Provably Efficient Reinforcement Learning with Aggregated States

Xiuwen Wang

August 13, 2021

Reference:

1. Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou, (2020) Provably Efficient Reinforcement Learning with Aggregated States. arXiv:1912.06366
2. Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, Michael I. Jordan, (2018) Is Q-learning Provably Efficient. arXiv:1807.03765
3. Shi Dong, Benjamin Van Roy, Zhengyuan Zhou, (2021) Simple Agent, Complex

Environment: Efficient Reinforcement Learning with Agent States. arXiv:2102.05261.

Overview

- RL with Aggregated States:

1. Motivation
2. Problem Formulation
3. Aggregated Q-learning with Upper Confidence Bounds 4. Main Results

- RL with Agent States

Introduction

- RL algorithms with tabular representations
\Rightarrow Data and learning time grow with the number of state-action pairs.
- How to address this problem?
\Rightarrow State aggregation.

1. partition the set of all state-action pairs, each cell representing an aggregate state.
2. learn the value function for each cell.
3. $\tilde{\mathcal{O}}\left(\sqrt{H^{5} M K}+\epsilon H K\right)$ worst-case regret bound without assumptions on the structure of the environment.

Problem Formulation and Notations

- finite state space \mathcal{S} and action space \mathcal{A} with cardinality S and A, respectively
- K episodes, each consists of H stages and produces a sequence

$$
s_{1}, a_{1}, \ldots, s_{H}, a_{H}
$$

- deterministic reward $R_{h}(s, a) \in[0,1]$, system dynamics $\mathrm{P}_{h}^{s, a}\left(s^{\prime}\right)$
- $0 \leq V_{h}^{\pi} \leq V_{h}^{*} \leq H$
- $\operatorname{Regret}(K)=\sum_{k=1}^{K} V_{1}^{*}\left(s_{1}\right)-V_{1}^{\pi_{k}}\left(s_{1}\right)$

Problem Formulation and Notations

- the set of aggregate states $\Phi=[M]$
- $\phi_{h}: \mathcal{S} \times \mathcal{A} \mapsto \Phi$

Definition (ϵ-error aggregation)
$\left\{\phi_{h}\right\}_{h=1}^{H}$ is an ϵ-error aggregated state representation (or ϵ-error aggregation) of an MDP, if for all $s, s^{\prime} \in \mathcal{S}, a, a^{\prime} \in \mathcal{A}$ and $h \in[H]$ such that $\phi_{h}(s, a)=\phi_{h}\left(s^{\prime}, a^{\prime}\right)$,

$$
\left|Q_{h}^{*}(s, a)-Q_{h}^{*}\left(s^{\prime}, a^{\prime}\right)\right| \leq \epsilon
$$

Q-learning with Upper Confidence Bounds

```
Algorithm 1 Q-learning with UCB-Hoeffding
    initialize \(Q_{h}(x, a) \leftarrow H\) and \(N_{h}(x, a) \leftarrow 0\) for all \((x, a, h) \in \mathcal{S} \times \mathcal{A} \times[H]\).
    for episode \(k=1, \ldots, K\) do
        receive \(x_{1}\).
        for step \(h=1, \ldots, H\) do
            Take action \(a_{h} \leftarrow \operatorname{argmax}_{a^{\prime}} Q_{h}\left(x_{h}, a^{\prime}\right)\), and observe \(x_{h+1}\).
            \(t=N_{h}\left(x_{h}, a_{h}\right) \leftarrow N_{h}\left(x_{h}, a_{h}\right)+1 ; b_{t} \leftarrow c \sqrt{H^{3} \iota / t}\).
            \(Q_{h}\left(x_{h}, a_{h}\right) \leftarrow\left(1-\alpha_{t}\right) Q_{h}\left(x_{h}, a_{h}\right)+\alpha_{t}\left[r_{h}\left(x_{h}, a_{h}\right)+V_{h+1}\left(x_{h+1}\right)+b_{t}\right]\).
            \(V_{h}\left(x_{h}\right) \leftarrow \min \left\{H, \max _{a^{\prime} \in \mathcal{A}} Q_{h}\left(x_{h}, a^{\prime}\right)\right\}\).
```

1. The use of UCB exploration in the model-free setting allows for better treatment of uncertainties for different states and actions.
UCB exploration: $O\left(\sqrt{H^{4} S A T} \iota\right), \iota=\log (S A T / \delta)$
2. Using learning rate $\alpha_{t}=\frac{H+1}{H+t}$, instead of $1 / t$ to obtain regret that is not exponential in H.

Aggregated Q-learning with Upper Confidence Bounds

```
Algorithm 1: AQ-UCB
    Input: \(\mathcal{S}, \mathcal{A}, H,\left\{\phi_{h}\right\}_{h=1}^{H}, s_{1}, K\)
    Input: positive constants \(\left\{\beta_{n}\right\}_{n=1,2, \ldots}\)
    Define constants \(\alpha_{t} \leftarrow(H+1) /(H+t), t=1,2, \ldots\)
    Initialize \(N_{h}(m)=0, \hat{Q}_{h}(m)=H\) for all \(h \in[H]\) and \(m \in[M]\)
    Randomly draw the first trajectory \(s_{1}^{0}, a_{1}^{0}, \ldots, s_{H}^{0}, a_{H}^{0}\), where \(s_{1}^{0}=s_{1}\)
    for episode \(k=1, \ldots, K\) do
        for stage \(h=1, \ldots, H\) do
            \(m \leftarrow \phi_{h}\left(s_{h}^{k-1}, a_{h}^{k-1}\right)\)
            \(N_{h}(m) \leftarrow N_{h}(m)+1\)
            \(\hat{V}_{h+1} \leftarrow \max _{a \in \mathcal{A}} \hat{Q}_{h+1}\left(s_{h+1}^{k-1}, a\right)\)
            \(\tilde{Q}_{h}(m) \leftarrow\left(1-\alpha_{N_{h}(m)}\right) \cdot \hat{Q}_{h}(m)+\alpha_{N_{h}(m)} \cdot\left[r_{h}^{k-1}+\hat{V}_{h+1}+\beta_{N_{h}(m)} \cdot \frac{1}{\sqrt{N_{h}(m)}}\right]\)
            \(\hat{Q}_{h}(m) \leftarrow \min \left\{\tilde{Q}_{h}(m), H\right\}\)
        end for
        \(s_{1}^{k} \leftarrow s_{1}\)
        for stage \(h=1, \ldots, H\) do
            Take action \(a_{h}^{k} \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} \hat{Q}_{h}\left(\phi_{h}\left(s_{h}^{k}, a\right)\right)\)
            receive reward \(r_{h}^{k}\) and next state \(s_{h+1}^{k}\)
        end for
    end for
    Output: the greedy policy with respect to \(\left\{\hat{Q}_{h}\right\}_{h \in[H]}\)
```


Aggregated Q-learning with Upper Confidence Bounds

- only has to maintain the values of $\left\{\hat{Q}_{h}\right\}_{h \in[H]}$ and $\left\{N_{h}\right\}_{h \in[H]}$
- if the computation of $\phi_{h}(s, a)$ takes $\mathcal{O}(1)$ time time complexity of AQ-UCB is $\mathcal{O}(H M K+H A K)$ space complexity is $\mathcal{O}(H M)$.

Theorem

Suppose $\left\{\phi_{h}\right\}_{h \in[H]}$ is an ϵ-error aggregation of the underlying MDP. We have that, for any $\delta>0$, if we run K episodes of algorithm $A Q-U C B$ with

$$
\beta_{i}=2 H^{\frac{3}{2}} \sqrt{\log \frac{H K}{\delta}}+\epsilon \cdot \sqrt{i}, \quad i=1,2 \ldots
$$

then with probability at least $1-\delta$,

$$
\begin{aligned}
\operatorname{Regret}(K) \leq & 24 \sqrt{H^{5} M K \log \frac{3 H K}{\delta}} \\
& +12 \sqrt{2 H^{3} K \log \frac{3}{\delta}} \\
& +3 H^{2} M+6 \epsilon \cdot H K
\end{aligned}
$$

- $\epsilon=0, \tilde{\mathcal{O}}\left(\sqrt{H^{5} M K}\right)=\tilde{\mathcal{O}}\left(\sqrt{H^{4} S A T}\right)$, if $M=S A, T=H K$
- $\epsilon>0$, per period performance loss of the policy that AQ-UCB ultimately outputs is $\mathcal{O}(\epsilon)$, which matches the per period loss lower bound $\Omega(\epsilon)$ established in Van Roy(2006) (Performance loss bounds for approximate value iteration with state aggregation).

Proof Outline: Notations

- let $\left\{\phi_{h}\right\}_{h \in[H]}$ be an ϵ-error aggregation $(\epsilon \geq 0)$.
- $\hat{Q}_{h}^{k}(m)$: the value function estimate \hat{Q}_{h} of aggregate state m, at the end of episode k, with $\hat{Q}_{h}^{0}(m)=H$.
- $\tilde{Q}_{h}^{k}(m)$: the uncapped value function estimate \tilde{Q}_{h} of aggregate state m, at the end of episode k.

$$
\hat{Q}_{h}^{k}(m)=\min \left\{\tilde{Q}_{h}^{k}(m), H\right\}
$$

- $N_{h}^{k}(m)$: the number of visits to aggregate state m at stage h in the first k trajectories (indexed from 0 to $k-1$).
- $\tau_{h}^{j}(m)$: the episode index of the j-th visit to aggregate state m, at stage h.

Proof Outline: Notations

Simplified notations $\hat{Q}_{h}^{k}(s, a), \tilde{Q}_{h}^{k}(s, a), N_{h}^{k}(s, a)$ and $\tau_{h}^{j}(s, a)$ that represent $\hat{Q}_{h}^{k}\left(\phi_{h}(s, a)\right) \tilde{Q}_{h}^{k}\left(\phi_{h}(s, a)\right), N_{h}^{k}\left(\phi_{h}(s, a)\right)$ and $\tau_{h}^{j}\left(\phi_{h}(s, a)\right)$, respectively.
Recall that

$$
\begin{gathered}
\beta_{i}=2 H^{\frac{3}{2}} \sqrt{\log \frac{H K}{\delta}}+\epsilon \cdot \sqrt{i}, \quad i=1,2 \ldots \\
\alpha_{t}=\frac{H+1}{H+t}, \quad t=1,2, \ldots,
\end{gathered}
$$

Adopt the notations

$$
\alpha_{t}^{0}=\prod_{j=1}^{t}\left(1-\alpha_{j}\right), \alpha_{t}^{i}=\alpha_{i} \prod_{j=i+1}^{t}\left(1-\alpha_{j}\right)
$$

Since $\alpha_{1}=1, \alpha_{t}^{0}=0$ and $\sum_{i=0}^{t} \alpha_{t}^{i}=1$ when $t>0$.

Proof Outline: On policy error analysis

- The uncapped value functions estimates

$$
\tilde{Q}_{h}^{k}(m)=\alpha_{N_{h}^{k}(m)}^{0} \hat{Q}_{h}^{0}(m)+\sum_{j=1}^{N_{h}^{k}(m)} \alpha_{N_{h}^{k}(m)}^{j}\left[r_{h}^{\tau_{h}^{\prime}(m)}+\hat{V}_{h+1}^{\tau h^{\prime}(m)}\left(s_{h+1}^{\tau_{h}^{j}(m)}\right)+\frac{\beta_{j}}{\sqrt{j}}\right]
$$

- On-Policy error:

$$
\begin{aligned}
\hat{V}_{h}^{k}\left(s_{h}^{k}\right)-V_{h}^{*}\left(s_{h}^{k}\right) & \leq \hat{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)-Q_{h}^{*}\left(s_{h}^{k}, a_{h}^{k}\right) \leq \tilde{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)-Q_{h}^{*}\left(s_{h}^{k}, a_{h}^{k}\right) \\
& \leq \alpha_{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}^{0} \cdot\left(H-Q_{h}^{*}\left(s_{h}^{k}, a_{h}^{k}\right)\right) \\
& +\sum_{j=1}^{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)} \alpha_{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}\left[r_{h}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}+\hat{V}_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\left(s_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\right)\right. \\
& \left.+\frac{\beta}{\sqrt{j}}-Q_{h}^{*}\left(s_{h}^{k}, a_{h}^{k}\right)\right]
\end{aligned}
$$

Proof Outline: On policy error analysis

$$
\begin{aligned}
= & \alpha_{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}^{0} \cdot\left(H-Q_{h}^{*}\left(s_{h}^{k}, a_{h}^{k}\right)\right) \\
+ & \sum_{j=1}^{k_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)} \alpha_{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}^{j}\left[r_{h}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}+\hat{V}_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\left(s_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\right)+\frac{\beta}{\sqrt{j}}\right. \\
& \left.-Q_{h}^{*}\left(s_{h}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}, a_{h}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\right)\right] \\
& +\sum_{j=1}^{k_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)} \alpha_{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}^{\left[Q_{h}^{*}\left(s_{h}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}, a_{h}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\right)-Q_{h}^{*}\left(s_{h}^{k}, a_{h}^{k}\right)\right]}
\end{aligned}
$$

Proof Outline: On policy error analysis

$$
\begin{aligned}
\hat{V}_{h}^{k}\left(s_{h}^{k}\right)-V_{h}^{*}\left(s_{h}^{k}\right) & =\alpha_{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}^{0} \cdot\left(H-Q_{h}^{*}\left(s_{h}^{k}, a_{h}^{k}\right)\right) \\
& +\underbrace{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}_{q_{1}} \sum_{\sum_{j=1} \alpha_{N_{h}^{k}}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\left[\hat{V}_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\left(s_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\right)-V_{h+1}^{*}\left(s_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\right)\right] \\
& +\underbrace{N_{h}^{N_{j=1}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)} \alpha_{N_{h}^{k}}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}_{q_{2}}\left[V_{h+1}^{*}\left(s_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}\right)-P_{h} V_{h+1}^{*}\left(s_{h}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}, a_{h}^{\left.\left.\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)\right)\right]}\right.\right.
\end{aligned}
$$

Proof Outline: Optimism Event $\mathcal{E}_{\mathrm{opt}}$

By Azuma-Hoeffding inequality, with probability at least $1-\delta$, for all $h \in[H]$ and $k \in[K]$,

$$
\begin{aligned}
& \left|\sum_{j=1}^{N_{h}^{k}(s, a)} \alpha_{N_{h}^{k}(s, a)}^{j}\left[V_{h+1}^{*}\left(s_{h+1}^{\tau_{h}^{j}(s, a)}\right)-P_{h} V_{h+1}^{*}\left(s_{h}^{\tau_{h}^{j}(s, a)}, a_{h}^{\tau_{h}^{j}(s, a)}\right)\right]\right| \\
& \leq \frac{2 H^{\frac{3}{2}}}{\sqrt{N_{h}^{k}(s, a)}} \cdot \sqrt{\log \frac{H K}{\delta}}
\end{aligned}
$$

Proof Outline: Optimism Event $\mathcal{E}_{\mathrm{opt}}$

By Azuma-Hoeffding inequality, with probability at least $1-\delta$, for all $h \in[H]$ and $k \in[K]$,

$$
\begin{aligned}
& \left|\sum_{j=1}^{N_{h}^{k}(s, a)} \alpha_{N_{h}^{k}(s, a)}^{j}\left[V_{h+1}^{*}\left(s_{h+1}^{\tau_{h}^{j}(s, a)}\right)-\mathrm{P}_{h} V_{h+1}^{*}\left(s_{h}^{\tau_{h}^{j}(s, a)}, a_{h}^{\tau_{h}^{j}(s, a)}\right)\right]\right| \\
& \leq \frac{2 H^{\frac{3}{2}}}{\sqrt{N_{h}^{k}(s, a)}} \cdot \sqrt{\log \frac{H K}{\delta}} \\
& q_{2} \leq \frac{2 H^{\frac{3}{2}}}{\sqrt{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}} \cdot \sqrt{\log \frac{H K}{\delta}}
\end{aligned}
$$

\Rightarrow

Proof Outline: On-Policy Error

$$
\begin{aligned}
q_{3} & =\sum_{j=1}^{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)} \alpha_{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}^{j}\left(\frac{\beta_{j}}{\sqrt{j}}+\epsilon\right) \\
& =2 \epsilon+2 H^{\frac{3}{2}} \sqrt{\log \frac{H K}{\delta}} \cdot \sum_{j=1}^{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)} \frac{\alpha_{N_{h}^{k}}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}{\sqrt{j}} \\
& \leq 2 \epsilon+\frac{4 H^{\frac{3}{2}}}{\sqrt{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}} \cdot \sqrt{\log \frac{H K}{\delta}}
\end{aligned}
$$

Notice that on-policy error inequality is recursive. Summing both sides over $k=1, \ldots, K$, we have

$$
\begin{aligned}
\sum_{k=1}^{K} \chi_{h}^{k} & \leq \sum_{k=1}^{K} \hat{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)-Q_{h}^{*}\left(s_{h}^{k}, a_{h}^{k}\right) \\
& \leq \frac{6 H^{\frac{3}{2}} K}{\sqrt{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}} \cdot \sqrt{\log \frac{H K}{\delta}}+2 \epsilon K+\sum_{k=1}^{K} \sum_{j=1}^{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)} \alpha_{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}^{j} \cdot \chi_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)}
\end{aligned}
$$

Proof Outline: On-Policy Error

Notice that

$$
\sum_{k=1}^{K} \sum_{j=1}^{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)} \alpha_{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}^{j} \cdot \chi_{h+1}^{\tau_{h}^{j}\left(s_{h}^{k}, a_{h}^{k}\right)} \leq \sum_{k=1}^{K} \chi_{h+1}^{k} \cdot \sum_{t=N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)+1}^{\infty} \alpha_{t}^{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)} \leq\left(1+\frac{1}{H}\right) \sum_{k=1}^{K} \chi_{h+1}^{k}
$$

Then,

$$
\begin{aligned}
\sum_{k=1}^{K} \chi_{h}^{k} & \leq \sum_{k=1}^{K} \hat{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)-Q_{h}^{*}\left(s_{h}^{k}, a_{h}^{k}\right) \\
& \leq \frac{6 H^{\frac{3}{2}} K}{\sqrt{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)}} \cdot \sqrt{\log \frac{H K}{\delta}}+2 \epsilon K+\left(1+\frac{1}{H}\right) \sum_{k=1}^{K} \chi_{h+1}^{k}
\end{aligned}
$$

RL with Agent State

RL with Agent State: Environment $(\mathcal{A}, \mathcal{O}, \rho)$

- \mathcal{A} is a finite set of actions
- \mathcal{O} is a set of observations
- ρ is a conditional observation distribution $\rho\left(O_{t+1} \mid O_{t}, A_{t}\right)$
- The agent has access to the history

$$
H_{t}=\left(A_{0}, O_{1}, A_{1}, O_{2}, \ldots, A_{t-1}, O_{t}\right)
$$

RL with Agent State: Agent $\left(\mathcal{S}, f, r, S_{0}\right)$

- \mathcal{S} is a finite set of agent states
- $f: \mathcal{S} \times \mathcal{A} \times \mathcal{O} \mapsto \mathcal{S}$ is an agent state update function

$$
S_{t+1}=f\left(S_{t}, A_{t}, O_{t+1}\right)
$$

- $r: \mathcal{S} \times \mathcal{A} \times \mathcal{O} \mapsto[0,1]$ is a reward function (reflects the agent's preferences over histories)

$$
R_{t+1}=r\left(S_{t}, A_{t}, O_{t+1}\right)
$$

- $S_{0} \in \mathcal{S}$ is an initial agent state.

RL with Agent State: Algorithm

```
Algorithm 1 Optimistic \(Q\)-learning.
    Input: \(s_{0}, f, r\)
    initialize restart timestamps \(T_{0}=0, T_{k}=20 \times 2^{k}\)
    env.init()
    \(t=0, k=0, s=s_{0}\)
    while true do
        if \(t=T_{k}\) then
            \(\gamma \leftarrow 1-1 / T_{k+1}^{\frac{1}{5}}\)
            \(Q(s, a) \leftarrow 1 /(1-\gamma), N(s, a) \leftarrow 0, \forall s, a\)
            \(\alpha_{\ell} \leftarrow \frac{2+(1-\gamma)}{2+\ell(1-\gamma)}, \ell=1,2, \ldots\)
            \(\beta \leftarrow 4 \sqrt{\log T_{k+1}} /(1-\gamma)^{\frac{3}{2}}\)
            \(k \leftarrow k+1\)
        end if
        sample \(a \sim \operatorname{unif}\left(\arg \max _{a^{\prime} \in \mathcal{A}} Q\left(s, a^{\prime}\right)\right)\)
        \(n=N(s, a) \leftarrow N(s, a)+1\)
        \(o \leftarrow \operatorname{env} \cdot \operatorname{exec}(a)\)
        \(s^{\prime} \leftarrow f(s, a, o)\)
        \(\tilde{Q} \leftarrow r(s, a, o)+\gamma \cdot \max _{a^{\prime} \in \mathcal{A}} Q\left(s^{\prime}, a^{\prime}\right)+\frac{\beta}{\sqrt{n}}\)
        \(Q(s, a) \leftarrow\left(1-\alpha_{n}\right) \cdot Q(s, a)+\alpha_{n} \cdot \tilde{Q}\)
        \(s \leftarrow s^{\prime}, \quad t \leftarrow t+1\)
    end while
```

- if computation of f takes $O(1)$ time, time complexity is $O(\mathcal{A} T)$, space complexity is $O(\mathcal{S A})$.
- For $T \geq 1$,

$$
\begin{aligned}
\mathbb{E}[\operatorname{Regret}(T)] \leq & \left(85 \sqrt{\mathcal{S A} \log (4 T)}+5 \tau_{\tilde{\pi}_{*}}\right) T^{\frac{4}{5}} \\
& +(81 \mathcal{S} \mathcal{A}+18 \log (T)) T^{\frac{1}{5}} \\
& +15 \Delta T+2 \tau_{\tilde{\pi}_{*}}^{5} .
\end{aligned}
$$

Thank You!

