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Motivation Example

Let π ∈ Π be a stationary deterministic policy, Qπ(x, a) = r(x, a) + γEx′∼P (·|x,a)V
π(x′).

Qπ(x1, a1) = 1 + γ
[
1
2
V π(x1) + 1

2
V π(x2)

]
= 1 + γ

2
V π(x1)− (1 + ε) = γ

2
V π(x1)− ε

Qπ(x1, a2) = 0 + γV π(x1)

Note that for any π ∈ Π, we have Qπ(x1, a2) > Qπ(x1, a1), therefore V ∗(x1) = 0.

The value difference between optimal and second best action, action gap, is

Q∗(x1, a2)−Q∗(x1, a1) = ε
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Why the size of action gap is important?

In Q-learning methods, we usually use a greedy policy w.r.t. Q-function:

π(x) = argmax
a∈A

Q(x, a).

When the MDP can be solved exactly, there is no issue.

When we cannot solve the MDP exactly, we use some approximation methods,
for example:

sample-based estimations Q(x, a) ≈ r(x, a) + γ 1
N

N∑
n=1

max
b
Q(x′n, b

′) or

low-dimensional representation Q(x, a) ≈
K∑
k=1

ωkψk(x, a).

Small perturbations in the Q-function may result in identifying a wrong action to be the
optimal!
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Nonstationarity

Let Π be a set of all stationary deterministic policies.
Note Π = {π1, π2 : π1(x1) = a1; π2(x1) = a2}.

From the Bellman eq., V π1 (x1) = 1 + γ
[
1
2
V π1 (x1) + 1

2
V π1 (x2)

]
= γ

2
V π1 (x1)− ε

V π1 (x1) = −
ε

1− γ/2
, V π2 (x1) = 0

Why Q∗(x1, a2)−Q∗(x1, a1) = ε?

Q∗(x1, a1) = r(x1, a1) + γEx′∼P (·|x,a1)V
π2 (x′) = −ε

does not describe the value of any stationary policy!
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Standard approach

In the algorithms based on value iterations, we update Q−factors according to
the Bellman equation.
The Bellman operator:

TQ(x, a) := r(x, a) + γEx′∼P (·|x,a)

[
max
b∈A

Q(x′, b)
]
.

Iterations
Qk+1 = TQk

converge to the optimal Q∗(x, a) from which one can obtain an optimal policy

π∗(x) = argmax
a∈A

Q∗(x, a).

Can we modify the algorithm so that its iterations will converge to Q̃∗(x, a) s.t.

π∗(x) = argmax
a∈A

Q̃∗(x, a).

Q̃∗(x, π∗(x))− Q̃∗(x, a) ≥ Q∗(x, π∗(x))−Q∗(x, a)?
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Extended state space

Idea: let do not change the action if we return to the state after one time-step.

If P (x|x, a) = p > 0 add a state
(x, a) to a state space,
Pext(x|x, a) := 0,
Pext((x, a)|x, a) := p.

Pext(y|(x, a)) := P (y|x, a),
Pext((x, a)|(x, a)) := P (x|x, a).

+ Q∗(x1, a2)−Q∗(x1, a1) = ε
1−γ/2

– We doubled the state space
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Consistent Bellman operator

The consistent Bellman operator (CB operator):

TCBQ(x, a) := r(x, a) + γE
[
Ix 6=x′ max

b∈A
Q(x′, b) + Ix=x′Q(x, a)

]
. (1)

The consistent Bellman operator is optimality-preserving and gap-increasing!
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Example

Let Qk(x1, a1) = 0, Qk(x1, a2) = 1 and, for extended MC Qk((x1, a1),×) = 10.
Consider a transition (x, a, y, r) = (x1, a1, x1, 1).

The Bellman Operator: Qk+1(x1, a1) = TQ(x1, a1) = r + γmax
b
Q(x1, b) = 1 + γ

The consistent Bellman Operator:
Qk+1(x1, a1) = TCBQ(x1, a1) = r + γQ(x1, a1) = 1

The Bellman Operator on Extended MC:
Qk+1(x1, a1) = TQ(x1, a1) = r + γQk((x1, a1),×) = 1 + 10γ
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Optimality-preserving operator

Definition

An operator T ′ is optimality-preserving if, for any Q0 ∈ Q and x ∈ X, for iterations

Qk+1 = T ′Qk

the limit

Ṽ (x) := lim
k→∞

max
a∈A

Qk(x, a)

exists, is unique s.t. Ṽ (x) = V ∗(x), and for all a ∈ A,

Q∗(x, a) < V ∗(x) =⇒ lim sup
k→∞

Qk(x, a) < V ∗(x),

where Q∗(x, a) = r(x, a) + γEx′∼P (·|x,a)V
∗(x′).

At least one optimal action remains optimal

Suboptimal actions remain suboptimal
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Gap-increasing operator

Definition

An operator T ′ is gap-increasing if, for all Q0 ∈ Q, x ∈ X, a ∈ A letting

Qk+1 = T ′Qk and Vk(x) := max
b
Qk(x, b)

we have

lim inf
k→∞

[
Vk(x)−Qk(x, a)

]
≥ V ∗(x)−Q∗(x, a)
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Main Result

Theorem

Let T be the Bellman operator. Let T ′ be an operator with the property that there
exists α ∈ [0, 1) s.t. for all Q ∈ Q, x ∈ X, a ∈ A

1 T ′Q(x, a) ≤ TQ(x, a)

2 T ′Q(x, a) ≥ TQ(x, a)− α
[
max
a∈A

Q(x, a)−Q(x, a)
]
.

Then T ′ is both optimality-preserving and gap-increasing.
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Consistent Bellman Operator

Theorem

Let T be the Bellman operator. Let T ′ be an operator with the property that there
exists α ∈ [0, 1) s.t. for all Q ∈ Q, x ∈ X, a ∈ A

1 T ′Q(x, a) ≤ TQ(x, a)

2 T ′Q(x, a) ≥ TQ(x, a)− α
[
max
b∈A

Q(x, b)−Q(x, a)
]
.

Then T ′ is both optimality-preserving and gap-increasing.

The consistent Bellman operator:

TCBQ(x, a) = r(x, a) + γE
[
Ix 6=x′ max

b∈A
Q(x′, b) + Ix=x′Q(x, a)

]
= TQ(x, a)− γP (x|x, a)

[
max
b∈A

Q(x, b)−Q(x, a)
]
.

1 Obvious
2 1 > α ≥ max

x,a
γP (x|x, a), for example α = γ.
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Family of Convergent Operators

The advantage learning (AL) operator:

TALQ(x, a) := TQ(x, a)− α
[
max
b∈A

Q(x, b)−Q(x, a)
]

(2)

Intuition:
We may subtract up to max

b
Qk(x, b)−Qk(x, a) from Qk(x, a) at each iteration.

max
b
Qk(x, b)−Qk(x, a) is the action gap for Qk, not Q∗.

The persistent advantage learning (PAL) operator:

TPALQ(x, a) := max
{
TALQ(x, a), r(x, a) + γEQ(x′, a)

}
(3)

Intuition:
We encourage greedy policies which infrequently switch between actions.
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α−Lazy Operator

The AL (2) and PAL (3) operators are not contractions, but cannot have more
than 1 fixed point. The CB operator (1) is a contraction map.

The α−Lazy Operator may have multiple fixed points:

Tα−LazyQ(x, a) :=


Q(x, a), if Q(x, a) ≤ TQ(x, a) and

TQ(x, a) ≤ αV (x) + (1− α)Q(x, a)

TQ(x, a), otherwise

Tα−Lazy is optimality-preserving and gap-increasing
Tα−Lazy is not a contraction map and may have multiple fixed
points.
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Experimental Results on Atari games

Deep Q-learning (Mnih et al. 2015):

Initialize function Qθ with random weights, replay memory D to capacity N .
for episode = 1, ...,M

for t = 1, .., T
Choose action at according to ε−greedy policy w.r.t. max

a
Qθt(xt, a)

Observe (xt+1, rt). Store (xt, at, rt, st+1) in D.
Sample minibatch

{
(xj , aj , rj , xj+1)

}
j∈M

from D.

Set yj = rj + γmax
a′

Qθt(xj+1, a
′)

Find θt+1 that minimizes 1
|M|

∑
j∈M

(
yj −Qθ(xj , aj)

)2
We will compare:

Standard DQL: yj = rj + γmax
a′

Qθt(xj+1, a
′)

AL-DQL: yj = rj + γmax
a′

Qθt(xj+1, a
′)− α[max

b
Qθt(xj , b)−Qθt(xj , aj)]

PAL-DQL: yj = rj + γmax
a′

Qθt(xj+1, a
′)−

αmin
[
max
b
Qθt(xj , b)−Qθt(xj , aj),max

b
Qθt(xj+1, b)−Qθt(xj+1, aj)

]
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Over 60 games for α = 0.9:
Operator DQL AL-DQL PAL-DQL

Best score amount 60 games 12* 21* 31*
The median score improvement 0% 8.4% 9.1%
The average score improvement 0% 27% 32.5%

* For 2 games the score was equal for all three settings.
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Action gap and value function estimation

Figure: Learning curves for two Atari games: Asterix and Space Invaders

Figure: Action gap and estimated value function (see, van Hasselt 2010) for Space Invaders

Mark Gluzman (iDDA, CUHK (Shenzhen)) Increasing the Action Gap March 18, 2019 17 / 25



Conclusion and open questions

1 The results of the article indicate that there are many practical
optimality-preserving operators which do not preserve suboptimal Q−values and
are not contraction.
Is it possible to find weaker conditions on operators to be optimality-preserving?

2 The consistent Bellman operator was proposed:

TCBQ(x, a) = r(x, a) + γE
[
Ix 6=x′ max

b∈A
Q(x′, b) + Ix=x′Q(x, a)

]
= TQ(x, a)− γP (x|x, a)

[
V (x)−Q(x, a)

]
Then the authors generalized it to the advantage learning (AL) operator:

TALQ(x, a) := TQ(x, a)− α[V (x)−Q(x, a)], α ∈ [0, 1). (4)

What is the probabilistic interpretation of α and advantage learning?
3 The existence of a broad family of optimality-preserving operators have been

revealed: CB, AL, PAL, α−Lazy.
Which of these operators, if any, should we preferred to the Bellman operator?
Is it possible to find a ”maximal efficient” optimality-preserving operator?
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Proofs

Lemma

Let Q ∈ Q and πQ be the policy greedy with respect to Q: πQ(x) := argmaxaQ(x, a).
Let T ′ be an operator with the properties that, for all x ∈ X and a ∈ A:

1 T ′Q(x, a) ≤ TQ(x, a), and
2 T ′Q(x, πQ(x)) = TQ(x, πQ(x)).

Consider the sequence
Qk+1 := T ′Qk

with Q0 ∈ Q, and let

Vk := max
a

Qk(x, a),

Then
the sequence (Vk : k ∈ N) converges, and, for all x ∈ X

lim
k→∞

Vk(x) ≤ V ∗(x).
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Proof of Lemma

For an arbitrary x ∈ X, consider a sequence {Vk(x)}∞k=0

The sequence {Vk(x)}∞k=0 is bounded:

lim sup
k→∞

Qk(x, a) = lim sup
k→∞

(T ′)kQ0(x, a) ≤ lim sup
k→∞

T kQ0(x, a) = Q∗(x, a)

Fact: if we have a bounded sequence of real numbers {b0, b1, ..., bk, ...} s.t.

bk+1 ≥ bk − cγk, γ ∈ [0, 1) and c > 0,

then the sequence {bk}∞k=0 converges.

Let ak := argmaxaQk(x, a), Pk := P (·|x, ak), P1:k = PkPk−1...P1.

Vk+1(x) ≥ r(x, ak) + γEPkVk(x
′)

= TQk−1(x, ak) + γEPk [Vk(x
′)− Vk−1(x

′)]

≥ T ′Qk−1(x, ak) + γEPk [Vk(x
′)− Vk−1(x

′)]

= Vk(x) + γEPk [Vk(x
′)− Vk−1(x

′)]

≥ Vk(x) + γEP1:k [V1(x
′′)− V0(x

′′)]

≥ Vk(x)− γk||V1 − V0||∞.
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Proof of the main theorem

Theorem

Let T be the Bellman operator. Let T ′ be an operator with the property that there
exists α ∈ [0, 1) s.t. for all Q ∈ Q, x ∈ X, a ∈ A

1 T ′Q(x, a) ≤ TQ(x, a)

2 T ′Q(x, a) ≥ TQ(x, a)− α[V (x)−Q(x, a)].

Then T ′ is both

1. optimality-preserving:

1.1 lim
k→∞

Vk(x) = V ∗(x)

1.2 Q∗(x, a) < V ∗(x) =⇒ lim sup
k→∞

Qk(x, a) < V ∗(x).

2. gap-increasing: lim inf
k→∞

[
Vk(x)−Qk(x, a)

]
≥ V ∗(x)−Q∗(x, a)
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Proof of the main theorem

Note that Vk(x)−Qk(x, πQk (x)) = 0 and we can apply the previous lemma:
lim
k→∞

Vk(x) = Ṽ (x) exists, where{
Qk(x, a) = T ′Qk−1(x, a)

Vk(x) = maxaQk(x, a)

We want to get Ṽ (x) = V ∗(x).
Let’s show that Ṽ (x) = max

a∈A
TQ̃(x, a), where Q̃(x, a) = lim sup

k→∞
Qk(x, a).

Q̃(x, a) ≤ TQ̃(x, a).

Q̃(x, a) = lim sup
k→∞

T ′Qk(x, a) ≤ lim sup
k→∞

TQk(x, a)

= lim sup
k→∞

[
r(x, a) + γE[max

b
Qk(x

′, b)
]

≤ r(x, a) + γE[max
b

lim sup
k→∞

Qk(x
′, b)

= TQ̃(x, a).
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Proof of the main theorem: Q̃(x, a) ≥ TQ̃(x, a).

Q̃(x, a) ≥ TQ̃(x, a).

Qk+1(x, a) ≥ TQk(x, a)− α[Vk(x)−Qk(x, a)] =
r(x, a) + γEVk(x′)− αVk(x) + αQk(x, a).

Taking lim sup of both sides:
Q̃(x, a) ≥ r(x, a)+γEṼ (x′)−αṼ (x)+αQ̃(x, a) = TQ̃(x, a)−αṼ (x)+αQ̃(x, a).

Q̃(x, a) ≥ 1
1−α

[
TQ̃(x, a)− αṼ (x)

]
Taking max

a∈A
of both sides:

Ṽ (x) ≥ 1
1−α

[
max
a∈A

TQ̃(x, a)− αṼ (x)
]
=⇒ Ṽ (x) ≥ max

a∈A
TQ̃(x, a).
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Proof of the main theorem: gap-increasing

Observe that the statement:

lim inf
k→∞

[
Vk(x)−Qk(x, a)

]
≥ V ∗(x)−Q∗(x, a)

is equivalent for the following one for optimality-preserving operators:

lim sup
k→∞

Qk(x, a) ≤ Q∗(x, a). (5)

The statement (5) has already been proved in the Lemma.
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