Option Discovery
Algorithms

Lu Wang

East China Normal University



Overview

* Introduction
 Temporal Abstractionin RL
* Options
* Semi-MDP
* Option Discovery Algorithms
* policy gradient based methods

e information-theoreticbased
* Variational options discovery



Temporal abstraction

High level steps
* Grind the beans, measure the right quantity of water, boil the

water

Low level steps
* Wrist and arm movements while adding coffee to the filter, ...



Temporal abstraction in Al

A cornerstone of Al planning since the 1970’s:
e Fikes et al. (1972), Newell (1972, Kuipers (1979), Korf
(1985), Laird (1986), Iba (1989), Drescher (1991) etc.
It has been shown to :
* Generate shorter plans
* Reduce the complexity of choosing actions
* Provide robustness against model misspecification

* Improve exploration by taking shortcuts in the
environment



Temporal abstraction in RL

How can an agent represent stochastic, closed-loop,
temporally-extended courses of action?

* HAMs (Parr & Russell 1998; Parr 1998)
« MAXQ (Dietterich 2000)
* Options (Sutton, Precup & Singh 1999; Precup 2000)

options - skills - macros - temporally abstract actions

(Sutton, McGovern, Dietterich, Barto, Precup, Singh, Parr...)



Actions
* North, East, South, West

Reward

 +1 for transitions into G
e (0 otherwise

y=0.9




Options

* A generalization of actions

* Starting from an initiation state, specify a way of
choosing actions until termination

* Example: go-to-hallway




Markov Options

* An option can be represented as a triple:
o=<1I,m [ >

e | € Sis the set of states in which o may be started
* T: SXA — |0,1] is the policy followed during o

* 3:5 = [0,1] is the probability of terminating in
each state

Example:
go-to-hallway




One-Step Options

* A primitive action a EUgcc A, of the base MDP is
also an option, called a one-step option:
e [ ={s:a € A}
e 1(s,a) =1,Vs€ I
* f(s) =1,Vse S



Markov vs. Semi-Markov Options

* Markov option: policy and termination condition
depend only on the current state

* Semi-Markov option: policy and termination
condition may depend on the entire history of
states, actions, and rewards since the initiation of
the option

* Optionsthat terminate after a pre-specified number of
time steps

e Optionsthat execute other options



Semi-Markov Options

e Let H be the set of possible histories (segments of
experience terminatesins_, T =t + k)
H =< s a1, S¢41, ) Sp >

* An semi-Markov option is represented as a triple:
o=<1I,m,[ >
e | € Sis the set of states in which o may be started
 m: HXA — [0,1] is the policyfollowed during o

* B:H — [0,1] is the probability of terminatingin each
state



Policy over Options

* Let u be the policy over options. u selects an option
0 € O, accordingto probability distribution u(s;)
u:Sx0 - [0,1]

* u determines a conventional policy over actions, or
flat policy, m = flat(u).



Value functions for options

 Define Q*(s, 0) the value of taking option Q*(s, 0) in
state s under policy u, as
Q (s, 0) € E{ry +y1rrqq + |

o initiated in s at time t, u followed after termination}

Q*(s,0) ¥ max,en(o)Q* (s, 0)

* [I(0) is the set of all policies selecting only from
optionsin O



Options define a Semi-Markov
Decision Process (SMDP)

Time ——

MDP /\/\\// IState
SMDP ﬂ/\/\{

Options w/\ /\,
over MDP A

 The statetrajectoryofan MDP is made up of discrete-time
transitionsand homogeneous discount.

« SMDP comprises larger, continuous-time transitions and
discrete events and interval-dependentdiscount.

* Optionsenable an MDP trajectory to be analyzed in either

way. MDP + Options = SMDP




SMDPs

e The amount of time between one decision and the
next is a random variable T

* Transition probabilities p(s’, t|s, a)

* Bellman equations

Vi(s) = max|R(s,a) +2yTP(s Tls,a)V (s))]

0EA;

0’ (s,a) = R(sa)+2y’P(s 7ls,a)max Q' (s',a')

0'EA,



Option models

The reward of o:

* Let (0, s, t) denote the event of 0 being initiated in
state s at time t.
10 =E{r, +yris  + -+ v i le(o, s, t)}

Transition probabilities:

* Forall s € S, p(s', 7) is the probability that the option
terminatesin s aftert steps.

Dssr = EP(S,:T)VT
7=1



Bellman optimality Equation
Vo (s) & max,eo [15° + X5 D(s's,0)V5 ()]

Q5(5,0) & 12 + X, p(s'ls, 0)max,co, Q5 (s', 0,

* Bellman optimality equations can be solved, exactly
or approximately, using methods that generalize
the usual DP and RL algorithmes.



Illustration: Rooms Example

HALLWAYS

/1 /
/

Target
Hallway

4 stochastic
primitive actions

up

, Fail 33%
left right of the time

down

8 multi-step options
(to each room’s 2 hallways)



Illustration: Rooms Example

Primitive .‘ . ’
options o0
O=.A o000

o
0000
* 0000

Hallway Q0000
options B D000
O=H HEE 0000

[ o Q{oo-
"BRHEE

Initial Values lteration #1 lteration #2

Learning room-by-room is much faster than cell-by-cell



SMDP Q-learning backups

T
90000000000 0000000000 0

* At state s, initiate option o and execute until
termination

* Observe termination state s', number of steps,
discounted returnr

Qk+1(5; 0) = (1 _ ak)Qk(,S'O) + Clk(T' +
Y ‘max,eo,Qr(s’,0))



Looking inside options

* SMDP methods apply to options, but only when
they are treated as opaque indivisible units.

* Interrupting options before they would terminate
naturally according to their termination conditions.



Intra-option Q-learning

—0—000 000
I I |

On every transition: @ —0—@

Update option oevery transition:

Qi (5,0) =(1- )0, (5,,0) + ak[ at yUk(SHl’O)]

where

Uy(5,0) = (1- B(s)Qy(5,0) + B(s)max 0, (s,0')

is an estimate of the value of state-option pair (s,0) upon arrival in
states.



References

* D. Precup. Temporal abstraction in reinforcement
learning. PhD thesis, University of Massachusetts
Ambherst, 2000.

* R. S. Sutton, D. Precup, and S. P. Singh. Between
MDPs and Semi-MDPs: A framework for temporal
abstraction in reinforcementlearning. Artificial
Intelligence, 112(1- 2):181-211, 1999.

* A. G. Barto and S. Mahadevan. Recent advances in
hierarchical reinforcementlearning. Discrete Event
Dynamic Systems, 13(4):341 — 379, October 2003.



Options Learning

Options are typically learned using sub-goals and
“pseudo-rewards”.

e Tabular cases (Wiering & Schmidhuber, 1997;
Schaul et al., 2015, Ofir Nachum et al. 2018) utilize
row states as sub-goals.

* Pre-defined sub-goals (Tessler et al., 2016; Kulkarni
et al., 2016)

* Options Discovery



Option Discovery Algorithms

* policy gradient based methods:
* The Option-Critic (Bacon et al., 2017)
* Deep Discoveryof Options (DDO) (Fox et al., 2017)
* FeUdal Networks (Alexander et al., 2017)

* Information-theoretic based methods:
e VariationalIntrinsic Control (Gregoret al., 2016)
 Diversity is All You Need (DIAYN) (Eysenbach et al., 2018)
e (Florensaetal.,2017)

* Eigenoptions: (Machdo et al., 2017; Liu et al., 2017)
 Variational options discovery: VALOR (Achiam et al., 2018)



The option-critic



Insight

* Options can be learned end-to-end jointly with a
policy-over-options using policy gradients.



Actor-Critic Architecture (Sutton 1984)
Actor

p > Policy
L Foliey )

Gradient

Critic TD error
s f Value as
| function

Tt

- ll Environment ||< -

 The policy(actor) is decoupled
from its value function.

* Thecritic provides feedbackto
improve the actor

* Learningis fullyonline

St

Option-Critic Architecture

Policy over options

Gradients ]

Critic (—QDQ TD error a
’l Uy 440

ll Environment [¢

Parameterize internal policies
and termination conditions
Policy over optionsis computed
by a separate process



The option-value function

Qa(s,w) = wa,g (a]s)Qu(s,w,a)

* Where Qu:SxaxA-=R jsthe value of executing an
action in the context of a state-option pair

Qu(s,w,a) =r(s,a) + 72; P(s'|s,a)U(w,s)
U(w,s') = (1 = Bua(s))Qa(s',w) + Bus(s)Vals)
w — option mq— policy over options
T, g~ the intra-option policy [, g— termination
U:QxS — R—the option-value function upon arrival,



Main result: Gradient updates

e The gradient wrt. the internal policy parameters 6
is given by:

E lalog 7;;"9’9(0"8) QU(S,W,G)}

This has the usual interpretation: take better primitives
more often inside the option

e The gradient wrt. the termination parameters v is

given by:
0Bu(s) /
E [ 5 Arg (s, w)

where Ay, = Qr, — Vr,, is the advantage function This
means that we want to lengthen options that have a
large advantage




FeUdal Networks for Hierarchical
Reinforcement Learning



Insight

* Policy-over-options changing options at every
step, i. e., high-level deviates from its own
mission

* Levels of hierarchy within an agent
communicate via explicit goals



FeUdal Networks (FUN, 1993)

® Proposed by Dayan & Hintonin 1993

e Let high-level managers set tasks to sub-managers, who
learn how to satisfy those goals.

o Sub-Managers learn to maximize their reinforcement
in the context of the command



FuN model description

Xl l Zl (S5 Rd W’l e R]\\]

Wrnn alxk

\‘ Policy gradient
PO

Manager . goal B 7 = fpercept(xt)
d Mrnn d Transition
5 R gtE' R policy gradient Mspace
_No gradient | se=1 (2)
[Im@ @ Worker h?[,gt :ernn(St,hi\fl);gt = G:/|1Ge|:
k=16 << d=256

wy = ¢( Z 9i)

action i—t—c

hWa Ui = men(zt’ hf‘:l)

Z: Embedding of env. x

h™: Internal state of manager
hY': Internal state of worker
g: Goal

7y = SoftMax(Uswy)
w: Embedding of goal g

c: Prediction horizon
U: Output of worker
mr: Vector of prob. over actions

fPeTCePt: CNN, 1st layer: 16 8x8 filters w/ stride 4, 2nd layer 32 4x4 filters w/ stride
2, fully connected layer has 256 hidden units.

fMspace. Eylly conn. layer, computes state space.

fWr: Standard LSTM w/ 256 hidden units, computes goal.

fMM: Dilated LSTM w/ 256 hidden units (will be explained detailed later).



FuN model description

se= ¢(x) € R « Complementary
representations

\Y v . .
79« Multiple time scale

sp <

a;




Learning

Bad idea:

* train feudal network end-to-end using a policy
gradient algorithm operating on the actions taken

by the Worker

Good idea:

* independently train Manager to predict
advantageous directions in state space and to
intrinsically reward the Worker to follow these

directions



The agents goal

Maximize the discounted return

© _k
Ry = Zk:(ﬂ Tt+k+1

* The agent’s behavior is defined by its action-
selection policy . FUN produces a distribution over
possible actions.



Manager’s transition policy

* Consider g; = g(s:,0)
u(.): High-level policy selecting among subpolicies

0: Sub-policy
* Transition policy:
" (SeaclSt) = P(SesclSe u(st, 0))

* Transition policy gradient:
Vo, = E[(R; =V (s))Vo 108P(St4cl5t, (51, 6)))]

* |t is assumed that,

D(Spic|Se 1(Sy, ) o edeosGrec5690 (yon Mises-Fisher distribution)



Gradient for the goal:

Vg: = AtMVHdcos(SHc — 5¢, 9¢(6))

where

AM = R, — VM(z4,0) — advantage function
VM (zs,0) —value function estimate from the internal critic
deos(a, B) = o' B/(|a]|8]) — cosine similarity



Workers intrinsic reward

Worker’s policy 7 is trained to maximize R; + aRtI.
rt = % i1 dcos(St — S¢—iy G¢—i) © Intrinsic reward
R;: Extrinsicdiscountedreturn
a: Hyperparameterto blend intinsicand extrinsicreward
Rtl: Intrinsicdiscounted return

c: horizon

Worker policy gradient:
At = (Re+ aRy =V (x1,6))



Diversity is All You Need: Learning
Skills without a Reward Function



Insight

* Learning skills without reward



FUN

Algorithm 1: DIAYN
rOsTsTT T 1 I_ et |
' SKILL ke while not converged do
Sampleone skiiver / S mo(at | st,2) Sample skill z ~ p(z) and initial state sop ~ po(s)
skilldistribution. vat S+l for ¢ < 1 to steps_per_episode do
Sample action a: ~ mg(at | st, z) from skill.
>~ p(2) ENVIRONMENT ! " ¢ | st,
St+1 ~ P(St41 | st at) Step environment: S¢41 ~ p(st+1 | St, at).
_____ ySt+1 1 Compute g4 (2 | s¢+1) with discriminator.
Disiminatresimates 1\ DISCRIMINATOR | 90 | 51) Set skill reward r; = log g¢(2 | s¢+1) — logp(2)
to maximize discriminabilty. 4% | S41) ,'iii?f;iﬂggﬁﬁy’,“a’“m'ze Update policy (#) to maximize r; with SAC.
""""" Update discriminator (¢) with SGD.

Z ~ p(z) — a latent variable; A policy conditioned on a fixed Z as a “skill”



How it works

FO)2I(S;2) +H[A| 8] — I(A; Z | S)
= (H[Z] -H[Z | S]) +H[A| S]— (H[A| S| —H[A| S, Z])
—H[Z] - H[Z| S|+ H[A]| S, Z]

I (;-)and H[-] = mutualinformation and Shannon entropy
Maximize I (S; Z ) —theskill should control which statesthe agent
visits; the skill can be inferred from the states visited.

Minimize I(A; Z | S) —that states, notactions, are used to
distinguish skills

Maximize H[A | S]—maximize the entropy of mixture policy



Implementation

FO)£2I(S;Z)+H[A| S| —I(A;Z]|S)
= (H[Z] -H[Z | S]) + H[A| S| — (H[A| S| -H[A]| S, Z])
—H[Z] - H[Z | S|+ H[A]| S, Z]

Encourage p(z) to have high entropy—Fix p(z) to be uniform
Minimize H|Z| S] —Add in to the reward function. r.(s,a) £ loggs(z | s) — log p(2)

Maximize H[A| S, Z] — using soft actor critic.

As we cannotintegrate over all states and skills to compute
p(z | s) exactly, we approximate this posterior with alearned

discriminatorq(z | s).



Review

* Options
* A generalization of actions

* SMDP
* MDP + Options= SMDP
* Temporal abstraction

* Options discovery
* The option-critic
* FeUdal
* DIAYN



Thanks



