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Introduction

> RL algorithms with tabular representations
= Data and learning time grow with the number of
state-action pairs.

» How to address this problem?
= State aggregation.

1. partition the set of all state-action pairs, each cell
representing an aggregate state.

2. learn the value function for each cell.

3.0 (\/ H>MK + eHK) worst-case regret bound without

assumptions on the structure of the environment.



Problem Formulation and Notations

> finite state space S and action space A with cardinality S and
A, respectively

> K episodes, each consists of H stages and produces a
sequence
51,91;- -5 5H; dH
» deterministic reward Rp(s,a) € [0, 1], system dynamics
P37 (s')
> O<S Vi<V <H
> Regret(K) = 331 Vi (s1) — V™ (s1)



Problem Formulation and Notations

> the set of aggregate states ¢ = [M]
> ¢h Sx Ao

Definition (e-error aggregation)
{qﬁh};’:l is an e-error aggregated state representation (or € -error
aggregation) of an MDP, if for all 5,5’ € S,a,a’ € A and h € [H] such

that ¢n(s,a) = én (s, a'),
1Qh(s,a) — Q4 (s',d)[ < e



Q-learning with Upper Confidence Bounds

Algorithm 1 Q-learning with UCB-Hoeffding
1: initialize Qp(z, a) - H and Nj(z,a) - 0 for all (z,a.h) € S x A x [H].
2: for episode k=1,..., K do
3: receive 7.
for step h=1,..., H do
Take action aj, + argmax, Qp (2, a’), and observe x,41.
t = Nj(zp.ap) < Np(zp.ap) +1; by < e/H3u/t.
Qn(xp.an) < (1 — a)Qulap. ap) + aufrn(zn. an) + Viga(@ns1) + b
Vi(xp) + min{H, maxyeq4 Qnlxp. ')}

[ AN

1. The use of UCB exploration in the model-free setting allows for
better treatment of uncertainties for different states and actions.

UCB exploration: O(V H*SAT.), « = log(SAT/é)

2. Using learning ratea; = Z—ﬁ instead of 1/t to obtain regret that is
not exponential in H.



Aggregated Q-learning with Upper Confidence Bounds

Algorithm 1: AQ-UCB

1: Input: S, A, H, {¢pn 1L 51, K

2: Input: positive constants {3, }n=12,..

3: Define constants oy < (H +1)/(H +1t), t =1,2,...

4 Tnitialize Ny (m) = 0,Qn(m) = H for all h € [H] and m € [M]

5: Randomly draw the first trajectory 3‘1’, 0[1), ..... s (I)IJ’?I- where 5(1’ =51

6: for episode k =1,..., K do
7. for stage h =
8

: m < du(skt ak™t)
0: Np(m) \h(m) +1
10: ‘/h+1 — MaXge A Qh“(ehﬂ a)
1L Qn(m) + (1= a, (m)) - Qu(m) + o, (m) - [V',’i*l + Vit + B om) * m

12: Q;,(m) 4 min {Qh(m). H}
13:  end for
1 st sy

15 for stage h =1,..., H do
16: Take action aff < argmax,c 4 Qn(¢n(sf, a))
17: receive reward /,’_f and next state b)};+1

18:  end for
19: end for .
20: Output: the greedy policy with respect to {Qh}he[ﬁ]




Aggregated Q-learning with Upper Confidence Bounds

» only has to maintain the values of {Qh}he[H] and {Np} pepp)

» if the computation of ¢4(s, a) takes O(1) time
time complexity of AQ-UCB is O(HMK + HAK)
space complexity is O(HM).



Theorem
Suppose {¢n} he[H) IS an e-error aggregation of the underlying MDP. We have
that, for any § > 0, if we run K episodes of algorithm AQ-UCB with

ﬁ;:2H%1/Iog%+e-\fi, i=1,2...

then with probability at least 1 — ¢,

Regret(K) <244/ H> MK log #

+12,/2H3K|og§

+ 3H*M + 6¢ - HK

> 6:0,@( HWK):@(W),HM:SA, T = HK

» ¢ > 0, per period performance loss of the policy that AQ-UCB ultimately
outputs is O(e), which matches the per period loss lower bound Q(¢)
established in Van Roy(2006) (Performance loss bounds for approximate
value iteration with state aggregation).



Proof Outline: Notations

> let {gbh}hE[H] be an e-error aggregation (e > 0).
> @,’j(m)  the value function estimate Q) of aggregate state m,
at the end of episode k, with Q%(m) = H.

> QF(m) : the uncapped value function estimate @y, of
aggregate state m, at the end of episode k.

(f),l,‘(m) = min {@,’f(m), H}

> Ni’j(m) : the number of visits to aggregate state m at stage h
in the first k trajectories (indexed from 0 to k —1 ).

> 7‘,’7(m) : the episode index of the j -th visit to aggregate state
m, at stage h.



Proof Outline: Notations

Simplified notations ( a), Q(s, a), Ni(s, a) and 7"(5 a) that
represent Qf (¢1(s, a)) Qf (¢n(s, 2)) , Nf (én(s, 2)) and 74, (é(s, 2)),

respectively.
HK
B;:2H%\/Iog7+e~\/i, i=1,2...

Recall that
H+1

H+t

Qr =

Adopt the notations

t

t
H 1-q)), af =q; H (1-qj)
Jj=1

j=i+1

Sinceas =1, o =0 and 3_, i = 1 when t > 0.



Proof Outline: On policy error analysis

» The uncapped value functions estimates

Nh(m

G = g OB 3 g 717+ 02 (547 + 7
» On-Policy error:
Vi (S/l,() -V (5!’1() < Qk (s;,(,aﬁ) - Qr (si’;az) < QF (5,’;7#) —Q (s;l,(,aﬁ)
< Ay (M= Qi (shiat))

NE sk,ak .
o) i (sk,3) H(sh ) H(sh £
T e | VR (s

j=t

\ﬂ[ Qy (sh,ah)}



Proof Outline: On policy error analysis
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Proof Outline: On policy error analysis

a1
k( k .k
o 5 9) o (60.849)
p
weEd
X M)




Proof Outline: Optimism Event gy

By Azuma-Hoeffding inequality, with probability at least 1 — 4, for all h € [H]

and k € [K],
iy (s, H(sa) _ri(s.2)
Z 0/ |:Vh*+1 (5h+1 ) Pth+1< yay" )]
3
2H>2 HK

<L——— 4/ log —
S NG VRS



Proof Outline: Optimism Event gy

By Azuma-Hoeffding inequality, with probability at least 1 — §, for all h € [H]
and k € [K],

N;f(s,a) i
i * 7J(s a) 7J(s a)  7l(s,a)
5 [ (467) v (5.1
j=1
3
__2Mi [ HK
V' Nk(s, a) 4
=
G < ——————{/log — HK



Proof Outline: On-Policy Error

Ny (sh-25)

m= 3 e (5+9)

Jj=1

k Skak i
<24 —— \/|0g 5

k(
Nf (sf, af)

Notice that on-policy error inequality is recursive. Summing both sides over
k=1,...,K, we have

S <300k (k) - 05 (sh )
k=1 k=1

, M) .
6H3 K [ HK : o (s

< ————— -4/log 5 + 2eK + E ajlvk(sk ) 'Xhﬁr(lh h
ey = T

h

Mx



Proof Outline: On-Policy Error

Notice that
K Nh(sh’ah) Py K oo NE(sk ok K

. , 1
SRS SRV SN SR (PN N
k=1 j=1 h k=1 t=NK(sk,ak)+1 k=1
Then,

ix i If(shvah) Q; <5h’3h>

k=1 k=1

3 K
6H2 K HK 1
§7~\/Iog—+2eK+(l+ﬁ>§ Xho1-
NE (sk, ak) g po

h \Sh>3h



RL with Agent State

reward agent
Rt+1 :T(StaAt70t+1) > = At
< i —_
agent state environment
Sit1 = f(St, At, Ot 1) Oti1




RL with Agent State: Environment (A, O, p)

> A is a finite set of actions

> (O is a set of observations

» pis a conditional observation distribution p (O¢4+1 | O, At)
> The agent has access to the history

Ht = (A07 Olu Al) 027 e 7At—15 Ot)



RL with Agent State: Agent (S, f,r,S)

> S is a finite set of agent states
> f:SxAx O S isan agent state update function

St—|—1 =f (St,At, Ot+1)

» r:Sx Ax O [0,1] is a reward function (reflects the
agent's preferences over histories)

Rt+1 = ”(St,An Ot+1)

> Sp € S is an initial agent state.



RL with Agent State: Algorithm

Algorithm 1 Optimistic Q-learning.

= e
Col

15:
16:
17:
18:
19:
20:

© %N O O W

—
=2

: Input:  so., f, 7
: initialize restart timestamps Ty = 0,7} = 20 x 2F
: env.init()

t=0,k=0,5 =5

: while true do

if t =T}, then
1
Y 1-1Te
Q(s,a) < 1/(1 =7),N(s,a) + 0, Vs,a

24(1—7)
g <— 2+Z(1—nyy)" (=1,2,...

B+ 4y/log Ty /(1 —4)}
k< k+1
end if
sample a ~ unif (arg max,,c 4 Q(s,a’))
n=N(s,a) + N(s,a)+1
0 < env.exec(a)
s« f(s,a,o0)
Q «— 7(s,a,0) + 7 - maxgeq Q(s', ') + %

Qs,a) « (1 —an) - Qs,a) + an - Q
s+ s, t+t+1
end while




» if computation of f takes O(1) time, time complexity is
O(AT), space complexity is O(S.A).
» For T >1,

E[Regret(T)] < (85 SAlog(4T) + 57'77-*) Ts
+ (81SA + 18log(T)) T
+15AT +272..



Thank You!



