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Introduction

Introduction

o Generalized Policy lteration
Policy Evaluation: Estimate V/;

Any Policy Evaluation Algorithm
Policy Improvement: Generate n’ >
Any policy Improvement Algorithm

@ Policy iteration methods(value based) and policy gradient
methods(policy based) can be viewed under this framework.

@ Due to inaccurate estimate of V;, new policy doesn't necessarily
improve. Due to this, many algorithms based on generalized policy
iteration have unsatisfactory result on some problems. For example,
previously on Teris or locomotion, policy iteration or policy gradient
cannot beat gradient-free methods like cross-entropy method(CME)
and covariance matrix adaptation.

@ TRPO makes several approximations to a procedure with guaranteed
monotonic improvement.

o Effective for optlmlzmg large nonlinear policies.
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Problem Setup and Notations

Problem Setup and Notations

e MDP is defined as (S, A, P, r,po,7y). S state space, A action
space,P : § x A x § — R transition probability, r : § x A — R reward
function, po : S — R distribution of initial state, v € (0, 1) discount
factor.

@ Stochastic policy 7: S x A— R

@ Value function, state-action value and advantage:

Qﬂ'(su 3) = Eso,ag,sl,al...[z ’Ytr(st, at)’50 = S5,d0 = a] (1)
t=0

Vi(s) = ]E50730751731-~~[Z ’Vtr(st’ at)|so = s] (2)
t=0

Ax(s,a) = Qx(s,a) — Va(s) (3)

where s;11 ~ P(st11|St, at), ar ~ m(a¢|st) where
St+1 P(5t+1|5t7 at), dg ~ TF(at|5t)
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Problem Setup and Notations

@ Discounted visitation frequency
pr(s) = P(sp = s) + YP(s1 = 5) + V?P(s2 = 5)... (4)

where sp, ag, 51, a1..- is a sequence sampled according to policy m

@ A measure of policy performance: long run expected reward

n(r) = ]E50730751731---[Z Y r(sts ar)] = Esgnpo [V (50)] (5)
t=0

where so ~ pg, at ~ W(atfst), St4+1 ™~ P(st+1|5t7 at)
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Concepts and Theorems

Measuring Degree of Policy Improvement

Lemmal

(@) = 1(7) = Eg a0, w[Zv #(st, at)]

We can rewrite it in terms of state-distribution:

N(7) = 1) = By ag...mi Y7 Ax(st, a2)]

t=0
o
=3 P(se =s7) > _7(als)y Ax(s, a)
t=0 s€$S acA
o0
=D > Plse=sl7) ) 7(als)y Ax(s. a)
se$S t=0 acA
= pz(s)Y_7(als)Ax(s, a)
seS acA
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Concepts and Theorems

Proof of Lemmal

Proof.
Ar(s,a) = Eaop(ss,a)[r(s; a) +7Vr(s') — Vi(s)], therefore

B, 70> v Ax(st ac)]
t=0

=Ez[)_ 7 (r(sea) + 7 Va(serr) — Vi(se)]
t=0

=zl Vi(s0) + D" r(st, )]
t=0

= ESONPO[Vﬂ’(SO)] + ETl%[Z ’Vtr(st, ar)]
t=0

= —n(m) +n(7)
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Concepts and Theorems

Approximating Degree of Policy Improvement

Since the dependency of pz(a) on 7 is complicated, and require access to
system model, we define a "local approximation” to n(7), called " policy
advantage”. It serves as a surrogate function.

Le(@) =n(m) + Y pa(s) Y 7(als)Ax(s, a) (16)

seS aGA

—7](77) + Es,a,. N”[Z (a

at‘st)

tlst)

Ax(st, ar)] (17)

L (7) is a first order approximation to 7(7):

Ly, (m65) = m(0) (18)
VHLT(GO(TI-Q ‘9:90 = v977 )‘9:90 (19)
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Concepts and Theorems

Lower Bounding Degree of Policy Improvement

o When we use approximated A, instead of exact A, optimizing L, (%)
doesn’t necessarily give improved 7)(7).

@ A lower bound of 7(7) in terms of "distance” to the current policy
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Concepts and Theorems

Lower Bounding Degree of Policy Improvement

Theorem
ey Cmaxg (|1~
(1—7)2 D (r[[7) (20)

€ = MaXs 5 ‘Aﬁ(s7 a)|, DEP*(w||7) = maxs Dk (7 (-, s)||7(+, 5))

() = Lx(7) =
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Concepts and Theorems

Theorem's Proof

Definition

Two distributions p and g are a-coupled if there is a joint distribution
(p, g) with marginal p and g. For (X,Y) ~ (p,q), P(X # Y) < a. Two
policies ™ 7 are a-coupled if Vs 7(-,s) and 7(+, s) are a-coupled.

Lemma2

When Dk.(p||q) < o2, p, q are a-coupled.
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Concepts and Theorems

Theorem’s Proof

Lemma3

V\(s)‘ <2« n;gx’AW(s, a)! (21)

where A(s) = 3,4 7(als)Ax(s, a)

Proof of Lemma3:
Since Eour[Ar(s,a)] = Eanr[Qr(s,a) — Va(s)] =0

A(s) =Ez-#[Ax(s, 3)] (22)
=E(2,3)~(r,7)[Ar (s, 3) — Az (s, a)] (23)
=P(a # 3)E(s3)~(r,7)a23lAr (S, ) — Ax(s, )] (24)
<2« max Ax(s,a) (25)
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Concepts and Theorems

Theorem’s Proof

Lemma4
Let m and 7 be a-coupled. Then

A (s, a)‘ (26)

Eq,~[A(s:)] — Espor[A(s)]| < 401 — (1 — @)*) max

Proof of Lemma4
Consider the trajectory generated by 7:{sy, ap, si, a, ...} and
m:{so, a0, 51, a1, ... }. Let n; be the number of times a’ # a; for i < t.

Esnwl[A(st)] = P(ne = 0)E,, 7 s, —o[A(se)] + P(ne > 0)Eq 7 n,~0lA(st)]
(27)

Ee,~[A(st)] = P(ne = 0)Eq, rn,—ol[A(se)] + P(ne > 0)Eq, rjn~0lA(st)]
(28)
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Concepts and Theorems

Theorem’s Proof

Eq,~ln=0lA(5t)] = Egirorn—0lA(st)] (29)
Subtracting (28)(29), we have

EorlA(s)] ~ EsnrlA(s)] (30)
~(Boyrin 0l A(50)] = Espurin o Alst)])P(n: > 0) (31)
< (|EstineolAlse)]| + [Esmrine-olAs)]| ) P(ne > 0)  (32)

(33)

<4a max |A.(s, a)‘(l —(1-a))

The last inequality is because Lemma3 and that 7 and 7 are a-coupled.
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Concepts and Theorems

Theorem’s Proof

Proof of the theorem:
Let DZ¥(7||7) = o2, by lemma2, 7 and 7 are a-coupled.

(@) =n(7) + Y pa(s) D 7(als)Ax(s, a) (34)
seS acA
T+ A P(se = s[7) Y 7(als)Ax(s, a) (35)
seS t=0 acA
=E.z[>_7A(st)] (36)
t=0

La(7) =n(m) + 3 pals) 3 7(als)As(s, ) (37)

seS acA

(38)
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Concepts and Theorems

Theorem’s Proof

n(7) — La(7)] < Z VB Al - EconlAGs)]| (39)
g;7f4ae(1 —(1-a)h (40)
:4ae(1i7—1_7(11_a)) (41)

:
e 42
St )
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Prototype Algorithm

Monotonic Policy Improvement

Optimize over the bound will give improved policies:
let 7 = argmaxz[L(7) — CDZ(n||7)]. Then

n(m*) 2 max Lx(7) — CORE (x| |7) = La(m) = CDRE*(w||m) = n(r) (44)

This is actually a kind of minorization-maximization algorithm:
Objective n(7), find lower bound M. (7) < n(7) and My (7) = n(n).
Repeat the following steps:

Q@ 7' + argmaxM,(7)
Q@ w7

Then for generated 71, 75, ..., we have

n(me) = Mr,_, (7¢) > Mz, (7e-1) = n(me-1) (45)

which improves the objective monotonically.
Hong Yige
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Prototype Algorithm

Monotonic Policy Improvement

Algorithm 1 Policy iteration algorithm guaranteeing non-
decreasing expected return 7
Initialize 7.
for:=0.1,2,... until convergence do
Compute all advantage values A, (s, a).
Solve the constrained optimization problem

Tit1 = argmax [Lr, (m) — C D™ (7, 7))

T

where C' = 4e~/ (1 —7)?

and L, n(m; +Z Pr.(8 )Zﬂ(a\s)Am(s,a)

end for
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Trust Region Policy Optimization

1 Change from penalty to hard-constraint Let current policy parameter
be 0, and improved policy parameter is 8. In prototype algorithm, the
policy improvement step solves an optimization problem

meé‘X[Le(g) — CDR(0][0)] (46)

However,
e C= (147%)2 is too large, and results in too small step size.
@ C as a hyper-parameter hard to adjust

Change to a hard constraint on KL-divergence:

max Lo(8) (47)
subject to DI (0](6) < & (48)

for some 6 > 0
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Trust Region Policy Optimization

2 Change from max KL divergence to average KL divergence
Computing maximal KL divergence D7 is also impractical. We use
average KL divergence instead:

Di¢; (0]]6) = Esvp. o (-, 5)lI g, 5)] (49)
Dy (0]10) ~ DF(6]|0) (50)

The Trust Region Policy Optimization is finally formulated as

max Lg(6) (51)
0
subject to Dy (6| ‘6 (52)

for some fiexd § > 0
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Trust Region Policy Optimization

Simulated Robotic Locomotion

reward

0.0
== Vine
=== Single Path 0 0
=0.5 | === Natural Gradient -------------- Peesssesossssosesacos Fecsssccccccscscocccs
CEM
=== RWR
-1.0 : : :
0 50 100 150 200

number of policy iterations
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Trust Region Policy Optimization

Atari Games

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 —20.4 157 110 179
Human (Mnih et al.} 2013) 7456 31.0 368 —3.0 18900 28010 3690
Deep Q Learning (Mnih et al..[2013) 4092 168.0 470 20.0 1952 1705 581
UCC-I (Guo et al., 2014) 5702 380 741 21 20025 2995 692
TRPO - single path 1425.2 10.8 534.6 20.9 1973.5 1908.6 568.4
TRPO - vine 859.5 34.2 430.8 20.9 77325 788.4 450.2

@ using same set of parameters; discrete tasks.
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Trust Region Policy Optimization

Atari Games

breakout

beam rider .
¥ — single path
vine

single path

enduro
— single path

vine

1000

cost
cost.

-1200

-1480

o o 300 4
number of policy iterations
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number of policy iterations

@ Mostly monotonic

@ Sometimes vine is better, sometimes single path

Trust Region Policy Optimization

10 o 4
number of policy iterations

is better.
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Policy Evaluation Step

e To compute the surrogate objective Lg(#), we need to evaluate
Ar,(s,a) or Qr,(s,a) under current policy 7.

Lo(0) = (0) = > pry(5) Y _ m5(als)Any (s 2) (53)

seS acA
or Lo(8) = 3" pry(s) S my(als) Qry (s 2) (54)
seS acA
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Policy Evaluation Step

1 Single Path
@ Sample T of sy ~ pg. For each sy, generate a trajectory
T @ S0, 40, /0, S1, a1, M-.-SN, an, Iy using mg.
@ For each trajectory, objective function

L9(§ Esy, a0, NW[Z at‘St Qr(st, at)] (55)

~T ZZ str Qse- ) (56)

where for (s, a) appearing on the trajectories, suppose it appears for
m times

Z Z Z’y r(si, a;) (57)

T tist=s,ar=a =t
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Policy Evaluation Step

2 Vine
Generate T trajectories of Iength N+ 1 according to pg and 7y, collect the
states to form a "rollout set” D = U _1{sj0. sj1- st} Use rollouts to

estimate Q(s, a) for some of the a € A.
When action space is small, estimate Q(s, a) for all a:

T N
= pa(s) Y 7(als)Qx(s, 3) ZZ’Y"ZW(Sjma)@(SJma)
j=1 n=0

seS acA acA
(58)
Otherwise sample {ag, a1, ...ak }with some distribution g, g can be 7y or
uniform distribution.

I T Qlsin, 1)

. g(sjmak)
J=1n=0 >kt “q(Sjnak)

(59)
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Trust Region Policy Optimization

Policy Evaluation Step

sampling e,
.

trajectories X '
) trajectories +* &

G

5

.,

(3
“aget

two rollouts

A

I‘ S, ad, / using CRN
( all state-action | aN o .

. . PR LTI "
pairs used in K “erre
objective

po rollout set
Figure: left: single path; right: vine
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Trust Region Policy Optimization

Policy Improvement Step

1 Find the update direction and maximal step size from the
approximated problem

Perform Taylor expansion. First-order derivative of KL divergence is 0.

Lo(8) ~ n(0) + (0 — 0)T VLa(0)|5_, (60)

D (0]16) = (6 — 6)TA(0)(0 — 0) (61)
where A(6); = 525 Dfi (8116) 17,
Note that

o ViLg(0)l5_y = Vn(0)|5_,. it's just the policy gradient.
@ A(6) can be shown to be the Fisher Information Matrix.
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Trust Region Policy Optimization

Policy Improvement Step

o Find direction and maximal step size by solving

max{(? -~ 6) Va7 (62)
subject to %(5 —O)TAWG) G - 0) < 5 (63)

o It solves f = 6 + f3s, where direction s = A(9)_1V§L9(§), step size

B =+/20/sTA(0)s.

@ s is solved using a " Conjugate Gradient Algorithm” without forming
and invert the whole Fisher Information Matrix A(9).
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Trust Region Policy Optimization

Policy Improvement Step

2 Determine step size

@ Perform a line search in direction s, starting from max step size 3,
until the objective (25) Ly(6) improves.

Pseudo Code
For each iteration:

Q Solve s = A(0)1V;Lg(0)
Q B+« \/25/sTA(0)s
© Do

0«0+ pBs

B+ B/C_
while Ly(8) < n(60)

Q@ Return ]

v
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Proximal Policy Optimization

Proximal Policy Optimization

Perform conservative updates like TRPO, while being simpler to implement
Versionl: Clipped Objective

_ Tl'g(at‘st) e . . . .
e ri(0) = moa(alsy [ denotes the empirical expectation with sampling

distribution being the old distribution, ¢ is a hyper parameter

aifr<a
clip(r,a, b) = {b if r>b (64)

r otherwise
@ Optimize the new objective for several epochs:

LEEP(0) = B[min(re(0)Ae, clip(re(0),1 — €,1 + €)A;)] (65)
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Clipped Surrogate Loss

When |r:(6) — 1| > €, the gradient vanishes.

New policy my doesn't deviate too much from current policy 7oy, which in
effect is similar to TRPO.

LCLTP A>0

|
|
|
|
|
|
1
0 1 14e LOLIP

Figure: clipped surrogate objective vs r
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Proximal Policy Optimization

Adaptive KL-penalty

Version2: Adaptive KL-penalty

@ Optimize KL-penalized objective for several epochs

LKLPEN () — i mo(at[st) 4

o Caley e B0k [rola(st): Tanea(1s2)] (66)

o Adapt [ after each policy update. Compute
d = KLlmoia(-[t), Tnera(|50)]-
If d < diarg /1.5, B+ B/2
If d > diarg x 1.5, f < %2

Hong Yige
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Proximal Policy Optimization

Proximal Policy Optimization

Pseudo Code

Algorithm 1 PPO, Actor-Critic Style
for iteration=1,2,... do
for actor=1,2,..., N do
Run policy 7y .. in environment for 1" timesteps

old
Compute advantage estimates A, ..., Ap
end for
Optimize surrogate L wrt ¢, with K epochs and minibatch size M < NT
Oola 0
end for
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