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Background

I With exact policy gradient, [Agarwal et al., 2020, Bhandari and Russo, 2021] proved that

policy gradient methods can converge to global optimal solution.

I To perform the exact policy gradient
(

∂V (π)
∂πh(a|s) = Pπh (s)Qπh(s, a)

)
, we require the access to

the reward function and transition probability.

I In practice, we often do not have full knowledge of the MDP and need to collect dataset in

an online manner.

Whether policy optimization methods can converge to the optimal policy under the online

setting?
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Main Contributions

I In [Cai et al., 2020, Shani et al., 2020], the authors propose the first provably efficient

policy-based method under the online setting.

I They develop a novel regret decomposition (Lemma 3.2) upon which the algorithm and

regret analysis are built.

I From this regret decomposition, they construct upper confidence bound (UCB) in policy

evaluation and perform mirror ascent in policy improvement, which are two main ingredients

of the algorithm.
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Comparison of Different Algorithms

Algorithms Regret Algorithm Type Setting

POMD [Shani et al., 2020] Õ
(√

S2AH4K
)

Policy-based Tabular MDP

UCB-VI [Azar et al., 2017] Õ
(√

SAH3K
)

Value-based Tabular MDP

OPPO [Cai et al., 2020] Õ
(√

d2H4K
)

Policy-based Linear Mixture MDP

UCRL-VTR [Ayoub et al., 2020] Õ
(√

d2H4K
)

Value-based Linear Mixture MDP

Table: Comparison of regret bounds for different algorithms. Under the linear mixture MDP, the
transition probability is linear w.r.t the known feature and d is the feature dimension. Compared with
UCB-VI, the regret of POMD is sub-optimal. The regret of POMD and UCB-VI is dominated by the size
of bonus. POMD builds UCB for the policy in each iteration, rather than only the optimal policy like in
UCB-VI. Hence, POMD requires a larger bonus than that in UCB-VI (see page 29 for details).
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Markov Decision Process

Value function

Value of policy π: long-term discounted reward

∀s ∈ S : V π(s) := E
[ ∞∑

t=0
γtr(st, at)

∣∣ s0 = s

]

• γ ∈ [0, 1): discount factor
• (a0, s1, a1, s2, a2, · · · ): generated under policy π

12/ 74

Markov Decision Process

I Consider a finite episodic Markov Decision Process
(
S,A, H, {Ph}h∈[H] , {rh}h∈[H]

)
.

– S and A are the finite state and action space, respectively.

– rh(s, a) ∈ [0, 1] is reward received after taking the action a in state s at step h.

– Ph(s
′|s, a) specifies the transition probability of s′ conditioned on s and a at step h.

– H is the horizon length.

– The initial state s1 is fixed.
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Markov Decision Process

I A policy π is a collection of functions πh : S → ∆(A) for all h ∈ [H] and πh(a|s) gives the

probability of taking action a on state s at step h.

I For a policy π, its value function V π and Q-value function Qπ are defined as

V πh (s) , E

[
H∑

h′=h

rh′ (sh′ , ah′) | sh = s, π

]

Qπh(s, a) , E

[
H∑

h′=h

rh′ (sh′ , ah′) | sh = s, ah = a, π

]
I The value of policy π: V (π) = V π1 (s1).

I For an algorithm, we use the regret defined as
∑K
k=1 V (π∗)− V (πk) to measure its

performance, where πk is the policy obtained by the algorithm in the iteration (or episode)

k.
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Bellman Equation

I For a policy π, its value function V π and Q-value function Qπ hold the following Bellman

Equations [Puterman, 2014]:

V πh (s) = Ea∼πh(·|s) [Qπh(s, a)] = 〈πh(·|s), Qπh(·|s)〉

Qπh(s, a) = rh(s, a) + Es′∼Ph(·|s,a)

[
V πh+1(s′)

]
= rh(s, a) + PhV

π
h+1(s, a).

I Given the transition probability and reward of the MDP, for any policy π, we can calculate

its value function and Q-value function via dynamic programming.
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Policy Evaluation

I Policy-based methods alternate between policy evaluation and policy improvement.

I In policy evaluation, for a policy π, we aim to calculate its value function V π and especially

Q-value function Qπ.

I Policy evaluation is a key step in policy-based methods, e.g., policy iteration and policy

gradient method.
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Policy Evaluation via Dynamic Programming

Algorithm 1 Policy Evaluation (PE)

1: Input: Policy π, reward function r, transition probability P , VH+1(s) = 0,∀s ∈ S.
2: for h = H,H − 1, · · · , 1 do
3: for (s, a) ∈ S ×A do
4: Qh(s, a) = rh(s, a) + PhVh+1(s, a)
5: end for
6: for s ∈ S do
7: Vh(s) = 〈πh(·|s), Qh(s, ·)〉
8: end for
9: end for

10: Output: The Q-value function of π: Q.
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Mirror Ascent Policy Optimization

I Given the policy πold, we consider the linear approximation of V (π):

V (π) ≈ V
(
πold

)
+ 〈π − πold,∇V

(
πold

)
〉,

where ∇V
(
πold

)
, π ∈ R|S||A|H .

I Recall that ∂V (π)
∂πh(a|s) = Pπh (s)Qπh(s, a) and Pπh (s) = Pr (sh = s|π), we have

V (π) ≈ V
(
πold

)
+

H∑
h=1

E
s∼Pπold

h (·)

[〈
πh(·|s)− πold

h (·|s), Qπ
old

h (s, ·)
〉]
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Mirror Ascent Policy Optimization

I To guarantee that π is close to πold, mirror ascent policy optimization (MAPO) finds a

policy which maximizes the linear approximation (Q-value function) with a regularizer:

πnew
h (·|s) = argmax

π∈∆(A)

〈
π(·|s), Qπ

old

h (s, ·)
〉
− 1

η
DKL

(
π(·|s), πold

h (·|s)
)
, ∀(s, h) ∈ S × [H],

where η is the stepsize.

I The closed form solution of the above problem is

πnew
h (a | s) =

πold
h (a | s) exp

(
ηQπ

old

h (s, a)
)

∑
a′ π

old
h (a′ | s) exp

(
ηQπ

old

h (s, a′)
) , ∀(s, a, h) ∈ S ×A× [H].
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Mirror Ascent Policy Optimization

I Due to the constraint to the old policy, MAPO is “conservatively” greedy w.r.t the

Q-value function, which can be regarded as “soft” policy iteration.

I When the stepsize η →∞, we exactly recover policy iteration algorithm.
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Mirror Ascent Policy Optimization

Algorithm 2 Mirror Ascent Policy Optimization

1: Input: Uniformly initialized policy π1, reward function r, transition probability P , stepsize η
2: for k = 1, 2, · · · ,K do

3: Evaluate policy πk via dp: Qπ
k

= PE
(
πk, r, P

)
4: Perform mirror ascent update:
5: for (s, a, h) ∈ S ×A× [H] do

6: πk+1
h (a | s) =

πkh(a|s) exp(ηQπkh (s,a))∑
a′ π

k
h(a′|s) exp(ηQπkh (s,a′))

7: end for
8: end for
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Regret of Mirror Ascent Policy Optimization

Theorem 2.1: Regret of MAPO

Consider the mirror ascent policy optimization with stepsize η =
√

2 ln(|A|)
H2K , we have

K∑
k=1

V ∗1 (s1)− V π
k

1 (s1) ≤
√

2 log(|A|)H4K.
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Mirror Ascent Policy Optimization V.S. Policy Iteration

I Under the stochastic MDP setting, policy iteration (PI) achieves the optimal policy when

K ≥ H and thus, its regret is upper bounded by H2, which is smaller than MAPO.

I Under the adversarial MDP setting where the reward function changes across different

iterations k, the regret of MAPO is also O
(√

log(|A|)H4K
)

[Cai et al., 2020] due to the

robustness of mirror ascent. However, PI dose not work under the adversarial setting.

I This property is useful in the stochastic MDP and online setting where we can only use the

estimated Q-value function, rather than the true Q-value function, to perform mirror ascent

update.
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Analysis: Policy Difference Lemma

Lemma 2.1: Policy Difference Lemma

For any policy π and π′, we have

V π1 (s1)− V π
′

1 (s1) = E

 H∑
h=1

〈
πh(·|sh)− π′h(·|sh), Qπ

′

h (sh, ·)
〉

︸ ︷︷ ︸
Term (I)

∣∣∣∣π
 .

I Although V π1 (s1) is not concave w.r.t π, Term (I) is linear w.r.t πh(·|sh) and π′h(·|sh) when

we regard Qπ
′
(sh, ·) as an arbitrary vector.
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Analysis: Policy Difference Lemma

When π = π∗ and π′ = πk, policy difference lemma tells us
K∑
k=1

V π
∗

1 (s1)− V π
k

1 (s1) =

K∑
k=1

E

[
H∑
h=1

〈
π∗h(·|sh)− πkh(·|sh), Qπ

k

h (sh, ·)
〉 ∣∣∣∣π∗

]
.

I This motivates to view it as an online linear maximization problem. In each iteration k, the

MA learner plays πk and observes a linear objective 〈π(·|s), Qπkh (s, ·)〉 ∀(s, h) ∈ S × [H]

and updates its decision via

πk+1
h (·|s) = argmax

π∈∆(A)

〈
π(·|s), Qπ

k

h (s, ·)
〉
− 1

η
DKL

(
π(·|s), πkh(·|s)

)
, ∀(s, h) ∈ S × [H].

I With this connection, we can leverage the known regret of mirror ascent on online linear

maximization problem. This also explains why MAPO can handle with the adversarial MDP

setting.
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Analysis: Regret of MA on Online Linear Optimization

Algorithm 3 Mirror Ascent in Online Linear Maximization

1: Input: Uniformly initialized decision x1 =
[

1
d , · · · ,

1
d

]
, stepsize η

2: for k = 1, 2, · · · ,K do
3: Take decision xk and observe objective function lk(x) =

〈
gk, x

〉
4: Perform mirror ascent update: xk+1 = argmaxx∈∆(d)

〈
gk, x

〉
− 1

ηDKL (x, xk)
5: end for

Theorem 2.2: [Shalev-Shwartz, 2012]

Consider Algorithm 3, for any u ∈ ∆(d),
K∑
k=1

〈
gk, u− xk

〉
≤ log(d)

η
+
η

2

K∑
k=1

d∑
i=1

xki g
k
i

2
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Analysis: Regret of MAPO

I Translate the above regret into the MDP problem: ∀(s, h) ∈ S × [H],
K∑
k=1

〈
Qπ

k

h (· | s), π∗h(· | s)− πkh(· | s)
〉
≤ log(|A|)

η
+
η

2

K∑
k=1

∑
a∈A

πkh(a | s)
(
Qπ

k

h (s, a)
)2

≤ ln(|A|)
η

+
ηH2K

2
=
√

2 ln(|A|)H2K,

where the last step follows that η =
√

2 ln(|A|)
H2K .

I
∑K
k=1 V

∗
1 (s1)− V πk1 (s1) =

∑K
k=1 E

[∑H
h=1

〈
π∗h(·|sh)− πkh(·|sh), Qπ

k

h (sh, ·)
〉 ∣∣∣∣π] ≤√

2 ln(|A|)H4K.
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Conclusion for Solving MDP

We consider the setting where the transition probability and reward are known.

I Policy-based methods follow the framework of policy evaluation and policy

improvement.

I Based on this framework, we introduce mirror ascent policy optimization (MAPO) for

solving MDP.

I We prove the regret bound of MAPO from the connection to online linear optimization.
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From Known MDP Setting to Online Learning Setting

I Under the known MDP setting, for a policy, we can obtain the exact Q-value function with

the knowledge of transition probability and reward function.

I In practice, we often operate with the online learning setting: the agent collects samples to

estimate its Q-value function.

I There exists a trade-off between exploration and exploitation, i.e., the agent should explore

poorly-understood states and actions to gain information and improve future performance,

or exploit well-understood states and actions to optimize short-run rewards.
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Exploration V.S. Exploitation: Optimism in the Face of Uncertainty

I When we lack knowledge (uncertainty) in which action is optimal, we will construct an

optimistic estimate (upper bound of the true value) and pick the action with the highest

optimistic estimate.

– If the choice is wrong, the optimistic estimate decreases and the certainty increases.

– If the choice is right, the agent gets high reward and the certainty increases.
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Exploration V.S. Exploitation: Optimism in the Face of Uncertainty

What is the knowledge of MDP?

I Reward function and transition probability.

How to estimate them from the collected data?

I Maximum likelihood estimator (i.e., counting): ∀(s, a, h) ∈ S ×A× [H],

r̂h(s, a) =

(
k∑
i=1

rih(sih, a
i
h)I
(
sih = s, aih = a

))
/Nk

h (s, a)

P̂h(s′|s, a) =

(
k∑
i=1

I
(
sih = s, aih = a, sih+1 = s′

))
/Nk

h (s, a)

where Nk
h (s, a) =

∑k
i=1 I

(
sih = s, aih = a

)
and (sih, a

i
h, r

i
h(sih, a

i
h), sih+1) is the pair

observed at episode i and timestep h.
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Exploration V.S. Exploitation: Optimism in the Face of Uncertainty

How to measure the uncertainty?

I Thanks to the concentration inequality [Weissman et al., 2003, Wainwright, 2019],

|r̂h(s, a)− rh(s, a)| - Õ
(√

1
Nkh (s,a)

)
and

∥∥∥Ph(·|s, a)− P̂h(·|s, a)
∥∥∥

1
- Õ

(√
|S|

Nkh (s,a)

)
.

How to construct the optimistic estimate based on the uncertainty measure?

I Under the MDP problem, the Q-value function influences which action to take.

I Add reward bonus when calculating the Q-value function,

Q = PE

(
π, r̂ + Õ

(√
1

Nkh (s,a)

)
+ Õ

(
H
√

|S|
Nkh (s,a)

)
, P̂

)
.

I The reward bonus in SOTA value-based method (i.e., UCB-VI) is designed as

Õ
(
H
√

1
Nkh (s,a)

)
, which is much smaller.
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Exploration V.S. Exploitation: Optimism in the Face of Uncertainty

Algorithm 4 Optimistic Policy Evaluation

1: Input: Policy π, reward function r̂, transition probability P̂ , VH+1(s) = 0,∀s ∈ S.
2: for h = H,H − 1, · · · , 1 do
3: for (s, a) ∈ S ×A do

4: Qh(s, a) = r̂h(s, a) + Õ
(√

1
Nkh (s,a)

)
+ Õ

(
H
√

|S|
Nkh (s,a)

)
+ P̂hVh+1(s, a)

5: end for
6: for s ∈ S do
7: Vh(s) = 〈πh(·|s), Qh(s, ·)〉
8: end for
9: end for

10: Output: The Optimistic value function V and Q-value function Q.
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Upper Confidence Bound

Lemma 3.1: Upper Confidence Bound

For any policy π, let V and Q be the output of optimistic policy evaluation, for any

δ ∈ (0, 1), with probability at least 1− δ, we have

Vh(s) ≥ V πh (s), Qh(s, a) ≥ Qπh(s, a), ∀(s, a, h) ∈ S ×A× [H].
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Optimistic Mirror Ascent Policy Optimization

Algorithm 5 Optimistic Mirror Ascent Policy Optimization

1: Input: Uniformly initialized policy π1, stepsize η
2: for k = 1, 2, · · · ,K do
3: Collect a trajectory via taking πk

4: Update the estimate of reward function and transition probability: r̂k, P̂ k

5: Obtain the optimistic Q-value function of πk: Qk ← PE
(
πk, r̂k + bonus, P̂ k

)
6: Perform mirror ascent update:
7: for (s, a, h) ∈ S ×A× [H] do

8: πk+1
h (a | s) =

πkh(a|s) exp(ηQkh(s,a))∑
a′ π

k
h(a′|s) exp(ηQkh(s,a′))

9: end for
10: end for
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Optimistic Mirror Ascent Policy Optimization

Theorem 3.1: Regret of OMAPO

For any δ ∈ (0, 1), consider the optimistic mirror ascent policy optimization algorithm

with η =
√

2 log(|A|)
H2K , w.p. 1− δ, we have that

K∑
k=1

V ∗1 (s1)− V π
k

1 (s1) ≤ Õ
(√
|S|2|A|H4K

)
.

I Compared with the regret of Õ
(√

H4K
)

under the known MDP setting, the regret under

the online setting suffers an additional dependency on |S| and |A|.
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Analysis: the Regret of OMAPO

Lemma 3.2: Regret Decomposition

K∑
k=1

V π
∗

1 − V π
k

1 =

K∑
k=1

V π
∗

1 − V k1 + V k1 − V π
k

1

= E

[
K∑
k=1

H∑
h=1

〈
π∗h(·|sh)− πkh(·|sh), Qkh(sh, ·)

〉 ∣∣∣∣π∗, P
]

(I)

+ E

[
K∑
k=1

H∑
h=1

rh(sh, ah)− r̂kh(sh, ah) +
(
Ph − P̂ kh

)
V kh+1(sh, ah)− bonus

∣∣∣∣π∗, P
]

(II)

+

K∑
k=1

V k1 − V π
k

1 (III)
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Analysis: the Regret of OMAPO

Term (I): = E
[∑K

k=1

∑H
h=1

〈
π∗h(·|sh)− πkh(·|sh), Qkh(sh, ·)

〉 ∣∣∣∣π∗, P]
I Note that πk+1 is obtained via mirror ascent w.r.t Qk, i.e., πk+1

h (a|s) ∝ exp
(
ηQkh(s, a)

)
.

I We can again leverage the regret of mirror ascent on online linear optimization:

Term (I) ≤
√

2 log (|A|)H4K.

I This upper bound is the same as the regret of MAPO under the known MDP setting.
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Analysis: the Regret of OMAPO

Term (II): E
[∑K

k=1

∑H
h=1 rh(sh, ah)− r̂kh(sh, ah) +

(
Ph − P̂ kh

)
V kh+1(sh, ah)− bonus

∣∣∣∣π∗, P]
I For all (s, a, h) ∈ S ×A× [H], with high probability, we have

rh(s, a)− r̂kh(s, a)− Õ

(√
1

Nk
h (s, a)

)
+
(
Ph − P̂ kh

)
V kh+1(s, a)− Õ

(
H

√
|S|

Nk
h (s, a)

)
≤ 0.

I Due to the optimism, we get that Term (II) ≤ 0.
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Analysis: the Regret of OMAPO

Term (III):
∑K
k=1 V

k
1 − V π

k

1

I Recall that V k1 = PE(πk, r̂k + bonus, P̂ k) and V π
k

1 = PE
(
πk, r, P

)
.

I With |r − r̂k|+
∣∣∣(P̂ k − P)V k∣∣∣ ≤ bonus,

∑K
k=1 V

k
1 − V π

k

1 can be upper bounded by the

bonus function.

Term (III) ≤
K∑
k=1

E

[
H∑
h=1

r̂kh(sh, ah) + bonus− rkh(sh, ah) +
(
P̂ kh − P kh

)
V kh (sh, ah)

∣∣∣∣πk, P
]

≤ 2

K∑
k=1

E

[
H∑
h=1

Õ

(√
1

Nk
h (sh, ah)

)
+ Õ

(
H

√
|S|

Nk
h (sh, ah)

)∣∣∣∣πk, P
]

I As k increases, Nk
h (s, a) increases and the size of reward bonus gets smaller.
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Analysis: the Regret of OMAPO

Lemma 3.3

For any δ ∈ (0, 1), w.p. ≥ 1− δ, Term (III) =
∑K
k=1 V

k
1 − V π

k

1 ≤ Õ
(√
|S|2|A|H4K

)

I The total regret of OMAPO is dominated by Term (III).

I The order on |S| is O
(√
|S|2

)
, which comes from the size of bonus function and the size

of MDP.

I The order on H is of O
(√

H4
)

, which comes from the size of bonus function, the size of

MDP and the total timesteps.
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Conclusions

I We first introduce mirror ascent policy optimization (MAPO) for solving MDP. We

prove its regret bound from the connection to online linear optimization.

I Under the online setting, to balance between exploration and exploitation, we incorporate

the principle of optimism in the face of uncertainty into MAPO and show its regret bound.

I Compared with some SOTA value-based methods (e.g., UCB-VI [Azar et al., 2017]), the

regret of Optimistic MAPO is still sub-optimal. How to design a more efficient policy-based

method is an interesting future direction.
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Policy Difference Lemma

Lemma 5.1: Policy Difference Lemma

For any policy π and π′, we have

V π1 (s1)− V π
′

1 (s1) = E

[
H∑
h=1

〈
πh(·|sh)− π′h(·|sh), Qπ

′

h (sh, ·)
〉 ∣∣∣∣π

]
.
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Proof of Policy Difference Lemma

I This proof is based on a simple recursion.

V π1 (s1)− V π
′

1 (s1)

= 〈π1(·|s1), Qπ1 (s1, ·)〉 −
〈
π′1(·|s1), Qπ

′

1 (s1, ·)
〉

=
〈
π1(·|s1), Qπ1 (s1, ·)−Qπ

′

1 (s1, ·)
〉

+
〈
π1(·|s1)− π′1(·|s1), Qπ

′

1 (s1, ·)
〉

=
〈
π1(·|s1)− π′1(·|s1), Qπ

′

1 (s1, ·)
〉

+ E
[
Qπ1 (s1, a1)−Qπ

′

1 (s1, a1)

∣∣∣∣a1 ∼ π1(·|s1)

]
.

I For Qπ1 (s1, a1)−Qπ′1 (s1, a1), we have

Qπ1 (s1, a1)−Qπ
′

1 (s1, a1) = r1(s1, a1) + P1V
π
2 (s1, a1)− r1(s1, a1)− P1V

π′

2 (s1, a1)

= P1

(
V π2 − V π

′

2

)
(s1, a1) = E

[
V π2 (s2)− V π

′

2 (s2)

∣∣∣∣s2 ∼ P1(·|s1, a1)

]
.
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Proof of Policy Difference Lemma

V π1 (s1)− V π
′

1 (s1)

=
〈
π1(·|s1)− π′1(·|s1), Qπ

′

1 (s1, ·)
〉

+ E
[
V π2 (s2)− V π

′

2 (s2)

∣∣∣∣a1 ∼ π1(·|s1), s2 ∼ P1(·|s1, a1)

]
.

I Expanding this equation for H steps with V πH+1(s)− V π′H+1(s) = 0, ∀s ∈ S yields the

desired result.
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Regret Decomposition

Lemma 5.2: Regret Decomposition

K∑
k=1

V π
∗

1 − V π
k

1 =

K∑
k=1

V π
∗

1 − V k1 + V k1 − V π
k

1

= E

[
K∑
k=1

H∑
h=1

〈
π∗h(·|sh)− πkh(·|sh), Qkh(sh, ·)

〉 ∣∣∣∣π∗, P
]

+ E

[
K∑
k=1

H∑
h=1

rh(sh, ah)− r̂kh(sh, ah) +
(
Ph − P̂ kh

)
V kh+1(sh, ah)− bonus

∣∣∣∣π∗, P
]

+

K∑
k=1

V k1 − V π
k

1
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Proof of the Regret Decomposition

I We first consider the term V π
∗

1 − V k1 . For any h ∈ [H], we have

V π
∗

h (sh)− V kh (sh)

=
〈
Qπ
∗

h (sh, ·), π∗h(·|sh)
〉
−
〈
Qkh(sh, ·), πkh(·|sh)

〉
=
〈
Qπ
∗

h (sh, ·)−Qkh(sh, ·), π∗h(·|sh)
〉

+
〈
Qkh(sh, ·),

(
π∗h − πkh

)
(·|sh)

〉
=
〈
Qkh(sh, ·),

(
π∗h − πkh

)
(·|sh)

〉
+ E

[
Qπ
∗

h (sh, ah)−Qkh(sh, ah)

∣∣∣∣ah ∼ π∗h(·|sh)

]
.
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Proof of the Regret Decomposition

I For ah ∼ π∗h(·|sh),

Qπ
∗

h (sh, ah)−Qkh(sh, ah)

= rh(sh, ah) + PhV
π∗

h (sh, ah)−Qkh(sh, ah)

= rh(sh, ah) + PhV
k
h+1(sh, ah)−Qkh(sh, ah) + Ph

(
V π
∗

h+1 − V kh+1

)
(sh, ah)

= rh(sh, ah) + PhV
k
h+1(sh, ah)− r̂kh(sh, ah)− P̂ khV kh+1(sh, ah)− bonus

+ E
[
V π
∗

h+1(sh+1)− V kh+1(sh+1)

∣∣∣∣sh+1 ∼ Ph(·|sh, ah)

]
.
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Proof of the Regret Decomposition

I Combining the above two equations yields

V π
∗

h (sh)− V kh (sh)

=
〈
Qkh(sh, ·),

(
π∗h − πkh

)
(·|sh)

〉
+ E

[
rh(sh, ah) + PhV

k
h+1(sh, ah)− r̂kh(sh, ah)− P̂ khV kh+1(sh, ah)− bonus

∣∣∣∣ah ∼ π∗h(·|sh)

]
+ E

[
V π
∗

h+1(sh+1)− V kh+1(sh+1)

∣∣∣∣ah ∼ πh(·|sh), sh+1 ∼ Ph(·|sh, ah)

]
.

I Expanding this equation for H − h times finishes the proof.
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