Increasing the Action Gap

Mark Gluzman

iDDA, CUHK (Shenzhen)

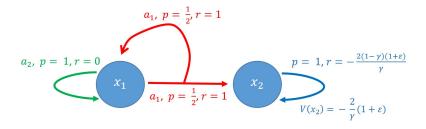
March 18, 2019

Mark Gluzman (iDDA, CUHK (Shenzhen))

Increasing the Action Gap

March 18, 2019 1/25

Motivation Example



• Let $\pi \in \Pi$ be a stationary deterministic policy, $Q^{\pi}(x, a) = r(x, a) + \gamma \mathbb{E}_{x' \sim P(\cdot|x, a)} V^{\pi}(x')$.

•
$$Q^{\pi}(x_1, a_1) = 1 + \gamma \left[\frac{1}{2} V^{\pi}(x_1) + \frac{1}{2} V^{\pi}(x_2) \right] = 1 + \frac{\gamma}{2} V^{\pi}(x_1) - (1 + \varepsilon) = \frac{\gamma}{2} V^{\pi}(x_1) - \varepsilon$$

•
$$Q^{\pi}(x_1, a_2) = 0 + \gamma V^{\pi}(x_1)$$

 Note that for any π ∈ Π, we have Q^π(x₁, a₂) > Q^π(x₁, a₁), therefore V*(x₁) = 0. The value difference between optimal and second best action, *action gap*, is

$$Q^*(x_1, a_2) - Q^*(x_1, \boldsymbol{a_1}) = \varepsilon$$

Mark Gluzman (iDDA, CUHK (Shenzhen))

Increasing the Action Gap

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why the size of action gap is important?

In Q-learning methods, we usually use a greedy policy w.r.t. Q-function:

$$\pi(x) = \arg \max_{a \in A} Q(x, a).$$

- When the MDP can be solved exactly, there is no issue.
- When we cannot solve the MDP exactly, we use some approximation methods, for example:

sample-based estimations $Q(x,a) \approx r(x,a) + \gamma \frac{1}{N} \sum_{n=1}^{N} \max_{b} Q(x'_n,b')$ or

low-dimensional representation $Q(x, a) \approx \sum_{k=1}^{K} \omega_k \psi_k(x, a).$

Small perturbations in the *Q*-function may result in identifying a wrong action to be the optimal!

イロト 不得 トイヨト イヨト ヨー ろくの

Nonstationarity

$$a_{1}, p = \frac{1}{2}, r = 1$$

$$a_{2}, p = 1, r = 0$$

$$x_{1}$$

$$a_{1}, p = \frac{1}{2}, r = 1$$

$$x_{2}$$

$$y = 1, r = -\frac{2(1-\gamma)(1+\varepsilon)}{\gamma}$$

$$y$$

$$V(x_{2}) = -\frac{2}{\gamma}(1+\varepsilon)$$

Let Π be a set of all stationary deterministic policies.

• Note
$$\Pi = \{\pi_1, \pi_2: \pi_1(x_1) = a_1; \pi_2(x_1) = a_2\}.$$

• From the Bellman eq., $V^{\pi_1}(x_1) = 1 + \gamma \left[\frac{1}{2} V^{\pi_1}(x_1) + \frac{1}{2} V^{\pi_1}(x_2) \right] = \frac{\gamma}{2} V^{\pi_1}(x_1) - \varepsilon$

$$V^{\pi_1}(x_1) = -\frac{\varepsilon}{1 - \gamma/2}, \quad V^{\pi_2}(x_1) = 0$$

Why $Q^*(x_1, a_2) - Q^*(x_1, a_1) = \varepsilon$?

$$Q^*(x_1, a_1) = r(x_1, a_1) + \gamma \mathbb{E}_{x' \sim P(\cdot | x, a_1)} V^{\pi_2}(x') = -\varepsilon$$

does not describe the value of any stationary policy!

Mark Gluzman (iDDA, CUHK (Shenzhen))

Increasing the Action Gap

イロト 不得 トイヨト イヨト 二日

Standard approach

 In the algorithms based on value iterations, we update Q-factors according to the Bellman equation.

The Bellman operator:

$$TQ(x,a) := r(x,a) + \gamma \mathbb{E}_{x' \sim P(\cdot|x,a)} \Big[\max_{b \in A} Q(x',b) \Big].$$

Iterations

$$Q_{k+1} = TQ_k$$

converge to the optimal $Q^*(x, a)$ from which one can obtain an optimal policy

$$\pi^*(x) = \arg\max_{a \in A} Q^*(x, a).$$

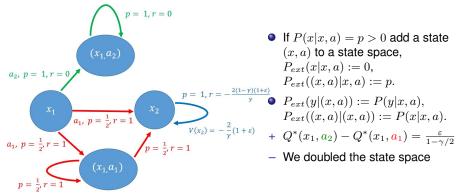
Can we modify the algorithm so that its iterations will converge to Q^{*}(x, a) s.t.

•
$$\pi^*(x) = \arg \max_{a \in A} \tilde{Q}^*(x, a).$$

• $\tilde{Q}^*(x, \pi^*(x)) - \tilde{Q}^*(x, a) \ge Q^*(x, \pi^*(x)) - Q^*(x, a)$?

Extended state space

Idea: let do not change the action if we return to the state after one time-step.



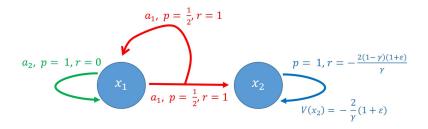
The consistent Bellman operator (CB operator):

$$T_{CB}Q(x,a) := r(x,a) + \gamma \mathbb{E}\Big[\mathbb{I}_{x \neq x'} \max_{b \in A} Q(x',b) + \mathbb{I}_{x = x'}Q(x,a)\Big].$$
 (1)

• The consistent Bellman operator is *optimality-preserving* and *gap-increasing*!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example



Let $Q_k(x_1, a_1) = 0$, $Q_k(x_1, a_2) = 1$ and, for extended MC $Q_k((x_1, a_1), \times) = 10$. Consider a transition $(x, a, y, r) = (x_1, a_1, x_1, 1)$.

- The Bellman Operator: $Q_{k+1}(x_1, a_1) = TQ(x_1, a_1) = r + \gamma \max_b Q(x_1, b) = 1 + \gamma$
- The consistent Bellman Operator: $Q_{k+1}(x_1, a_1) = T_{CB}Q(x_1, a_1) = r + \gamma Q(x_1, a_1) = 1$
- The Bellman Operator on Extended MC: $Q_{k+1}(x_1, a_1) = TQ(x_1, a_1) = r + \gamma Q_k((x_1, a_1), \times) = 1 + 10\gamma$

Optimality-preserving operator

Definition

An operator T' is *optimality-preserving* if, for any $Q_0 \in \mathcal{Q}$ and $x \in X$, for iterations

$$Q_{k+1} = T'Q_k$$

the limit

$$\tilde{V}(x) := \lim_{k \to \infty} \max_{a \in A} Q_k(x, a)$$

exists, is unique s.t. $\tilde{V}(x) = V^*(x)$, and for all $a \in A$,

$$Q^*(x,a) < V^*(x) \Longrightarrow \limsup_{k \to \infty} Q_k(x,a) < V^*(x),$$

where $Q^{*}(x, a) = r(x, a) + \gamma \mathbb{E}_{x' \sim P(\cdot|x, a)} V^{*}(x')$.

- At least one optimal action remains optimal
- Suboptimal actions remain suboptimal

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

An operator T' is gap-increasing if, for all $Q_0 \in \mathcal{Q}, x \in X, a \in A$ letting

$$Q_{k+1} = T'Q_k$$
 and $V_k(x) := \max_b Q_k(x,b)$

we have

$$\liminf_{k \to \infty} \left[V_k(x) - Q_k(x, a) \right] \ge V^*(x) - Q^*(x, a)$$

Mark Gluzman (iDDA, CUHK (Shenzhen))

< ロ > < 同 > < 回 > < 回 >

Theorem

Let *T* be the Bellman operator. Let *T'* be an operator with the property that there exists $\alpha \in [0, 1)$ s.t. for all $Q \in Q$, $x \in X$, $a \in A$

$$T'Q(x,a) \le TQ(x,a)$$

$$T'Q(x,a) \ge TQ(x,a) - \alpha \bigg[\max_{a \in A} Q(x,a) - Q(x,a) \bigg].$$

Then T' is both optimality-preserving and gap-increasing.

< ロ > < 同 > < 回 > < 回 >

Consistent Bellman Operator

Theorem

Let *T* be the Bellman operator. Let *T'* be an operator with the property that there exists $\alpha \in [0, 1)$ s.t. for all $Q \in Q$, $x \in X$, $a \in A$

$$T'Q(x,a) \le TQ(x,a)$$

$$T'Q(x,a) \ge TQ(x,a) - \alpha \Big[\max_{b \in A} Q(x,b) - Q(x,a) \Big].$$

Then T' is both optimality-preserving and gap-increasing.

The consistent Bellman operator:

$$T_{CB}Q(x,a) = r(x,a) + \gamma \mathbb{E}\Big[\mathbb{I}_{x \neq x'} \max_{b \in A} Q(x',b) + \mathbb{I}_{x=x'}Q(x,a)\Big]$$
$$= TQ(x,a) - \gamma P(x|x,a)\Big[\max_{b \in A} Q(x,b) - Q(x,a)\Big].$$

$\begin{tabular}{ll} \hline 0 \end{tabular} \\ \begin{tabular}{ll} \hline 0 \end{tabular} \\ \hline 1 > \alpha \ge \max_{x,a} \gamma P(x|x,a) \end{tabular}, \end{tabular} \end{tabular}$

Mark Gluzman (iDDA, CUHK (Shenzhen))

< ロ > < 同 > < 回 > < 回 > < 回 >

Family of Convergent Operators

The advantage learning (AL) operator:

$$T_{AL}Q(x,a) := TQ(x,a) - \alpha \left[\max_{b \in A} Q(x,b) - Q(x,a) \right]$$
⁽²⁾

Intuition:

We may subtract up to $\max_{b} Q_k(x,b) - Q_k(x,a)$ from $Q_k(x,a)$ at each iteration. $\max_{b} Q_k(x,b) - Q_k(x,a)$ is the action gap for Q_k , not Q^* .

• The persistent advantage learning (PAL) operator:

$$T_{PAL}Q(x, \boldsymbol{a}) := \max\left\{T_{AL}Q(x, \boldsymbol{a}), r(x, \boldsymbol{a}) + \gamma \mathbb{E}Q(x', \boldsymbol{a})\right\}$$
(3)

Intuition:

We encourage greedy policies which infrequently switch between actions.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

$\alpha-$ Lazy Operator

- The AL (2) and PAL (3) operators are not contractions, but cannot have more than 1 fixed point. The CB operator (1) is a contraction map.
- The α -Lazy Operator may have multiple fixed points:

$$T_{\alpha-Lazy}Q(x,a) := \begin{cases} Q(x,a), & \text{if } Q(x,a) \leq TQ(x,a) \text{ and} \\ TQ(x,a) \leq \alpha V(x) + (1-\alpha)Q(x,a) \\ TQ(x,a), & \text{otherwise} \end{cases}$$

- $T_{\alpha-Lazy}$ is optimality-preserving and gap-increasing
- $T_{\alpha-Lazy}$ is not a contraction map and may have multiple fixed points.

イロト 不得 トイヨト イヨト 二日

Experimental Results on Atari games

Deep Q-learning (Mnih et al. 2015):

- Initialize function Q_{θ} with random weights, replay memory D to capacity N.
- for episode = 1, ..., M

• for
$$t = 1, .., T$$

- Choose action a_t according to ϵ -greedy policy w.r.t. $\max_{a} Q_{\theta_t}(x_t, a)$
- Observe (x_{t+1}, r_t) . Store (x_t, a_t, r_t, s_{t+1}) in D.
- Sample minibatch $\left\{ (x_j, a_j, r_j, x_{j+1}) \right\}_{j \in M}$ from D. Set $y_j = r_j + \gamma \max_{a'} Q_{\theta_t}(x_{j+1}, a')$

• Find
$$heta_{t+1}$$
 that minimizes $rac{1}{|M|}\sum\limits_{j\in M}\left(y_j-Q_{ heta}(x_j,a_j)
ight)^2$

We will compare:

• Standard DQL:
$$y_j = r_j + \gamma \max_{a'} Q_{\theta_t}(x_{j+1}, a')$$

• AL-DQL:
$$y_j = r_j + \gamma \max_{a'} Q_{\theta_t}(x_{j+1}, a') - \alpha [\max_b Q_{\theta_t}(x_j, b) - Q_{\theta_t}(x_j, a_j)]$$

• PAL-DQL:
$$y_j = r_j + \gamma \max_{a'} Q_{\theta_t}(x_{j+1}, a') - \alpha \min \left[\max_b Q_{\theta_t}(x_j, b) - Q_{\theta_t}(x_j, a_j), \max_b Q_{\theta_t}(x_{j+1}, b) - Q_{\theta_t}(x_{j+1}, a_j) \right]$$

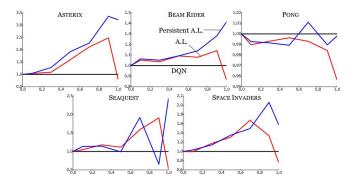


Figure 7: Performance of trained agents in function of the α parameter. Note that $\alpha = 1.0$ does not satisfy our theorem's conditions. We attribute the odd performance of Seaquest agents using Persistent Advantage Learning with $\alpha = 0.9$ to a statistical issue.

Over 60	games	for	$\alpha =$	0.9:
---------	-------	-----	------------	------

Operator	DQL	AL-DQL	PAL-DQL
Best score amount 60 games	12*	21*	31*
The median score improvement	0%	8.4%	9.1%
The average score improvement	0%	27%	32.5%

* For 2 games the score was equal for all three settings.

Mark Gluzman (iDDA, CUHK (Shenzhen))

Increasing the Action Gap

э

Action gap and value function estimation

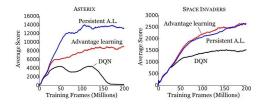


Figure: Learning curves for two Atari games: Asterix and Space Invaders

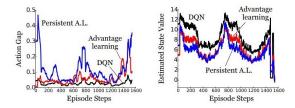


Figure: Action gap and estimated value function (see, van Hasselt 2010) for Space Invaders

Conclusion and open questions

The results of the article indicate that there are many practical optimality-preserving operators which do not preserve suboptimal Q-values and are not contraction.

Is it possible to find weaker conditions on operators to be optimality-preserving?

2 The consistent Bellman operator was proposed:

$$T_{CB}Q(x,a) = r(x,a) + \gamma \mathbb{E}\Big[\mathbb{I}_{x \neq x'} \max_{b \in A} Q(x',b) + \mathbb{I}_{x=x'}Q(x,a)\Big]$$
$$= TQ(x,a) - \gamma P(x|x,a)\Big[V(x) - Q(x,a)\Big]$$

Then the authors generalized it to the advantage learning (AL) operator:

$$T_{AL}Q(x,a) := TQ(x,a) - \alpha[V(x) - Q(x,a)], \ \alpha \in [0,1).$$
(4)

What is the probabilistic interpretation of α and advantage learning?

The existence of a broad family of optimality-preserving operators have been revealed: CB, AL, PAL, α–Lazy.

Which of these operators, if any, should we preferred to the Bellman operator? Is it possible to find a "maximal efficient" optimality-preserving operator?

Mark Gluzman (iDDA, CUHK (Shenzhen))

Increasing the Action Gap

Proofs

Lemma

Let $Q \in Q$ and π^Q be the policy greedy with respect to Q: $\pi^Q(x) := \arg \max_a Q(x, a)$. Let T' be an operator with the properties that, for all $x \in X$ and $a \in A$:

•
$$T'Q(x, a) \le TQ(x, a), \text{ and}$$

• $T'Q(x, \pi^Q(x)) = TQ(x, \pi^Q(x)).$

Consider the sequence

$$Q_{k+1} := T'Q_k$$

with $Q_0 \in Q$, and let

$$V_k := \max_a Q_k(x, a),$$

Then the sequence $(V_k : k \in \mathbb{N})$ converges, and, for all $x \in X$

$$\lim_{k \to \infty} V_k(x) \le V^*(x).$$

э

Proof of Lemma

For an arbitrary $x \in X$, consider a sequence $\{V_k(x)\}_{k=0}^{\infty}$

• The sequence $\{V_k(x)\}_{k=0}^{\infty}$ is bounded:

 $\limsup_{k \to \infty} Q_k(x, a) = \limsup_{k \to \infty} (T')^k Q_0(x, a) \le \limsup_{k \to \infty} T^k Q_0(x, a) = Q^*(x, a)$

● Fact: if we have a bounded sequence of real numbers {*b*₀, *b*₁, ..., *b*_k, ...} s.t.

$$b_{k+1} \ge b_k - c\gamma^k$$
, $\gamma \in [0,1)$ and $c > 0$,

then the sequence $\{b_k\}_{k=0}^{\infty}$ converges.

• Let $a_k := \arg \max_a Q_k(x, a), P_k := P(\cdot | x, a_k), P_{1:k} = P_k P_{k-1} \dots P_1.$

$$V_{k+1}(x) \ge r(x, a_k) + \gamma \mathbb{E}_{P_k} V_k(x')$$

= $TQ_{k-1}(x, a_k) + \gamma \mathbb{E}_{P_k} [V_k(x') - V_{k-1}(x')]$
 $\ge T'Q_{k-1}(x, a_k) + \gamma \mathbb{E}_{P_k} [V_k(x') - V_{k-1}(x')]$
= $V_k(x) + \gamma \mathbb{E}_{P_k} [V_k(x') - V_{k-1}(x')]$
 $\ge V_k(x) + \gamma \mathbb{E}_{P_{1:k}} [V_1(x'') - V_0(x'')]$
 $\ge V_k(x) - \gamma^k ||V_1 - V_0||_{\infty}.$

Mark Gluzman (iDDA, CUHK (Shenzhen))

イロト イポト イラト イラト

Proof of the main theorem

Theorem

Let *T* be the Bellman operator. Let *T'* be an operator with the property that there exists $\alpha \in [0, 1)$ s.t. for all $Q \in Q$, $x \in X$, $a \in A$

•
$$T'Q(x,a) \le TQ(x,a)$$

• $T'Q(x,a) \ge TQ(x,a) - \alpha[V(x) - Q(x,a)].$

Then T' is both

1. optimality-preserving:

1.1
$$\lim_{k \to \infty} V_k(x) = V^*(x)$$

1.2 $Q^*(x, a) < V^*(x) \Longrightarrow \limsup_{k \to \infty} Q_k(x, a) < V^*(x).$

2. gap-increasing:
$$\liminf_{k \to \infty} \left[V_k(x) - Q_k(x,a) \right] \ge V^*(x) - Q^*(x,a)$$

< ロ > < 同 > < 回 > < 回 >

Proof of the main theorem

• Note that $V_k(x) - Q_k(x, \pi_k^Q(x)) = 0$ and we can apply the previous lemma: $\lim_{k \to \infty} V_k(x) = \tilde{V}(x)$ exists, where

$$\begin{cases} Q_k(x,a) = T'Q_{k-1}(x,a) \\ V_k(x) = \max_a Q_k(x,a) \end{cases}$$

• We want to get $\tilde{V}(x) = V^*(x)$. Let's show that $\tilde{V}(x) = \max_{a \in A} T\tilde{Q}(x, a)$, where $\tilde{Q}(x, a) = \limsup_{k \to \infty} Q_k(x, a)$.

$$\begin{split} \tilde{Q}(x,a) &\leq T\tilde{Q}(x,a).\\ \tilde{Q}(x,a) &= \limsup_{k \to \infty} T'Q_k(x,a) \leq \limsup_{k \to \infty} TQ_k(x,a)\\ &= \limsup_{k \to \infty} \left[r(x,a) + \gamma E[\max_b Q_k(x',b)] \right]\\ &\leq r(x,a) + \gamma E[\max_b \limsup_{k \to \infty} Q_k(x',b)]\\ &= T\tilde{Q}(x,a). \end{split}$$

Mark Gluzman (iDDA, CUHK (Shenzhen))

۲

March 18, 2019 22/25

Proof of the main theorem: $\tilde{Q}(x, a) \ge T\tilde{Q}(x, a)$.

 $\tilde{Q}(x,a) \ge T\tilde{Q}(x,a).$

- $Q_{k+1}(x,a) \ge TQ_k(x,a) \alpha[V_k(x) Q_k(x,a)] = r(x,a) + \gamma \mathbb{E}V_k(x') \alpha V_k(x) + \alpha Q_k(x,a).$
- Taking \limsup of both sides: $\tilde{Q}(x,a) \ge r(x,a) + \gamma \mathbb{E}\tilde{V}(x') - \alpha \tilde{V}(x) + \alpha \tilde{Q}(x,a) = T\tilde{Q}(x,a) - \alpha \tilde{V}(x) + \alpha \tilde{Q}(x,a).$

•
$$\tilde{Q}(x,a) \ge \frac{1}{1-\alpha} \left[T \tilde{Q}(x,a) - \alpha \tilde{V}(x) \right]$$

• Taking $\max_{a \in A}$ of both sides: $\tilde{V}(x) \ge \frac{1}{1-\alpha} \Big[\max_{a \in A} T \tilde{Q}(x, a) - \alpha \tilde{V}(x) \Big] \Longrightarrow \tilde{V}(x) \ge \max_{a \in A} T \tilde{Q}(x, a).$

Proof of the main theorem: gap-increasing

Observe that the statement:

$$\liminf_{k \to \infty} \left[V_k(x) - Q_k(x, a) \right] \ge V^*(x) - Q^*(x, a)$$

is equivalent for the following one for optimality-preserving operators:

$$\limsup_{k \to \infty} Q_k(x, a) \le Q^*(x, a).$$
(5)

The statement (5) has already been proved in the Lemma.

< ロ > < 同 > < 回 > < 回 >

References

- Bellemare, Marc G., Ostrovski, Georg, Guez, Arthur, Thomas, Philip S., and Munos, Rémi. Increasing the action gap: New operators for reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2016.
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Humanlevel control through deep reinforcement learning. Nature 518(7540):529–533.
- van Hasselt, H. 2010. Double Q-learning. In Advances in Neural Information Processing Systems 23.
- Some insights how to interpreted and choose α for the AL operator: Greg Farquhar, The Advantage Learning Operator, 2016, http: //aims.robots.ox.ac.uk/wp-content/uploads/2015/07/RL_minproject_v1-Greg.pdf
- New optimality-preserving operators on Q-functions: Yingdong Lu, Mark S. Squillante, Chai Wah Wu, "A General Family of Robust Stochastic Operators for Reinforcement Learning", 2018, https://arxiv.org/abs/1805.08122