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Overview

@ Value-based RL for Network Routing
® Q-routing [Boyan and Littman, 1994]
@ Policy-based RL for Network Routing

@ Online optimization of the average reward: OLPOMDP
[Tao et al., 2001]

@ Gradient Ascent Policy Search [Peshkin and Savova, 2002]

@ Multi-Agent Hybrid of the Q-learning and the actor-critic thinking
[Our work, 2019]
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Notation

@ The cumulative discounted reward:
o
Ge=re+ 1+ o+ = Z’Ykrt—s-k
k=0

@ Q-function: Q7 (s, a) = E;[G|st = s,a: = a]
© Bellman Equation: Q*(st,a) = E[rs + v maxy Q*(s¢+1,a')]

Siliang Zeng (CUHK-Shenzhen) RL for Adaptive Routing April 6, 2019 4 /30



Problem Formulation: Network Routing

Figure 1: The irregular 6 x 6 grid topology

e Communication Networks: a set of nodes (routers) and links

@ Routing: directs data packets from their source nodes toward their
destination nodes through some intermedia nodes.
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Problem Formulation: Network Routing

Figure 1: The irregular 6 x 6 grid topology

@ Our objective: efficiently utilize the communication paths and
minimize average packet delivery time.

@ Packet delivery time: transmission delay and queue delay.

Siliang Zeng (CUHK-Shenzhen) RL for Adaptive Routing April 6, 2019 6 /30



Problem Formulation: Network Routing

@ Single-Agent Reinforcement Learning for Network Routing
@ Consider each router as an independent agent
@ Each router in some sense behave selfishly to maximize its own profit
without cooperation.
@ Multi-Agent Reinforcement Learning for Network Routing

@ Consider the network system as a whole agent and update each router
through distributed optimization.
® Multi-agent cooperation and coordination.

We consider network routing as a multi-agent, partially observable Markov
decision process (POMDP).
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]
Q-routing

o Fixed a router/agent, the state s is the destination of the first packet
in its waiting buffer (queue) and the action a is one of its outgoing
links.

@ Supposing at a time step t, agent i chooses to send a packet with
destination s through outgoing link a to next agent j, we use u! to
denote the queue delay, and use v/ to denote the transmission delay
between two routers.

Reward of agent i at time t: rj = —(ul + v{)
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]
Q-routing

@ Each router maintains a two-dimensional lookup table, called Q-table,
for all pairs of the outgoing link and the destination node.

o For the agent i, its Q-value Q'(s, a) is updated through
Qis1(s,a) = Qi(s,2) + a(rf + ymax Qi(s, ) — Q{(s, a))
a

@ The Q-routing scheme: each agent uses its Q-table to execute greedy
action (greedy policy)

Siliang Zeng (CUHK-Shenzhen) RL for Adaptive Routing April 6, 2019 9 /30



]
Q-routing: drawbacks

© Q-routing is a deterministic policy:
causes traffic congestion at high loads and doesn’t distribute
incoming traffic across the available links.

@ The lack of exploration and e-greedy policy isn't suitable

@ the network is continuously changing, thus the initial period of
exploration never ends; and more significantly

@ more significantly, random traffic has an extremely negative effect on
congestion

Due to the drawbacks of value-based methods, we further consider
policy-based reinforcement learning methods.
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-
A hybrid of Q-learning and actor-critic thinking

@ Each router still maintains a Q-table as before. But actions are
executed according to the parametrized policy.

@ For an agent, we use parameter 65, € R to denote the preference for a
state-action pair (s, a).
The stochastic policy of an agent is parameterized by 6.

exp(fsa)

m(als, ) := S exp(fsy)
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|
Hybrid Method: How to update the policy parameters 0

@ Objective function: J(0) =D . u(s) >, Q™ (s, a)n(als, 0)
@ Policy Gradient Theorem:

o< Z w(s) Z Q" (s,a)Ver(als,0)

© Generalized policy gradient theorem:

ZM Z (Q™(s,a) — b(s))Var(als, 0)

2. 1(s) 22, b(s)Ver(als, 0) = g u(s)b(s) 22, Ver(als,0) = 0
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|
Supplement: Proof of the Policy Gradient Theorem

‘With just elementary calculus and re-arranging terms we can prove the policy gradient theorem
from first principles. To keep the notation simple, we leave it implicit in all cases that 7 is a
function of @, and all gradients are also implicitly with respect to 8. First note that the gradient
of the state-value function can be written in terms of the action-value function as

Vur(s) =V {E w(als)gx(s, a)] , forallse8 (Exercise 3.15)

a

= Z [V'rr(a|.9)q,,(3, a) + 7m(a|s)Vgx(s, a)} (product rule)

= Z [Vfr(a|3)q,,(s, a) + m(a|s)V Zp(s', r|s,a)(r+ v,(s’))}

: o (Exercise 3.16 and Equation 3.2)
= Z [Vfr(a|3)q,,(s, a) + m(als) Zp(s’|s,a)Vv,,(s')} (Eq. 3.4)
= Z [V‘rr(a|3)q,,(s, a) + m(als) Zp(s’|s,a) (unrolling)

> [Vn(@ls)ax (', @) +n(als) Y p(s"|s',a') Von(s")]|
= Z Z Pr(s—z,k,T) Z Vr(a|z)g: (2, a),

z€8 k=0 a
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|
Supplement: Proof of the Policy Gradient Theorem

VJ(68) = Vur(so)
_Z (ZPI‘(SD—}S k,m ) ZV'K als)gx(s,a)
= Zn(s ZV'}T(G| )g=(s,a)

= s n(s) m(als)g-(s,a
= (Zﬂjn( )) ZE () ZV |8)qx(s,a)
x Z,u(s)ZVarr (als)gr(s,a). Q.E.D.
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|
Hybrid Method: How to update the policy parameters 0

@ Generalized policy gradient theorem:

VJ(0) x> u(s)D (Q7(s,a) — b(s))Ver(als,0)

@ Replace Q™ (s, a) by Grt11 = rt + v maxy @t(st+1,a’) and choose
max, Q¢(st, a) as the baseline term b(s;)

© The update rule:

AO; = (Gipy1 — max (:)t(st, a))VeInn(at|st, 0)
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-
Hybrid Method

@ To be specific, at time step t, the policy-table(policy parameters ')
and Q-table @' of the agent i are updated as follows:

tr1 = 0, + BV In7(acs:, 0i)<rti + 7y max Qi(se. a7) max Qi(st a))

Q11(s,2) = Qi(s. a) +ar{ + ymax Q{(s. 2') — Qi(s. a))
al
@ According to the softmax rule, we have

1—7(al5,0") ifs=sa=a,
=< —n(3l5,0") ifs=s,a%#a,
if s #s.

dInn(als, 6')
001,
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-
Multi-Agent Hybrid Method: Motivation

@ In Hybrid method, since each agent learns its policy by a local reward,
all agents in some sense behave selfishly to maximize its own profit
without cooperation.

@ We further develop the multi-agent hybrid method for multiagent
systems. Provided a global feedback signal (global reward), the
agents act independently but are able to learn cooperative behavior
through limited information exchange.
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-
Multi-Agent Hybrid Method: Motivation

Through introducing the eligibility traces and utilizing a global reward, we
are able to handle the delayed reward and design a algorithm for the
multi-agent system
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-
Multi-Agent Hybrid Method: Algorithm Analysis

Q Eligibility: e; = VIn7(a¢|st, 0)

@ Eligibility traces: z: =Y.' _,p' Te,
where p is a discount factor.

© 2z: is used to keep track of the past updates.

We first present our algorithm in the form of the single agent and then
generalize it to multi-agent systems later.
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-
Multi-Agent Hybrid Method: Algorithm Analysis

© The update rule:
NG = (Gt;t+1 — max @t(st, a)) Z;
= (rt + max Qt(5t+1, al) — max @t(st, a)) Z:.
@ The eligibility traces are updated as

Zy = PZy 1 + e = PZt—1 + Vg In 7T(at|51_-, 0)
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-
Multi-Agent Hybrid Method: Algorithm Analysis

To conduct the analysis of this algorithm, we first assume p = . Then the
sum of A@; over time can be written as:

=0
o0 - ~

= Z (Tt + Y max Q:(5t41,00) — max Q:(s¢, ﬂ)) Zt
t=0
ksl ~

= (re +ymaxQi(si41,/) — max Qs (st a Z 7 Te)
=0 T=0

8

=Y ey vy + ymaxQr(sri1, /) — maxQy(s-, a))
:Zet ( Z'y"' ¢ math(Sg,u,))
:Zet (G: — m;a.x@t(st,a))
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-
Multi-Agent Hybrid Method: Algorithm Analysis

Assuming the policy converges, at time t the expected value E;[G;] is
deterministic given the policy parameters 8. Hence, we have

E.le:(G: — meQ(Sta a))]

=" m(as|se, )V Inm(as|ss, 0)(G (st ar) — max Q(sy, a))
- i Vr(asls:, 0)(G(sz, a:) — max Q(st, a))

= ; Vr(at|s:, 8)G(st, az)

=Vtaz m(as|se, 0)G (s, az)

=VE,(G:)

where G(s¢, a;) denotes the long-term return from time t after the agent
executes action a; at state s;.
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-
Multi-Agent Hybrid Method: Algorithm Analysis

@ From the above analysis which is based on the condition p = v, we
see that the policy of the agent is updated in a unbiased direction to
increase the expectation of the discounted cumulative reward.

@ If the discount factor p equals 0, the policy parameters 8 are updated
in the direction of the estimated gradient of the discounted
cumulative reward. (lower variance)

When p € (0,7), p controls the tradeoff between bias and variance of the
estimated gradient.
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Apply to Communicaton Network

© Definition:

@ S; and A; to denote the state and the joint action of the network (i.e.,
all the agents) at time t, respectively.

@ Let Z; denote the set of active routers which have packets in their
waiting buffers at time t.
The global reward:R; = > ;7. rl.

@ The joint action-value function which estimates the total delivery time
of the packets being transmitted at time t is approximated by

@t(st-, At) = Z QQ(S{» a;)

€T,
@ We define the global feedback signal at time t:

0e = Re+ymax Qu(Ses1, A) — max Q:(S:, A)
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Apply to Communication Network

For each agent, say, agent i, with the global feedback signal §; and
eligibility traces z{, the policy parameters are updated according to

1';+1 = 0; + Bz{0;

where [ is the learning rate of policy parameters 6.
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Experiment Results

@ We test our two RL algorithms, Hybrid and Multi-Agent Hybrid, on
two network topologies, including an irregular 6 x 6 grid and a
116-node LATA telephone network.

@ We compare our two algorithms with those of three other algorithms:

1) Shortest Paths, which is a static routing scheme and is optimal when the
network load is low

2) Q-routing [Boyan and Littman, 1994], which is a value-based RL scheme

3) GAPS [Peshkin and Savova, 2002], which is a policy-based RL scheme

Siliang Zeng (CUHK-Shenzhen) RL for Adaptive Routing April 6, 2019 26 / 30



Experiment Results
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Experiment Results
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Conclusion

© Adaptability to dynamically changing network load
@ Affordable load
© Scalability
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