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Distributional Reinforcement Learning

The traditional reinforcement learning (RL) is interested in
maximizing the expected return so we usually work directly with those
expectations.

The main idea of distributional RL (M. G. Bellemare, Dabney, and
Munos 2017) is to work directly with the full distribution of the return
rather than with its expectation.

Distributions rather than expectations are being optimized.
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Setting

Time-homogeneous Markov Decision Process (X ,A, R, P, γ).

X and A are respectively the state and action spaces, P is the
transition kernel P (·|x, a), γ ∈ [0, 1] is the discount factor, and R is
the reward function.

We explicitly treat R as a random variable .

A stationary policy π maps each state x ∈ X to a probability
distribution over the action space A.
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Bellman’s Equations

The return Zπ is the sum of discounted rewards, which is also a
random varaible(r.v.).

The value function Qπ of a policy π describes the expected return
from taking action a ∈ A from state x ∈ X , then acting according to
π:

Qπ(x, a) := EZπ(x, a) = E

[ ∞∑
t=0

γtR(xt, at)

]
, (1)

xt ∼ P (·|xt−1, at−1), at ∼ π(·|xt), x0 = x, a0 = a.

Bellman’s equation for value function

Qπ(x, a) = ER(x, a) + γEP,πQπ(x′, a′).
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Bellman’s Equations

Bellman’s optimality Equations

Q∗(x, a) = ER(x, a) + γEP max
a′∈A

Q∗(x′, a′).

A policy π∗ is optimal if Ea∼π∗Q∗(x, a) = maxaQ
∗(x, a).

The Bellman operator T π and optimality operator T are

T πQ(x, a) := ER(x, a) + γEP,πQ(x′, a′) (2)

T Q(x, a) := ER(x, a) + γEP max
a′∈A

Q(x′, a′). (3)

They are both contraction mappings (w.r.t. infinity norm), and their
repeated application to some initial Q0 converges exponentially to Qπ

or Q∗.
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Notations

Probability space (Ω,F ,Pr).

‖u‖p: the Lp norm of a vector u ∈ RX for 1 ≤ p ≤ ∞; applies to
vectors in RX×A.

The Lp norm of a random vector U : Ω→ RX (or RX×A) is

‖U‖p := [E [‖U(ω)‖pp]]1/p.

The c.d.f. of a random variable U by FU (y) := Pr{U ≤ y}, and its
inverse c.d.f. by F−1U (q) := inf{y : FU (y) ≥ q}.

A distributional equation U
D
:= V indicates that the distribution

function of random variable U is the same as the distribution function
of V .

Hao Liang (CUHK, SZ) Distributional Reinforcement Learning March 11, 2019 7 / 35



The Wasserstein Metric

The Wasserstein metric is defined between two c.d.fs F , G:

dp(F,G) := inf
U,V
‖U − V ‖p,

where the infimum is taken over all pairs of random variables (U, V )
with respective cumulative distributions F and G.

Given two random variables U , V with c.d.fs FU , FV , we will write
dp(U, V ) := dp(FU , FV ).

The metric dp has the following properties:

dp(aU, aV ) ≤ |a|dp(U, V ) (P1)

dp(A+ U,A+ V ) ≤ dp(U, V ) (P2)

dp(AU,AV ) ≤ ‖A‖pdp(U, V ). (P3)

where a is a scalar and random variable A independent of U, V .
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The Wasserstein Metric

This metric can be extended to vectors of random variables, such as
value distributions Z(x, a), using the corresponding Lp norm.

Let Z denote the space of value distributions with bounded moments.
For two value distributions Z1, Z2 ∈ Z we will make use of a maximal
form of the Wasserstein metric:

d̄p(Z1, Z2) := sup
x,a

dp(Z1(x, a), Z2(x, a)).

d̄p will be used to establish the convergence of the distributional
Bellman operators.

Lemma 1

d̄p is a metric over value distributions.
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The Wasserstein Metric

Proof.

The only nontrivial property is the triangle inequality. For any value
distribution Y ∈ Z, write

d̄p(Z1, Z2) = sup
x,a

dp(Z1(x, a), Z2(x, a))

(a)

≤ sup
x,a

[dp(Z1(x, a), Y (x, a)) + dp(Y (x, a), Z2(x, a))]

≤ sup
x,a

dp(Z1(x, a), Y (x, a)) + sup
x,a

dp(Y (x, a), Z2(x, a))

= d̄p(Z1, Y ) + d̄p(Y, Z2),

where in (a) we used the triangle inequality for dp.
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Policy Evaluation

We view the reward function as a random vector R ∈ Z, and define
the transition operator P π : Z → Z

P πZ(x, a)
D
:= Z(X ′, A′) (4)

X ′ ∼ P (· |x, a), A′ ∼ π(· |X ′),

where capital letters are used to emphasize the random nature of the
next state-action pair (X ′, A′).

The distributional Bellman operator T π : Z → Z is defined as

T πZ(x, a)
D
:= R(x, a) + γP πZ(x, a). (5)
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Policy Evaluation

Three sources of randomness define the compound distribution T πZ
The randomness in the reward R
The randomness in the transition Pπ

The next-state value distribution Z(X ′, A′)

We make the usual assumption that these three quantities are
independent.

(5) is a contraction mapping whose unique fixed point is the random
return Zπ.
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Contraction in d̄p

The distributional policy evaluation process Zk+1 := T πZk, starting
with some Z0 ∈ Z converges in the sense of d̄p.

Lemma 2

T π : Z → Z is a γ-contraction in d̄p.

Proof.

Consider Z1, Z2 ∈ Z. By definition,

d̄p(T πZ1, T πZ2) = sup
x,a

dp(T πZ1(x, a), T πZ2(x, a)). (6)

Hao Liang (CUHK, SZ) Distributional Reinforcement Learning March 11, 2019 13 / 35



Contraction in d̄p

Proof.

By the properties of dp, we have

dp(T πZ1(x, a), T πZ2(x, a))

= dp(R(x, a) + γPπZ1(x, a), R(x, a) + γPπZ2(x, a))

≤ γdp(PπZ1(x, a), PπZ2(x, a))

≤ γ sup
x′,a′

dp(Z1(x′, a′), Z2(x′, a′)),

where the last line follows from the definition of P π (see (4)). Combining
with (6) we obtain

d̄p(T πZ1, T πZ2) = sup
x,a

dp(T πZ1(x, a), T πZ2(x, a))

≤ γ sup
x′,a′

dp(Z1(x
′, a′), Z2(x

′, a′))

= γd̄p(Z1, Z2).
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Contraction in d̄p

Using Lemma 2, we conclude using Banach’s fixed point theorem that
T π has a unique fixed point, which is Zπ as defined in (1).

T π is not a contraction in all metrics.

Chung & Sobel (1987) have shown that T π is not a contraction in
total variation distance. Similar results can be derived for the
Kullback-Leibler divergence.
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Control

Different from policy evaluation, we consider the control setting
where we seek a policy π that maximizes value.

While all optimal policies attain the same value Q∗, in general there
are many optimal value distributions.

We will show that the distributional Bellman optimality operator
converges, in a weak sense, to the set of optimal value distributions.
However, this operator is not a contraction in any metric between
distributions.

Let Π∗ be the set of optimal policies. We can define the optimal
value distribution .
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Control

Definition 1 (Optimal value distribution)

An optimal value distribution is the v.d. of an optimal policy. The set of
optimal value distributions is Z∗ := {Zπ∗ : π∗ ∈ Π∗}.

Not all value distributions with expectation Q∗ are optimal: they must
match the full distribution of the return under some optimal policy.

Definition 2 (Set of greedy polices)

A greedy policy π for Z ∈ Z maximizes the expectation of Z. The set of
greedy policies for Z is

GZ := {π :
∑

a
π(a |x)EZ(x, a) = max

a′∈A
EZ(x, a′)}.
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Control

Recall that the expected Bellman optimality operator T is

T Q(x, a) = ER(x, a) + γEP max
a′∈A

Q(x′, a′). (7)

The maximization at x′ corresponds to some greedy policy implictly.

We call a distributional Bellman optimality operator any operator T
which implements a greedy selection rule

T Z = T πZ for some π ∈ GZ .

Here we need to explicitly specify a optimal policy π for a given value
distribution.

We are interested in the behaviour of the iterates Zk+1 := T Zk,
Z0 ∈ Z.
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Control

Lemma 3 (Convergence of EZk)

Let Z1, Z2 ∈ Z. Then

‖ET Z1 − ET Z2‖∞ ≤ γ ‖EZ1 − EZ2‖∞ ,

and in particular EZk → Q∗ exponentially quickly.

Proof.

The proof follows by linearity of expectation. Write TD for the
distributional operator and TE for the usual operator. Then

‖ETDZ1 − ETDZ2‖∞ = ‖TEEZ1 − TEEZ2‖∞
≤ γ ‖EZ1 − EZ2‖∞ .
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Control

However, convergence of itself is not assured to reach a fixed point.

Definition 3

A nonstationary optimal value distribution Z∗∗ is the value distribution
corresponding to a sequence of optimal policies. The set of n.o.v.d. is Z∗∗.

Theorem 1 (Convergence in the control setting)

Let X be measurable and suppose that A is finite. Then

lim
k→∞

inf
Z∗∗∈Z∗∗

dp(Zk(x, a), Z∗∗(x, a)) = 0 ∀x, a.

If X is finite, then Zk converges to Z∗∗ uniformly. Furthermore, if there is
a total ordering ≺ on Π∗, such that for any Z∗ ∈ Z∗,

T Z∗ = T πZ∗ with π ∈ GZ∗ , π ≺ π′ ∀π′ ∈ GZ∗ \ {π}.

Then T has a unique fixed point Z∗ ∈ Z∗.
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Control

Proposition 1

The operator T is not a contraction.

Consider the following example (Figure 1, left).

R = 0 R = ! ± 1

x2

x1

a1 a2

x1 x2, a1 x2, a2
Z∗ ε± 1 0 ε± 1
Z ε± 1 0 −ε± 1
T Z 0 0 ε± 1

Figure: Undiscounted two-state MDP for which the optimality operator T is
not a contraction, with example. The entries that contribute to d̄1(Z,Z∗)
and d̄1(T Z,Z∗) are highlighted.
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Control

consider Z as given in Figure 1 (right), and its distance to Z∗:

d̄1(Z,Z
∗) = d1(Z(x2, a2), Z

∗(x2, a2)) = 2ε,

When we apply T to Z, however, the greedy action a1 is selected and
T Z(x1) = Z(x2, a1). But

d̄1(T Z, T Z∗) = d1(T Z(x1), Z
∗(x1))

= 1
2 |1− ε|+

1
2 |1 + ε| > 2ε

for a sufficiently small ε.

Using a more technically involved argument, we can extend this result
to any metric which separates Z and T Z.
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Control

Proposition 2

Not all optimality operators have a fixed point Z∗ = T Z∗.

To see this, consider the same example, now with ε = 0, and a greedy
operator T which breaks ties by picking a2 if Z(x1) = 0, and a1 otherwise.
Then the sequence T Z∗(x1), (T )2Z∗(x1), . . . alternates between
Z∗(x2, a1) and Z∗(x2, a2).

Proposition 3

That T has a fixed point Z∗ = T Z∗ is insufficient to guarantee the
convergence of {Zk} to Z∗.
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Approximate Distributional Learning

Full computation of the distributional Bellman operator on a return
distribution function is typically either impossible (due to unknown
MDP dynamics), or computationally infeasible.

Several key approximations are required to produce a practical,
scalable distributional RL algorithm

distribution parametrisation
stochastic approximation of the Bellman operator
projection of the Bellman target distribution
gradient updates via a loss function
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Parametric Distribution

We will approximate the value distribution using a discrete
distribution parametrized by N and Vmin, Vmax, and whose support is
the set of atoms {zi = Vmin + i4z : 0 ≤ i < N}, 4z := Vmax−Vmin

N−1 .

The atom probabilities are given by a parametric model
θ : X ×A → RN

Zθ(x, a) = zi w.p. pi(x, a) :=
eθi(x,a)∑
j e

θj(x,a)
.
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Projected Bellman Update

Using a discrete distribution may cause the Bellman update T Zθ and
our parametrization Zθ almost always have disjoint supports.

It is natural to minimize the Wasserstein metric (viewed as a loss)
between T Zθ and Zθ, which is also robust to discrepancies in support.

Evaluation of the distributional Bellman operator requires integrating
over all possible next state-action-reward combinations, so stochastic
approximation of Bellman operator which learns from sample
transitions is needed.

Combining them together, we project the sample Bellman update
T̂ Zθ onto the support of Zθ.
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Projected Bellman Update

Given a sample transition (x, a, r, x′), we compute the Bellman
update T̂ zj := r + γzj for each atom zj , then distribute its
probability pj(x

′, π(x′)) to the immediate neighbours of T̂ zj .
The next-state distribution as parametrized by a fixed parameter θ̃.
The sample loss Lx,a(θ) is the cross-entropy term of the KL
divergence

Dkl(ΦT̂ Zθ̃(x, a) ‖Zθ(x, a)),

which is readily minimized e.g. using gradient descent.

This choice of distribution and loss is called the categorical algorithm
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Algorithm 1

Figure: Categorial Algorithm
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Arcade Learning Environment

The categorical algorithm was applied to games from the Arcade
Learning Environment. Five training games (Fig 3) and 52 testing
games were used.

ASTERIX

Q*BERT

BREAKOUT PONG

SEAQUEST
Categorical DQN

5 returns
11 returns

21 returns
51 returns

DQNBernoulli

A
ve

ra
ge

 S
co

re

Training Frames (millions)

Dueling Arch.

Figure: Categorical DQN: Varying number of atoms in the discrete distribution.
Scores are moving averages over 5 million frames.
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Arcade Learning Environment

DQN architecture. Output the atom probabilities pi(x, a) instead of
action-values, and chose Vmax = −Vmin = 10.

Replace the squared loss (r + γQ(x′, π(x′))−Q(x, a))2 by Lx,a(θ)
and train the network to minimize this loss.

Figure 4 illustrates the typical value distributions we observed in our
experiments.

Three actions lead to the agent releasing its laser too early and
eventually losing the game. The corresponding distributions assign a
significant probability to 0.
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Arcade Learning Environment

Return

Pr
ob

ab
ili
ty

Right
Left

Right+Laser
Left+Laser

Laser

Noop

Figure: Learned value distribution during an episode of Space Invaders.
Different actions are shaded different colours. Returns below 0 (which do not
occur in Space Invaders) are not shown here as the agent assigns virtually no
probability to them.
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State-of-the-Art Results

The performance of the 51-atom agent (C51) on the training games
was compared with DQN (ε = 0.01), Double DQN (van Hasselt et al.,
2016) , the Dueling architecture (Wang et al., 2016), and Prioritized
Replay (Schaul et al., 2016) , comparing the best evaluation score
achieved during training.

Figure: Percentage improvement, per-game, of C51 over Double DQN,
computed using van Hasselt et al.’s method.

Hao Liang (CUHK, SZ) Distributional Reinforcement Learning March 11, 2019 32 / 35



State-of-the-Art Results

Mean Median >H.B. >DQN
dqn 228% 79% 24 0
ddqn 307% 118% 33 43
Duel. 373% 151% 37 50
Prior. 434% 124% 39 48
Pr. Duel. 592% 172% 39 44

C51 701% 178% 40 50

unreal† 880% 250% - -

Figure: Mean and median scores across 57 Atari games, measured as percentages
of human baseline (H.B., Nair et al., 2015)
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Why Does Learning a Distribution Matter?

Reduced chattering. The instability in the Bellman optimality
operator combined with function approximation may prevent the
policy from converging. The gradient-based categorical algorithm is
able to mitigate these effects by effectively averaging the different
distributions.

A richer set of predictions. The distribution offers a richer set of
predictions for learning, offerring a set of auxiliary tasks which is
tightly coupled to the reward.
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