−maxa6=a∗ r(a) > 0.

I (Step 3) Show that there exists a finite time t0 so that θt0 ∈ Nc, which is based on the

asymptotic convergence result that πθt(a
∗)→ 1 when t→∞ in [Agarwal et al., 2020].
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Summary of Part III

I We focus on the 1-state MDP problem:

max
θ∈R|A|

π>θ r :=
∑
a∈A

πθ(a)r(a).

I Even though obj. is linear w.r.t. πθ, it is nonconcave w.r.t. θ.

I Luckily, it satisfies a non-uniform  Lojasiewicz condition.

I However, the bad initialization due to sub-optimal actions makes the progress slow.
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