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Introduction

I RL algorithms with tabular representations
⇒ Data and learning time grow with the number of
state-action pairs.

I How to address this problem?
⇒ State aggregation.

1. partition the set of all state-action pairs, each cell
representing an aggregate state.
2. learn the value function for each cell.
3. Õ

(√
H5MK + εHK

)
worst-case regret bound without

assumptions on the structure of the environment.



Problem Formulation and Notations

I finite state space S and action space A with cardinality S and
A, respectively

I K episodes, each consists of H stages and produces a
sequence

s1, a1, . . . , sH , aH

I deterministic reward Rh(s, a) ∈ [0, 1], system dynamics
Ps,a
h (s ′)

I 0 ≤ V π
h ≤ V ∗h ≤ H

I Regret(K ) =
∑K

k=1 V
∗
1 (s1)− V πk

1 (s1)



Problem Formulation and Notations

I the set of aggregate states Φ = [M]

I φh : S ×A 7→ Φ

.

Definition (ε-error aggregation)
{φh}Hh=1 is an ε-error aggregated state representation (or ε -error
aggregation) of an MDP, if for all s, s ′ ∈ S, a, a′ ∈ A and h ∈ [H] such
that φh(s, a) = φh (s ′, a′),

|Q∗h (s, a)− Q∗h (s ′, a′)| ≤ ε



Q-learning with Upper Confidence Bounds

1. The use of UCB exploration in the model-free setting allows for
better treatment of uncertainties for different states and actions.

UCB exploration: O(
√
H4SAT ι), ι = log(SAT/δ)

2. Using learning rateαt = H+1
H+t , instead of 1/t to obtain regret that is

not exponential in H.



Aggregated Q-learning with Upper Confidence Bounds



Aggregated Q-learning with Upper Confidence Bounds

I only has to maintain the values of
{
Q̂h

}
h∈[H]

and {Nh}h∈[H]

I if the computation of φh(s, a) takes O(1) time
time complexity of AQ-UCB is O(HMK + HAK )
space complexity is O(HM).



Theorem
Suppose {φh}h∈[H] is an ε-error aggregation of the underlying MDP. We have
that, for any δ > 0, if we run K episodes of algorithm AQ-UCB with

βi = 2H
3
2

√
log

HK

δ
+ ε ·

√
i , i = 1, 2 . . .

then with probability at least 1− δ,

Regret(K) ≤24

√
H5MK log

3HK

δ

+ 12

√
2H3K log

3

δ

+ 3H2M + 6ε · HK

I ε = 0, Õ
(√

H5MK
)

= Õ
(√

H4SAT
)
, if M = SA, T = HK

I ε > 0, per period performance loss of the policy that AQ-UCB ultimately
outputs is O(ε), which matches the per period loss lower bound Ω(ε)
established in Van Roy(2006) (Performance loss bounds for approximate
value iteration with state aggregation).



Proof Outline: Notations

I let {φh}h∈[H] be an ε-error aggregation (ε ≥ 0).

I Q̂k
h (m) : the value function estimate Q̂h of aggregate state m,

at the end of episode k , with Q̂0
h(m) = H.

I Q̃k
h (m) : the uncapped value function estimate Q̃h of

aggregate state m, at the end of episode k.

Q̂k
h (m) = min

{
Q̃k

h (m),H
}

I Nk
h (m) : the number of visits to aggregate state m at stage h

in the first k trajectories (indexed from 0 to k − 1 ).

I τ jh(m) : the episode index of the j -th visit to aggregate state
m, at stage h.



Proof Outline: Notations

Simplified notations Q̂k
h (s, a), Q̃k

h (s, a),Nk
h (s, a) and τ jh(s, a) that

represent Q̂k
h (φh(s, a)) Q̃k

h (φh(s, a)) ,Nk
h (φh(s, a)) and τ jh (φh(s, a)),

respectively.
Recall that

βi = 2H
3
2

√
log

HK

δ
+ ε ·

√
i , i = 1, 2 . . .

αt =
H + 1

H + t
, t = 1, 2, . . . ,

Adopt the notations

α0
t =

t∏
j=1

(1− αj) , α
i
t = αi

t∏
j=i+1

(1− αj)

Since α1 = 1, α0
t = 0 and

∑t
i=0 α

i
t = 1 when t > 0.



Proof Outline: On policy error analysis

I The uncapped value functions estimates

Q̃k
h (m) = α0

Nk
h

(m)Q̂
0
h(m) +

Nk
h (m)∑
j=1

αj

Nk
h

(m)

[
r
τ ′h(m)

h + V̂
τh′(m)
h+1

(
s
τ
j
h

(m)

h+1

)
+
βj√
j

]
I On-Policy error:

V̂ k
h

(
skh

)
− V ∗h

(
skh

)
≤ Q̂k

h

(
skh , a

k
h

)
− Q∗h

(
skh , a

k
h

)
≤ Q̃k

h

(
skh , a

k
h

)
− Q∗h

(
skh , a

k
h

)
≤ α0

Nk
h (skh ,a

k
h) ·
(
H − Q∗h

(
skh , a

k
h

))
+

Nk
h (skh ,a

k
h)∑

j=1

αNk
h (skh ,a

k
h)

[
r
τ
j
h(s

k
h ,a

k
h)

h + V̂
τ
j
h(s

k
h ,a

k
h)

h+1

(
s
τ
j
h(s

k
h ,a

k
h)

h+1

)

+
β√
j
− Q∗h

(
skh , a

k
h

)]



Proof Outline: On policy error analysis

=α0
Nk
h (skh ,a

k
h)
·
(
H − Q∗h

(
skh , a

k
h

))

+

kkh

(
skh ,a

k
h

)∑
j=1

αj

Nk
h (skh ,a

k
h)

[
r
τ
j
h

(
skh ,a

k
h

)
h + V̂

τ
j
h

(
skh ,a

k
h

)
h+1

(
s
τ
j
h

(
skh ,a

k
h

)
h+1

)
+

β
√
j

−Q∗h

(
s
τ
j
h

(
skh ,a

k
h

)
h , a

τ
j
h

(
skh ,a

k
h

)
h

)]

+

kkh

(
skh ,a

k
h

)∑
j=1

αj

Nk
h (skh ,a

k
h)

[
Q∗h

(
s
τ
j
h

(
skh ,a

k
h

)
h , a

τ
j
h

(
skh ,a

k
h

)
h

)
− Q∗h

(
skh , a

k
h

)]
︸ ︷︷ ︸

≤ε



Proof Outline: On policy error analysis

V̂ k
h

(
skh

)
− V∗h

(
skh

)
=α0

Nk
h

(
sk
h
,ak
h

) · (H − Q∗h

(
skh , a

k
h

))

+

Nk
h

(
skh ,a

k
h

)∑
j=1

α
j

Nk
h

(
sk
h
,ak
h

)
[
V̂
τ
j
h

(
skh ,a

k
h

)
h+1

(
s
τ
j
h

(
skh ,a

k
h

)
h+1

)
− V∗h+1

(
s
τ
j
h

(
skh ,a

k
h

)
h+1

)]
︸ ︷︷ ︸

q1

+

Nk
h

(
skh ,a

k
h

)∑
j=1

α
j

Nk
h

(
sk
h
,ak
h

)
[
V∗h+1

(
s
τ
j
h

(
skh ,a

k
h

)
h+1

)
− PhV

∗
h+1

(
s
τ
j
h

(
skh ,a

k
h

)
h

, a
τ
j
h

(
skh ,a

k
h

)
h

)]
︸ ︷︷ ︸

q2

+ ε +

Nk
h

(
skh ,a

k
h

)∑
j=1

α
j

Nk
h

(
sk
h
,ak
h

) βj√
j︸ ︷︷ ︸

q3



Proof Outline: Optimism Event Eopt

By Azuma-Hoeffding inequality, with probability at least 1− δ, for all h ∈ [H]
and k ∈ [K ],∣∣∣∣∣∣

Nk
h (s,a)∑
j=1

αj

Nk
h

(s,a)

[
V ∗h+1

(
s
τ
j
h

(s,a)

h+1

)
− PhV

∗
h+1

(
s
τ
j
h

(s,a)

h , a
τ
j
h

(s,a)

h

)]∣∣∣∣∣∣
≤ 2H

3
2√

Nk
h (s, a)

·
√

log
HK

δ



Proof Outline: Optimism Event Eopt

By Azuma-Hoeffding inequality, with probability at least 1− δ, for all h ∈ [H]
and k ∈ [K ],∣∣∣∣∣∣

Nk
h (s,a)∑
j=1

αj

Nk
h

(s,a)

[
V ∗h+1

(
s
τ
j
h

(s,a)

h+1

)
− PhV

∗
h+1

(
s
τ
j
h

(s,a)

h , a
τ
j
h

(s,a)

h

)]∣∣∣∣∣∣
≤ 2H

3
2√

Nk
h (s, a)

·
√

log
HK

δ

⇒

q2 ≤
2H

3
2√

Nk
h

(
skh , a

k
h

) ·
√

log
HK

δ



Proof Outline: On-Policy Error

q3 =

Nk
h (skh ,a

k
h)∑

j=1

αj

Nk
h (skh ,a

k
h)

(
βj√
j

+ ε

)

= 2ε+ 2H
3
2

√
log

HK

δ
·
Nk
h (skh ,a

k
h)∑

j=1

αj

Nk
h

(
skh , a

k
h

)
√
j

≤ 2ε+
4H

3
2√

Nk
h

(
skh , a

k
h

) ·
√

log
HK

δ

Notice that on-policy error inequality is recursive. Summing both sides over
k = 1, . . . ,K , we have

K∑
k=1

χk
h ≤

K∑
k=1

Q̂k
h

(
skh , a

k
h

)
− Q∗h

(
skh , a

k
h

)

≤ 6H
3
2 K√

Nk
h

(
skh , a

k
h

) ·
√

log
HK

δ
+ 2εK +

K∑
k=1

Nk
h (skh ,a

k
h)∑

j=1

αj

Nk
h (skh ,a

k
h)
· χτ

j
h(s

k
h ,a

k
h)

h+1



Proof Outline: On-Policy Error

Notice that

K∑
k=1

Nk
h

(
skh ,a

k
h

)∑
j=1

αj

Nk
h (skh ,a

k
h)
·χ
τ
j
h

(
skh ,a

k
h

)
h+1 ≤

K∑
k=1

χk
h+1·

∞∑
t=Nk

h (skh ,a
k
h)+1

α
Nk
h

(
skh ,a

k
h

)
t ≤

(
1 +

1

H

) K∑
k=1

χk
h+1

Then,

K∑
k=1

χk
h ≤

K∑
k=1

Q̂k
h

(
skh , a

k
h

)
− Q∗h

(
skh , a

k
h

)

≤
6H

3
2 K√

Nk
h

(
skh , a

k
h

) ·
√

log
HK

δ
+ 2εK +

(
1 +

1

H

) K∑
k=1

χk
h+1.



RL with Agent State



RL with Agent State: Environment (A,O, ρ)

I A is a finite set of actions

I O is a set of observations

I ρ is a conditional observation distribution ρ (Ot+1 | Ot ,At)

I The agent has access to the history

Ht = (A0,O1,A1,O2, . . . ,At−1,Ot)



RL with Agent State: Agent (S, f , r , S0)

I S is a finite set of agent states

I f : S ×A×O 7→ S is an agent state update function

St+1 = f (St ,At ,Ot+1)

I r : S ×A×O 7→ [0, 1] is a reward function (reflects the
agent’s preferences over histories)

Rt+1 = r (St ,At ,Ot+1)

I S0 ∈ S is an initial agent state.



RL with Agent State: Algorithm



I if computation of f takes O(1) time, time complexity is
O(AT ), space complexity is O(SA).

I For T ≥ 1,

E[Regret(T )] ≤
(

85
√
SA log(4T ) + 5τπ̃∗

)
T

4
5

+ (81SA+ 18 log(T ))T
1
5

+ 15∆T + 2τ5
π̃∗ .



Thank You!


