Introduction to Reinforcement Learning J

Jim Dai

iDDA, CUHK-Shenzhen

January 21, 2019

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 1/29

Sequential decision problems

@ Let N > 0 be the time horizon of the decision problem.
@ Foreachk € [0, N + 1], 1, € X is the state at time k.
@ Attime k, observing state x, an action ax € Ay, is taken.

@ Given (zk,ax), a new (random) state z,1 is observed and a (one-step) cost

gk (Tk, ak, Tr41) is incurred.

@ The sequence
(z0,a0,21,a1,...,TN,aAN, TN+41)

is known as an episode.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 2/29

Policies and total costs

@ The total cost for the episode is

N

ng($k7ak7ivk+1).

k=0
@ 71 = {uo, p1,...,un} is known as a policy if for k € [0, N]
@y X — Ay,
@ ap = uk(:rk).

N

@ Expected total cost J(z) = E,,[> gk(xk, ak, Trt1)|To = :c] , Where E, is the
k=0

expectation over randomness for transitions from zy to0 k41, k € [0, N], under

policy 7.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 3/29

Models for dynamics

@ The system state at the next decision epoch is determined by
P{xk+l =y ’xk =z,aK = a} = Pi(x,a,y)

foreach z € Xy, ar € Ak, and y € Xi11.
@ Case I: transition probabilities are known. The model is known.

@ Case ll: transition probabilities are unknown, but episodes can be observed from

data.

@ Case llI: transition probabilities are unknown, but given (z, ax), zx4+1 can be

sampled. A simulator is available.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 4/29

Objective and optimal value function

@ IIis the set of feasible policies. The optimal value function is

J*(z) = inf J(z), z € Xo. (1)

well
A policy ©* is an optimal policy if J*(z) = J« ().

@ In general, the infimum in (1) may not be achievable. In such a case, an optimal

policy does not exist.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 5/29

Bellman equation and backward induction algorithm

@ Bellman equation when N is finite.

JInyi1(x) =0,z € Xn41, andfork =N, ..., 0,

Je@)= min 3" Pi(ea,y)(ge@0,9) + () fora e A,
ac€ Ay (x) Ve Xni1

(cost-to-go function Ji)

J*(z) = Jo(z), ze€X. complexity: IIf_o|Ag||Xsi1].

@ Bellman equation when N is infinite, assuming time homogeneity with a

discounted factor 8 < 1, (P = P and gi. = 8%9)
f@»:ggzgpuﬂwmmamw+ﬁf@0
Yy

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 6/29

Bellman’s equation: optimal value function
Theorem (Bellman optimality equation; Bertsekas, Proposition 1.2.3)

Assume that the state space X and action space A are finite.

(a) The optimal value function J* satisfies

J*(z) = aénjg:) Eup(lz,a) [g(:r:, a,z’) + ﬂJ*(x/)] forallz € X

(b) J* is the unique solution of the Bellman’s equation.

Notation: P{z’ = y|z,a} = P(z,a,y) fory € X.

> Plaay)(9@,a.9) + BT 1)) = Evrmriioa 9@ a:0') + 8" @)]

yeX

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 7/29

Bellman’s equation: optimal policy

Theorem (Bertsekas, Proposition 1.2.5)
Assume that the state space X and action space A are finite.

Let J* : X — R be the unique solution to the Bellman equation.
Define u* : X — A via

p'(x) =argminEyr wp(.z,a) [g(z, a,z’) + ,BJ*(JC')] forallz € X.
acA(x)

The stationary policy n* = {u*,...,u*,...} is optimal.

For a function h : X — R, define h-greedy policy un : X — A via

pn(z) = argmin Eyr o p(.ja,a) [g(m, a,z’) + Bh(x/)] forallz € X.
acA(x)

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 8/29

Bellman operator

@ Define Bellman operator T": for J : X — R
— H , / /
(T)(@) = min Eurp(ie l9(@,a,2") + BI(")]
@ Fix a stationary policy p.. Define its Bellman operator T),: for J : X — R
(Tpd) (@) = Eor o p(fapu(a)) [9(957#(95)’ ') + 5&7(93/)}

@ Forany J,

(Ty, (@) = (TT)(z) € X,

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 9/29

Value iteration

Theorem (Bertsekas, Proposition 1.2.1)
For any function J : X — R, we have for allz € X,

J*(x) = lim (TN J)(x).

N—o0

@ Value iteration: J™ = TJ"', starting with arbitrary J° = J.

@ Convergence rate:

max |JV (z) — J*(2)| = max |[TJ"N Y (z) — TJ*(z)| <
ex

rzeX

Bmax |7V (2) = J* (@) < B max | (x) = J* ()]

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019

10/29

Value iteration: Complexity

@ One iteration step, for one state x € X’:

Let g(z,a) = > P(z,a,y)g9(z,a,y) be expected cost, then
yeX

T (@) = (1")(@) = min [g(z,0)+ 8 Pla,a,4)7" " ()]

a€A(x) vex
The complexity is |A||X].

@ Complexity of value iteration algorithm for IV steps:

NJAJ X[,

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 11/29

Policy evaluation

@ Given a stationary policy p, its value function J,, satisfies Bellman equation

Ju(@) = g(a, p(@)) + B Y Pla,u(x),y) July) =€ X. 2)

yeX

@ Thus
Jp=(U~ Bpu)ilguv

where g is an X-vector with entries g, (z) = g(z, u(z)) and P,isan X x X

matrix with entries P, (z,y) = P(z, u(x),y).

@ There are many algorithms solving (2).

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 12/29

Policy iteration

@ Step 1: (Initialization) Guess an initial stationary policy u°.
@ Step 2: (Policy evaluation: Find J,)

Solve J,x = T,xJ,» or the linear system of equations w.r.t. J:
(I - ,BPuk-)J = guk

@ Step 3: (Policy improvement: Find J,,.-greedy policy)
Obtain a new stationary policy p*** that is J,x-greedy.

If J» = J,c+1 stop; else return to step 2.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 13/29

Policy iteration

k

U Juk ’LLk-‘rl
— —
old policy value function of the old policy new improved policy

Theorem (Bertsekas, Proposition 2.3.1)

Fix a policy uu. Let i be a J,.-greedy policy. Then we have

Ju(z) < Ju(z), foreachz € X.

Moreover, if i is not optimal, strict inequality holds for at least one state.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 14/29

Reinforcement learning

@ Dynamic Programming:

- model of the environment’s dynamics is given (P, g are known).

@ Reinforcement learning:

- model of the environment’s dynamics is not given (P, g are unknown).

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 15/29

Policy evaluation

@ Given a stationary policy 1 we want to estimate

Tu(@) = E[£ Ba(er. plan). zi)loo =]

@ J, has to satisfy Bellman equation:

Ju(@) = Elg(z, u(x), x1)] + PE[Ju(21)]

= gu(@) + B(Pudyu)(2) = (Tudyu)(z)
@ Solving fixed point J,, from J,, = T}, J,, is equivalent solving

Ju = argmin Y |J(2) — (T,J) ()€ (x).

JeRrI¥I TEX

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 16/29

Bellman error

@ Lost function:
1T =Tudlle= D [T(@) = (gu(@) + B(PuT)(2)) PE(x). @)
reX
is known as the (weighted) Bellman error.

@ Most visited states should be weighted more. So ¢ is often chosen to be the

stationary distribution of the DTMC with transition matrix P,.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 17/29

Policy evaluation

@ By setting the gradient of (3) (w.r.t J) to 0, we get

D(J = (gu + BP.J)) =0, (4)
where D is the diagonal matrix with ¢ along the diagonal.

@ Note that equation (4) is equivalent to the fixed point problem
J=J—~D [(1 —BP)J — gu]

® D[(I-8P)J - g.| =Ee[J(@) = BI () - gla,")]

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 18/29

Tabular TD(0) learning

@ Step 1 (Initialization): arbitrary initialize J°, choose initial state z
@ Step 2 (Simulation): simulate one step starting from z;, with decision given by u.

Observe next state z,11 and one-step cost gy.

@ Step 3 (Update):

T (@) = T (@) = e[@) = (g0 + BT ()]

T y) = J*(y), fory # ay

@ Step4: k=k+ 1, move to Step 2.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 19/29

Tabular TD(0) learning

Theorem (Sutton, 1988)
Assume a Markov chain associate with the policy . is finite, irreducible and aperiodic.

Given bounded costs |g(x, a,x')| < G and learning rate s.t. > v, = 00, 3. V7 < 00
k=0 k=0

lim J* =J, as.

k— oo

The ¢-step Bellman equation:
4
Ju(@) = B[3" 8 gl pl@),aner) + B ().
k=0
When ¢ ~ Geometric()\), 0 < X < 1, the corresponding algorithm is TD(\) learning
algorithm.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 20/29

Q-factor

@ Optimal Q-factor is defined as

Q" (x,a) = Z P(z,a,z) [g(ac,a7 z') + ﬂJ*(I/)]

z'eXx

=E[g(,a,2") + BJ"(a")]

KZ(g(z,a,z}) + BJ " (x))

22

@ Optimal policy inference

p*(z) = argmin Q" (z, a). 5)
ac€A(x)

@ When Q* is too big for memory or (5) is too difficult, a low-dimensional

representation of Q™ is needed.
Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 21/29

Bellman equation for ()-factor

@ Define
(TQ)(z,a) ZPmay[Iay)-i-ﬁme(%)]

€A
yeX (v

@ Q™ is the unique fixed point to equation
Q=TQ.
@ If P and g are known, value iteration (VI)

Qi1 =TQk

converges to Q* from any starting Qo.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 22/29

Q-learning as stochastic VI

@ We can generate infinitely long sequence of triples {xx, ax, gr }, S.t. each

state-action pair (z, a) appears infinitely often.

@ the Q-factor of (z, ax) pair is updated:

Qrt1(xr,ar) = (1 — &) Qr(zk, ar) + Vi (gk + Bmﬂin Qk(93§c+17v))

Qk-‘rl(xva) = Qk(xva)v if (m,a) 7& (xkvak)

@ Note that g + 8 min Qx(z},, 1, v) is a single sample approximation of the
expected value (TQ)(zk, ax).

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 23/29

Q-learning

Theorem (Watkins and Dayan, 1992)

Given

@ A sequence where each state-action pair appears infinitely often
@ bounded costs |g(z,a,y)| < G
@ learning rate s.t. 0 < v, <1, 3. v =00, . 7i < 0

k=0 k=0

Q-learning algorithm converges:

lim Qx(z,a) = Q" a.s.
k— o0

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 24/29

Policy iteration for Q-factors

@ Policy evaluation: given current policy 1.* find the fixed point Q. of

Q(z,a) = Y P(z,a,y)lg(x,a,y) + BQ(y. 1" ()]

yeX

@ Policy improvement: pf*!(z) = arg Hﬂ?)Quk(x,a)
a€c x

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 25/29

optimistic Pl for Q-factors: SARSA

Step 1 (Initialization): arbitrary initialize Q°, choose initial state xo, initial decision
aop.
Step 2 (Simulation): simulate one step starting from z;, with decision given by ay.

Observe next state xx+1 and cost gy.

argmin Q* (zxy1,a) wp. 1 —e
Step 3 (Evaluation&improvement) ax41 = acA

other action w.p. €
Step 4 (Update):

Q M (xk,ar) = (1 — k) Q" (zk, ar) + [Qk + BQ* (w1, ak+1)},

Qk+1(y7 U) = Qk(y7 U)7 for (y7 U) 7é (mkv ak)

Step5: k =k + 1, move to Step 2. SARSA: state, action, reward, state,

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 26/29

References

@ Sutton, R. S. (1988). Learning to predict by the method of temporal differences.
Machine Learning, 3:9-44.

@ Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Machine Learning,
8:279-292.

@ Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Volume 2:

Approximate Dynamic Programming, 4th edition. Athena Scientific, Belmont.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 27/29

Properties

Theorem (Monotonicity)

For any functions J,J' : X — R, s.t. forallx € X,
J(z) < J'(2),

and any stationary policy n : X — A, we have

(TJ)(z) < (TJ")(z) (T J)(z) < (T,J")(x), foreachz € X.

Theorem (Constant Shift)
For every k, function J : X — R, stationary policy p, r € R, and x € X,

(T(J +re))(z) = (TJ)(z) + pr,

(Tu(J +re))(x) = (Tu)(x) + Br-.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 28/29

Contraction mapping

@ Forany J,J' : X — R, there holds
_ k g/ .
max | (T)(x) — (T*7')(@)] < fma | (z) = J'(2)].
@ Proof. Letc = max |J(z) — J'(z)], then
J(@) —c< J'(x) < J(z)+ cforeachz € X.
By Monotonicity Lemma: T'(J — ce)(z) < T(J')(x) < T(J + ce)(z)
<

By Constant shift Lemma: (T'J)(x) — Bc < T'(J")(z) < (TJ)(z) + Be

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 29/29

