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Introduction

Multi-Arm bandits has been researched for a long time. Typically, people
use Regret as performance measure. However, here are still many cases
that are not sensitive to regret. For example

1 A/B tests

2 Simulation Optimization (tuning)

3 Design of Clinical Trials

In these cases, we want to identify the best arm within shorter trails.
Maybe the best algorithms for regret is not the best for identification.
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Problem Formulation

We consider the problem in frequentist setting, but the algorithm that we
consider is Bayesian algorithm.
Suppose here is k arm with mean (θ∗1, · · · , θ∗k). At each time n ∈ N, one
choose design In ∈ {1, 2, · · · , k} and observe Yn,In as response.

Yn
∆
= (Yn,1, · · · ,Yn,k) is independently across time. We focus on one

dimensional exponential response, i.e.

p(y |θ) = b(y) exp(θT (y)− A(θ)). (1)

For convenience, T (·) is strictly increasing ⇒ E [Y |θ] is increasing of θ.
Let I ∗ = arg maxi θ

∗
i and suppose θi 6= θj ∀ i 6= j .
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Problem Formulation

Let Π1 be the prior distribution on parameter region Θ (θ∗ ∈ Θ). Based
on observation sequence (I1,Y1,I1 , · · · , In−1,Yn−1,In−1), we have posterior
measure Pin with density

πn(θ) =
π(θ)Ln−1(θ)∫

Θ π(θ)Ln−1(θ)dθ
, n ≥ 2, (2)

where

Ln−1(θ) =
n−1∏
l=1

p(Yl ,Il |θIl )

is the likelihood.
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Some Notations

To describe the algorithm and related results, we need following additional
notations.

1 Advantage region Θi
∆
=

{
θ ∈ Θ

∣∣∣∣∣θi > maxj 6=i θj

}
.

2 Posterior Probability of i-th arm αn,i
∆
= Πn(Θi ) =

∫
Θi
πn(θ)dθ.

3 Assigned Probability ψn,i
∆
= P(In = i |Fn−1)

4 Accumulated Effort Ψn,i
∆
=
∑n

l=1 ψn,i

5 Average Effort ψ̄n,i = n−1Ψn,i
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Top-Two Probability Sampling

At each cycle, we do the following things:

1 Calculate αi , let Î ∗ = arg maxi αi and Ĵ∗ = arg maxj 6=Î∗ αj

2 Toss a coin B bin(p), p is a hyper-parameter

3 If B = 1 use Î ∗ otherwise use Ĵ∗

4 Update posterior distribution
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Top-Two Value Sampling

Define utility function u : θ � R as continuous and strictly increasing
function. Then we can define value function
vi (~θ = maxj u(j)−maxj 6=i u(j)). Then define Vn,i = EΠn [vi ].

1 Calculate Vi , let Î ∗ = arg maxi Vi and Ĵ∗ = arg maxj 6=Î∗ Vj

2 Toss a coin B bin(p), p is a hyper-parameter

3 If B = 1 use Î ∗ otherwise use Ĵ∗

4 Update posterior distribution
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Top-Two Thompson Sampling

Likewise, we add additional sampling to TS, we get

1 Calculate αi and sample Î according to αi

2 Toss a coin B bin(p)

3 If B = 1 use Î else sample Ĵ until Ĵ 6= Î

4 Update posterior distribution
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Numerical Illustration

Set θ∗ = (.1, .2, .3, .4, .5) and Yn,i follows a binary distribution. We set
hyper parameter p = 0.5 and observe how many times we need when
confidence interval of optimal arm superseding a threshold, i.e.
maxi αn,i > c .
We compare Top-Two methods with TS methods and uniformly testing
methods.
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Comparing with TS
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Allocations

Guiyu Hong (CUHK(SZ)) Bayesian Best-Arm Identification August 5, 2021 12 / 20



Main Theorems

We focus on convergence rate of Πn(Θc
I∗) =

∑
i 6=I∗ αn,i , i.e. the

convergence rate of false probability.
We assume that Θ = (θ, θ̄)k , i.e. a bounded rectangle and
0 < infθ∈Θ π1(θ) < supθ∈Θ π1(θ) <∞ (regular prior). Moreover, we
assume supθ |A′(θ)| <∞.
Then, let we define following rates:

Γ∗ = max
ψ

min
θ∈Θc

I∗

k∑
i=1

ψid(θ∗i ‖θi ), (3)

and

Γ∗β = max
ψ:ψI∗=β

min
θ∈Θc

I∗

k∑
i=1

ψid(θ∗i ‖θi ). (4)
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Main Theorem

Theorem

There exist constants {Γ∗β > 0 : β ∈ (0, 1)} such that Γ∗ = maxβ Γ∗β exists,
β∗ = arg maxβ Γ∗β is unique and the following properties satisfies with
probability 1:

1 Under Top-Two algorithms with parameter β∗,

lim
n→∞

−1

n
log Πn(Θc

I∗).

Under any adaptive allocation rule,

lim sup
n→∞

−1

n
log Πn(Θc

I∗) ≤ Γ∗.
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Main Theorem

Theorem
1 Under Top Two algorithms, with parameter β ∈ (0, 1),

lim
n→∞

−1

n
log Πn(Θc

I∗) = Γc
β and lim

n→∞
ψ̄n,I∗ = β.

Under any adaptive allocation rule,

lim sup
n→∞

−1

n
log Πn(Θc

I∗) ≤ Γ∗β,

on any sample path with limn→∞ ψ̄n,I∗ = β.

2 Γ∗ ≤ 2Γ∗1
2

.

These theorems show that Π(Θc
I∗) = O(e−nΓ∗β ).
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Intuition and Analysis on Main Theorem

Let we denote an
·

= bn if 1
n log( anbn )→ 0. For example,

an + bn
·

= max(an, bn) and can
·

= an, etc.

Then main theorem mainly shows that Πn(Θc
I∗)

·
= e−nΓ∗β and cannot be

faster than e−nΓ∗ .
Now we show the intuition behind this theorem by KL-divergence. Define
d(θ‖θ′) =

∫
log( p(y |θ)

p(y |θ′) )p(y |θ)dv(y), and

DΨ(θ, θ′) =
k∑

i=1

Ψid(θi , θ
′
i ),

which measures the average information gain using sampler Ψ.

Guiyu Hong (CUHK(SZ)) Bayesian Best-Arm Identification August 5, 2021 16 / 20



Intuition of Main Theorem

We have following Proposition

Theorem

For any open set Θ̃ ∈ Θ,

Πn(Θ̃)
·

= exp

{
−n inf

θ∈Θ̃
Dψ̄n

(θ∗‖θ)

}
.

Intuition:

log(
πn(θ)

πn(θ∗)
) = log(

π1(θ)

π1(θ∗)
) +

n−1∑
l=1

log(
p(Yl ,i |θ)

p(Yl ,i |θ∗)
),

which is a random walk with drift E
[
log(

p(Yl,i |θ)
p(Yl,i |θ∗) )

]
if the policy ψn,i

converges to some ψ, then the drift is close to −Dψ(θ∗‖θ).

Guiyu Hong (CUHK(SZ)) Bayesian Best-Arm Identification August 5, 2021 17 / 20



About the fastest rate

Since we know Πn(Θc
I∗)

·
= exp

{
−n infθ∈Θc

I∗
Dψ̄n

(θ∗‖θ)
}

, to find the

fastest rate, we need to find

max
ψ

min
θ∈Θc

I∗
Dψ(θ∗‖θ),

which is just Γ∗.
Similarly, Γ∗β is also defined in this way intuitively.
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The End
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