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Temporal	abstraction	

High level	steps	
• Grind	the	beans,	measure	the	right	quantity	of	water,	boil	the	

water	

Low	level	steps	
• Wrist	and	arm	movements	while	adding	coffee	to	the	filter,	...	



Temporal	abstraction	in	AI	

A	cornerstone	of	AI	planning	since	the	1970’s:	
• Fikes et	al.	(1972),	Newell	(1972,	Kuipers (1979),	Korf
(1985),	Laird	(1986),	Iba (1989),	Drescher (1991)	etc.	

It	has	been	shown	to	:
• Generate	shorter	plans
• Reduce	the	complexity	of	choosing	actions
• Provide	robustness	against	model	misspecification
• Improve	exploration	by	taking	shortcuts	in	the	
environment	



Temporal	abstraction	in	RL	
How	can	an	agent	represent	stochastic,	closed-loop,	
temporally-extended	courses	of	action?	

• HAMs (Parr &	Russell	1998;	Parr 1998)	
• MAXQ (Dietterich 2000)
• Options (Sutton,	Precup &	Singh	1999; Precup 2000)

options	- skills	- macros	- temporally	abstract	actions
(Sutton,	McGovern,	Dietterich,	Barto,	Precup,	Singh, Parr…)	



Example	

Actions
• North,	East,	South,	West

Reward
• +1	for	transitions	into	G	
• 0	otherwise	
γ =	0.9	



Options

• A	generalization	of	actions
• Starting	from	an initiation	state,	specify	a	way	of
choosing	actions	until	termination
• Example: go-to-hallway



Markov	Options

• An option	can	be	represented	as	a	triple:
𝑜 =< 𝐼, 𝜋, 𝛽 >

• 𝐼 ⊆ 𝑆 is	the	set	of	states	in	which	o	may	be	started
• 𝜋: 𝑆×𝐴 → [0,1] is	the	policy	followed	during	o
• 𝛽: 𝑆 → [0,1] is	the	probability	of	terminating	in	
each	state	

Example:
go-to-hallway



One-Step	Options	

• A	primitive	action	𝑎 ∈∪6∈7 𝐴6 of	the	base	MDP	is	
also	an	option,	called	a	one-step	option:
• 𝐼 = {𝑠: 𝑎	 ∈ 𝐴6}
• 𝜋 𝑠, 𝑎 = 1,∀7∈ 𝐼
• 𝛽(𝑠) = 1, ∀7∈ 𝑆



Markov	vs.	Semi-Markov	Options

• Markov	option:	policy	and	termination	condition	
depend	only	on	the	current	state	
• Semi-Markov	option:	policy	and	termination	
condition	may	depend	on	the	entire	history	of	
states,	actions,	and	rewards	since	the	initiation	of	
the	option	
• Options	that	terminate	after	a	pre-specified	number	of	
time	steps	
• Options	that	execute	other	options	



Semi-Markov	Options

• Let	𝐻 be	the	set	of	possible	histories (segments	of	
experience	terminates	in	𝑠@,	𝜏 = 𝑡 + 𝑘)	

𝐻 =	< 𝑠E, 𝑎E, 𝑟E, 𝑠EGH,… , 𝑠@ >
• An semi-Markov	option	is	represented	as	a	triple:

𝑜 =< 𝐼, 𝜋, 𝛽 >
• 𝐼 ⊆ 𝑆 is	the	set	of	states	in	which	o	may	be	started
• 𝜋:𝐻×𝐴 → [0,1] is	the	policy	followed	during	o
• 𝛽: 𝐻 → [0,1] is	the	probability	of	terminating	in	each	
state	



Policy	over	Options

• Let	𝜇	be	the	policy	over	options.	𝜇	selects	an	option	
𝑜 ∈ 	𝑂6L	according	to	probability	distribution 𝜇(𝑠E)

𝜇: 𝑆×𝑂 → [0,1]
• 𝜇	determines	a	conventional	policy	over	actions,	or	
flat	policy, 𝜋	 = 	𝑓𝑙𝑎𝑡 𝜇 .



Value	functions	for	options	

• Define	𝑄Q 𝑠, 𝑜 the	value	of	taking	option	𝑄Q 𝑠, 𝑜 in	
state	𝑠 under	policy	𝜇,	as	

𝑄Q 𝑠, 𝑜 ≝ 𝐸{𝑟E + 𝛾𝑟EGH + ⋯|
𝑜	initiated	in	𝑠	at	time	t, 𝜇	followed	after	termination}

𝑄∗ 𝑠, 𝑜 ≝ 𝑚𝑎𝑥Q∈f(g)𝑄Q 𝑠, 𝑜
• Π(𝑂) is	the	set	of	all	policies	selecting	only	from	
options	in	𝑂



Options	define	a	Semi-Markov	
Decision	Process	(SMDP)	

• The	state	trajectory	of	an	MDP	is	made	up	of	discrete-time	
transitions	and	homogeneous	discount.	

• SMDP	comprises	larger,	continuous-time	transitions	and	
discrete	events	and	interval-dependent	discount.	

• Options	enable	an	MDP	trajectory	to	be	analyzed	in	either	
way.	 MDP	+	Options	=	SMDP	



SMDPs	

• The	amount	of	time	between	one	decision	and	the	
next	is	a	random	variable	𝜏
• Transition	probabilities	𝑝(𝑠j, 𝜏|s, 𝑎)
• Bellman	equations



Option	models	

The	reward	of	𝑜:
• Let	ε(𝑜, 𝑠, 𝑡) denote	the	event	of	𝑜 being	initiated	in	
state	𝑠 at	time	𝑡.

𝑟6m = 𝐸 𝑟E + 𝛾𝑟EGH + ⋯+ 𝛾@nH𝑟EG@ ε 𝑜, 𝑠, 𝑡

Transition	probabilities:
• For	all	𝑠 ∈ 𝑆,	𝑝(𝑠′, 𝜏) is	the	probability	that	the	option	
terminates	in	𝑠 after 𝜏 steps.	

𝑝66jm = 	p𝑝(𝑠j, 𝜏)𝛾@
q

@rH



Bellman	optimality	Equation

𝑉g∗(𝑠) ≝ 𝑚𝑎𝑥m∈gt[𝑟6
m + ∑ 𝑝(𝑠j|𝑠, 𝑜)𝑉g∗(𝑠′)6j ]

𝑄g∗ (𝑠, 𝑜) ≝ 𝑟6m + ∑ 𝑝 𝑠j 𝑠, 𝑜 𝑚𝑎𝑥mv∈gtv𝑄g
∗ 𝑠j, 𝑜′ ,6j

• Bellman	optimality	equations	can	be	solved,	exactly	
or	approximately,	using	methods	that	generalize	
the	usual	DP and	RL algorithms.	



Illustration:	Rooms	Example	



Illustration:	Rooms	Example	

Learning room-by-room is much faster than cell-by-cell 



SMDP	Q-learning	backups	

• At	state	𝑠,	initiate	option	o	and	execute	until	
termination
• Observe	termination	state	𝑠	́,	number	of	steps	𝜏,	
discounted	return	𝑟	

𝑄wGH(𝑠, 𝑜) ≝ 1 − 𝛼w 𝑄w(𝑠, 𝑜) + 𝛼w(𝑟 +
𝛾@𝑚𝑎𝑥m∈gt𝑄w(𝑠′, 𝑜))



Looking	inside	options	

• SMDP	methods	apply	to	options,	but	only	when	
they	are	treated	as	opaque	indivisible	units.	
• Interruptingoptions	before	they	would	terminate	
naturally	according	to	their	termination	conditions.	



Intra-option	Q-learning	

Update	option	oevery transition:

where

is	an	estimate	of	the	value	of	state-option	pair	(s,o)	upon	arrival	in	
state	s.	
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Options	Learning

Options	are	typically	learned	using	sub-goals	and	
“pseudo-rewards”.
• Tabular	cases	(Wiering &	Schmidhuber,	1997;	
Schaul et	al.,	2015,	Ofir Nachum et	al.	2018)	utilize	
row	states	as	sub-goals.
• Pre-defined	sub-goals	(Tessler et	al.,	2016;	Kulkarni	
et	al.,	2016)
• Options	Discovery



Option Discovery Algorithms

• policy	gradient	based	methods:
• The	Option-Critic	(Bacon	et	al.,	2017)
• Deep	Discovery	of	Options	(DDO)	(Fox	et	al.,	2017)
• FeUdal Networks	(Alexander	et	al.,	2017)

• Information-theoretic	based	methods:
• Variational Intrinsic	Control	(Gregor et	al.,	2016)
• Diversity	is	All	You	Need	(DIAYN)	(Eysenbach et	al.,	2018)
• (Florensa et	al.,	2017)

• Eigenoptions:	(Machdo et	al.,	2017;	Liu	et	al.,	2017)
• Variational options	discovery:	VALOR	(Achiamet	al.,	2018)	



The	option-critic	



Insight

• Options	can	be	learned	end-to-end	jointly	with	a	
policy-over-options	using	policy	gradients.



• The	policy	(actor)	is	decoupled	
from	its	value	function.	

• The	critic	provides	feedback	to	
improve	the	actor

• Learning	is	fully	online	

Actor-Critic Architecture (Sutton 1984) Option-Critic Architecture 

• Parameterize	internal	policies	
and	termination	conditions	

• Policy	over	options	is	computed	
by	a	separate	process	



The	option-value	function

• Where																													is	the	value	of	executing	an	
action	in	the	context	of	a	state-option	pair	

𝜔	– option																										𝜋{– policy	over	options	
𝜋|,}– the	intra-option	policy						𝛽|,}– termination

– the	option-value	function	upon	arrival,	



Main	result:	Gradient	updates	



FeUdal Networks	for	Hierarchical	
Reinforcement	Learning	



Insight

• Policy-over-options	changing	options	at	every	
step,	i.	e.,	high-level	deviates	from	its	own	
mission
• Levels	of	hierarchy	within	an	agent	
communicate	via	explicit	goals	



FeUdal Networks	(FUN,	1993)

● Proposed	by	Dayan	&	Hinton	in	1993

● Let	high-level	managers	set	tasks	to	sub-managers,	who	
learn	how	to	satisfy	those	goals.

○ Sub-Managers	learn	to	maximize	their	reinforcement	
in	the	context	of	the	command



FuN model	description	

𝑧:	Embedding	 of	env.	𝑥
ℎ�:	Internal	state	of	manager
ℎ�:	Internal	state	of	worker
𝑔: Goal

𝑤:	Embedding	 of	goal	𝑔
𝑐:	Prediction	horizon
𝑈:	Output	of	worker
𝜋: Vector	of	prob.	over	actions

𝑓������E:	CNN,	1st	layer:	16	8x8	filters	w/	stride	4,	2nd	layer	32	4x4	filters	w/	stride	
2,	fully	connected	layer	has	256	hidden	units.	
𝑓�6���� :	Fully	conn.	layer,	computes	state	space.	
𝑓����:	Standard	LSTM	w/	256	hidden	 units,	computes	goal.
𝑓����:	Dilated	LSTM	w/	256	hidden	units	(will	be	explained	detailed	later).	



FuN model	description	

𝑠E = 	𝜙(𝑥E) ∈ 𝑅�

Manager

𝑠E

𝑔E

𝑎E
𝑎EGH

Worker

• Complementary
representations
• Multiple time scale



Learning	

Bad	idea:	
• train	feudal	network	end-to-end	using	a	policy	
gradient	algorithm	operating	on	the	actions	taken	
by	the	Worker	

Good	idea:	
• independently	train	Manager	to	predict	
advantageous	directions	in	state	space	and	to	
intrinsically	reward	the	Worker	to	follow	these	
directions	



The	agents	goal	

Maximize	the	discounted	return	

• The	agent’s	behavior	is	defined	by	its	action-
selection	policy	𝜋.	FuN produces	a	distribution	over	
possible	actions.	



Manager’s	transition	policy
• Consider	𝑔E = 𝑔(𝑠E, 𝜃)
𝜇(. ):	High-level	policy	selecting	among	subpolicies

𝑜:	Sub-policy

• Transition	policy:
𝜋�� 𝑠EG� 𝑠E = 𝑝(𝑠EG�|𝑠E, 𝜇(𝑠E, 𝜃))

• Transition	policy	gradient:
𝛻}𝜋E�� = 𝔼 𝑅E − 𝑉 𝑠E 𝛻} log𝑝(𝑠EG�|𝑠E, 𝜇(𝑠E, 𝜃))

• It	is	assumed	that,	
𝑝(𝑠EG�|𝑠E, 𝜇(𝑠E, 𝜃)) ∝ 𝑒���t(6L��n6L,�L) (von	Mises-Fisher	distribution)



Gradient	for the goal:

where	
– advantage	function	

– value	function	estimate	from	the	internal	critic	
– cosine	similarity	

𝛻𝑔E = 𝐴E�𝛻}𝑑�m6(𝑠EG� − 𝑠E, 𝑔E 𝜃 )



Workers	intrinsic	reward	
•Worker’s	policy	𝜋 is	trained	to	maximize	𝑅E + 𝛼𝑅E

�.	

𝑅E:	Extrinsicdiscountedreturn
𝛼:	Hyperparameter	to	blend	intinsic	and	extrinsic reward
𝑅E�: Intrinsicdiscounted return
c: horizon

•Worker	policy	gradient:
𝛻𝜋E = 𝐴E

�𝛻} log	𝜋(𝑎E|𝑥E;𝜃)
𝐴E� = (𝑅E + 𝛼𝑅E� − 𝑉E�(𝑥E, 𝜃))

𝑟E� =
H
�
∑ 𝑑�m6(𝑠E − 𝑠En�, 𝑔En�)�
�rH : Intrinsic reward



Diversity	is	All	You	Need:	Learning	
Skills	without	a	Reward	Function



Insight

• Learning	skills	without	reward



FuN

Z ∼ p(z) – a latent variable; A policy conditioned on a fixed Z as a “skill” 



How	it	works

𝐼	(·;	·)	and	𝐻[·]	– mutual	information	and	Shannon	entropy
Maximize	𝐼	(𝑆; 	𝑍	)	–the	skill	should	control	which	states	the	agent	
visits;	the	skill	can	be	inferred	from	the	states	visited.	
Minimize		𝐼(𝐴; 	𝑍	|	𝑆)	– that	states,	not	actions,	are	used	to	
distinguish	skills
Maximize	𝐻[𝐴	|	𝑆]	–maximize	the	entropy	of	mixture	policy	



Implementation

Encourage	𝑝(𝑧)	to	have	high	entropy	– Fix	𝑝(𝑧)	to	be	uniform
Minimize	𝐻[𝑍|	𝑆] –Add	in	to	the	reward	function	.	
Maximize	𝐻[𝐴|	𝑆, 𝑍]	– using	soft	actor	critic.

As	we	cannot	integrate	over	all	states	and	skills	to	compute	
𝑝(𝑧	|	𝑠)	exactly,	we	approximate	this	posterior	with	a	learned	
discriminator	𝑞𝜑(𝑧	|	𝑠).	



Review	

• Options
• A	generalization	of	actions

• SMDP
• MDP + Options	=	SMDP	
• Temporal	abstraction

• Options	discovery	
• The	option-critic	
• FeUdal	
• DIAYN	
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