Introduction to Reinforcement Learning

Jim Dai
iDDA, CUHK-Shenzhen
January 21, 2019

Sequential decision problems

- Let $N>0$ be the time horizon of the decision problem.
- For each $k \in[0, N+1], x_{k} \in \mathcal{X}_{k}$ is the state at time k.
- At time k, observing state x_{k}, an action $a_{k} \in \mathcal{A}_{k}$ is taken.
- Given $\left(x_{k}, a_{k}\right)$, a new (random) state x_{k+1} is observed and a (one-step) cost $g_{k}\left(x_{k}, a_{k}, x_{k+1}\right)$ is incurred.
- The sequence

$$
\left(x_{0}, a_{0}, x_{1}, a_{1}, \ldots, x_{N}, a_{N}, x_{N+1}\right)
$$

is known as an episode.

Policies and total costs

- The total cost for the episode is

$$
\sum_{k=0}^{N} g_{k}\left(x_{k}, a_{k}, x_{k+1}\right)
$$

- $\pi=\left\{\mu_{0}, \mu_{1}, \ldots, \mu_{N}\right\}$ is known as a policy if for $k \in[0, N]$
- $\mu_{k}: \mathcal{X}_{k} \rightarrow \mathcal{A}_{k}$,
- $a_{k}=\mu_{k}\left(x_{k}\right)$.
- Expected total cost $J_{\pi}(x)=\mathbb{E}_{\pi}\left[\sum_{k=0}^{N} g_{k}\left(x_{k}, a_{k}, x_{k+1}\right) \mid x_{0}=x\right]$, where \mathbb{E}_{π} is the expectation over randomness for transitions from x_{k} to $x_{k+1}, k \in[0, N]$, under policy π.

Models for dynamics

- The system state at the next decision epoch is determined by

$$
\mathbb{P}\left\{x_{k+1}=y \mid x_{k}=x, a_{k}=a\right\}=P_{k}(x, a, y)
$$

for each $x \in \mathcal{X}_{k}, a_{k} \in \mathcal{A}_{k}$, and $y \in \mathcal{X}_{k+1}$.

- Case I: transition probabilities are known. The model is known.
- Case II: transition probabilities are unknown, but episodes can be observed from data.
- Case III: transition probabilities are unknown, but given $\left(x_{k}, a_{k}\right), x_{k+1}$ can be sampled. A simulator is available.

Objective and optimal value function

- Π is the set of feasible policies. The optimal value function is

$$
\begin{equation*}
J^{*}(x)=\inf _{\pi \in \Pi} J_{\pi}(x), \quad x \in \mathcal{X}_{0} . \tag{1}
\end{equation*}
$$

A policy π^{*} is an optimal policy if $J^{*}(x)=J_{\pi^{*}}(x)$.

- In general, the infimum in (1) may not be achievable. In such a case, an optimal policy does not exist.

Bellman equation and backward induction algorithm

- Bellman equation when N is finite.

$$
\begin{aligned}
& J_{N+1}(x)=0, x \in \mathcal{X}_{N+1}, \text { and for } k=N, \ldots, 0, \\
& J_{k}(x)=\min _{a \in \mathcal{A}_{k}(x)} \sum_{y \in \mathcal{X}_{k+1}} P_{k}(x, a, y)\left(g_{k}(x, a, y)+J_{k+1}(y)\right) \quad \text { for } x \in \mathcal{X}_{k},
\end{aligned}
$$

(cost-to-go function J_{k})

$$
J^{*}(x)=J_{0}(x), \quad x \in \mathcal{X}_{0} . \quad \text { complexity: } \Pi_{k=0}^{N}\left|\mathcal{A}_{k}\right|\left|\mathcal{X}_{k+1}\right| .
$$

- Bellman equation when N is infinite, assuming time homogeneity with a discounted factor $\beta<1, \quad\left(P_{k}=P\right.$ and $\left.g_{k}=\beta^{k} g\right)$

$$
J^{*}(x)=\min _{a \in \mathcal{A}} \sum_{y \in \mathcal{X}} P(x, a, y)\left(g(x, a, y)+\beta J^{*}(y)\right)
$$

Bellman's equation: optimal value function

Theorem (Bellman optimality equation; Bertsekas, Proposition 1.2.3)
Assume that the state space \mathcal{X} and action space \mathcal{A} are finite.
(a) The optimal value function J^{*} satisfies

$$
J^{*}(x)=\min _{a \in \mathcal{A}(x)} \mathbb{E}_{x^{\prime} \sim P(\cdot \mid x, a)}\left[g\left(x, a, x^{\prime}\right)+\beta J^{*}\left(x^{\prime}\right)\right] \text { for all } x \in \mathcal{X}
$$

(b) J^{*} is the unique solution of the Bellman's equation.

Notation: $\quad \mathbb{P}\left\{x^{\prime}=y \mid x, a\right\}=P(x, a, y)$ for $y \in \mathcal{X}$.

$$
\sum_{y \in \mathcal{X}} P(x, a, y)\left(g(x, a, y)+\beta J^{*}(y)\right)=\mathbb{E}_{x^{\prime} \sim P(\cdot \mid x, a)}\left[g\left(x, a, x^{\prime}\right)+\beta J^{*}\left(x^{\prime}\right)\right]
$$

Bellman's equation: optimal policy

Theorem (Bertsekas, Proposition 1.2.5)
Assume that the state space \mathcal{X} and action space \mathcal{A} are finite.
Let $J^{*}: \mathcal{X} \rightarrow \mathbb{R}$ be the unique solution to the Bellman equation.
Define $\mu^{*}: \mathcal{X} \rightarrow \mathcal{A}$ via

$$
\mu^{*}(x)=\underset{a \in \mathcal{A}(x)}{\arg \min } \mathbb{E}_{x^{\prime} \sim P(\cdot \mid x, a)}\left[g\left(x, a, x^{\prime}\right)+\beta J^{*}\left(x^{\prime}\right)\right] \text { for all } x \in \mathcal{X}
$$

The stationary policy $\pi^{*}=\left\{\mu^{*}, \ldots, \mu^{*}, \ldots\right\}$ is optimal.

For a function $h: \mathcal{X} \rightarrow \mathbb{R}$, define h-greedy policy $\mu_{h}: \mathcal{X} \rightarrow \mathcal{A}$ via

$$
\mu_{h}(x)=\underset{a \in \mathcal{A}(x)}{\arg \min } \mathbb{E}_{x^{\prime} \sim P(\cdot \mid x, a)}\left[g\left(x, a, x^{\prime}\right)+\beta h\left(x^{\prime}\right)\right] \text { for all } x \in \mathcal{X}
$$

Bellman operator

- Define Bellman operator T : for $J: \mathcal{X} \rightarrow \mathbb{R}$

$$
(T J)(x)=\min _{a \in \mathcal{A}(x)} \mathbb{E}_{x^{\prime} \sim P(\cdot \mid x, a)}\left[g\left(x, a, x^{\prime}\right)+\beta J\left(x^{\prime}\right)\right]
$$

- Fix a stationary policy μ. Define its Bellman operator T_{μ} : for $J: \mathcal{X} \rightarrow \mathbb{R}$

$$
\left(T_{\mu} J\right)(x)=\mathbb{E}_{x^{\prime} \sim P(\cdot \mid x, \mu(x))}\left[g\left(x, \mu(x), x^{\prime}\right)+\beta J\left(x^{\prime}\right)\right]
$$

- For any J,

$$
\left(T_{\mu_{J}} J\right)(x)=(T J)(x) \quad x \in \mathcal{X} .
$$

Value iteration

Theorem (Bertsekas, Proposition 1.2.1)
For any function $J: \mathcal{X} \rightarrow \mathbb{R}$, we have for all $x \in \mathcal{X}$,

$$
J^{*}(x)=\lim _{N \rightarrow \infty}\left(T^{N} J\right)(x) .
$$

- Value iteration: $J^{n}=T J^{n-1}$, starting with arbitrary $J^{0}=J$.
- Convergence rate:

$$
\begin{aligned}
& \max _{x \in \mathcal{X}}\left|J^{N}(x)-J^{*}(x)\right|=\max _{x \in \mathcal{X}}\left|T J^{N-1}(x)-T J^{*}(x)\right| \leq \\
& \beta \max _{x \in \mathcal{X}}\left|J^{N-1}(x)-J^{*}(x)\right| \leq \beta^{N} \max _{x \in \mathcal{X}}\left|J(x)-J^{*}(x)\right|
\end{aligned}
$$

Value iteration: Complexity

- One iteration step, for one state $x \in \mathcal{X}$:

Let $g(x, a)=\sum_{y \in \mathcal{X}} P(x, a, y) g(x, a, y)$ be expected cost, then

$$
J^{n}(x)=\left(T J^{n-1}\right)(x)=\min _{a \in A(x)}\left[g(x, a)+\beta \sum_{y \in \mathcal{X}} P(x, a, y) J^{n-1}(y)\right]
$$

The complexity is $|\mathcal{A}||\mathcal{X}|$.

- Complexity of value iteration algorithm for N steps:

$$
N|\mathcal{A}||\mathcal{X}|^{2} .
$$

Policy evaluation

- Given a stationary policy μ, its value function J_{μ} satisfies Bellman equation

$$
\begin{equation*}
J_{\mu}(x)=g(x, \mu(x))+\beta \sum_{y \in \mathcal{X}} P(x, \mu(x), y) J_{\mu}(y) \quad x \in \mathcal{X} . \tag{2}
\end{equation*}
$$

- Thus

$$
J_{\mu}=\left(I-\beta P_{\mu}\right)^{-1} g_{\mu},
$$

where g is an \mathcal{X}-vector with entries $g_{\mu}(x)=g(x, \mu(x))$ and P_{μ} is an $\mathcal{X} \times \mathcal{X}$ matrix with entries $P_{\mu}(x, y)=P(x, \mu(x), y)$.

- There are many algorithms solving (2).

Policy iteration

- Step 1: (Initialization) Guess an initial stationary policy μ^{0}.
- Step 2: (Policy evaluation: Find $J_{\mu^{k}}$)

Solve $J_{\mu^{k}}=T_{\mu^{k}} J_{\mu^{k}}$ or the linear system of equations w.r.t. J :

$$
\left(I-\beta P_{\mu^{k}}\right) J=g_{\mu^{k}}
$$

- Step 3: (Policy improvement: Find $J_{\mu^{k}}$-greedy policy)

Obtain a new stationary policy μ^{k+1} that is $J_{\mu^{k}}$-greedy.
If $J_{\mu^{k}}=J_{\mu^{k+1}}$ stop; else return to step 2.

Policy iteration

Theorem (Bertsekas, Proposition 2.3.1)
Fix a policy μ. Let $\hat{\mu}$ be a J_{μ}-greedy policy. Then we have

$$
J_{\hat{\mu}}(x) \leq J_{\mu}(x), \quad \text { for each } x \in \mathcal{X} .
$$

Moreover, if μ is not optimal, strict inequality holds for at least one state.

Reinforcement learning

- Dynamic Programming:
- model of the environment's dynamics is given (P, g are known).
- Reinforcement learning:
- model of the environment's dynamics is not given (P, g are unknown).

Policy evaluation

- Given a stationary policy μ we want to estimate

$$
J_{\mu}(x)=\mathbb{E}\left[\sum_{k=0}^{\infty} \beta^{k} g\left(x_{k}, \mu\left(x_{k}\right), x_{k+1}\right) \mid x_{0}=x\right]
$$

- J_{μ} has to satisfy Bellman equation:

$$
\begin{aligned}
J_{\mu}(x) & =\mathbb{E}\left[g\left(x, \mu(x), x_{1}\right)\right]+\beta \mathbb{E}\left[J_{\mu}\left(x_{1}\right)\right] \\
& =g_{\mu}(x)+\beta\left(P_{\mu} J_{\mu}\right)(x)=\left(T_{\mu} J_{\mu}\right)(x)
\end{aligned}
$$

- Solving fixed point J_{μ} from $J_{\mu}=T_{\mu} J_{\mu}$ is equivalent solving

$$
J_{\mu}=\underset{J \in \mathbb{R}|\mathcal{X}|}{\arg \min } \sum_{x \in \mathcal{X}}\left|J(x)-\left(T_{\mu} J\right)(x)\right|^{2} \xi(x) .
$$

Bellman error

- Lost function:

$$
\begin{equation*}
\left\|J-T_{\mu} J\right\|_{\xi} \equiv \sum_{x \in \mathcal{X}}\left|J(x)-\left(g_{\mu}(x)+\beta\left(P_{\mu} J\right)(x)\right)\right|^{2} \xi(x) \tag{3}
\end{equation*}
$$

is known as the (weighted) Bellman error.

- Most visited states should be weighted more. So ξ is often chosen to be the stationary distribution of the DTMC with transition matrix P_{μ}.

Policy evaluation

- By setting the gradient of (3) (w.r.t J) to 0 , we get

$$
\begin{equation*}
D\left(J-\left(g_{\mu}+\beta P_{\mu} J\right)\right)=0 \tag{4}
\end{equation*}
$$

where D is the diagonal matrix with ξ along the diagonal.

- Note that equation (4) is equivalent to the fixed point problem

$$
J=J-\gamma D\left[\left(I-\beta P_{\mu}\right) J-g_{\mu}\right]
$$

- $D\left[\left(I-\beta P_{\mu}\right) J-g_{\mu}\right]=\mathbb{E}_{\xi}\left[J(x)-\beta J\left(x^{\prime}\right)-g\left(x, x^{\prime}\right)\right]$

Tabular TD(0) learning

- Step 1 (Initialization): arbitrary initialize J^{0}, choose initial state x_{0}
- Step 2 (Simulation): simulate one step starting from x_{k} with decision given by μ. Observe next state x_{k+1} and one-step cost g_{k}.
- Step 3 (Update):

$$
\left\{\begin{array}{l}
J^{k+1}\left(x_{k}\right)=J^{k}\left(x_{k}\right)-\gamma_{k}\left[J^{k}\left(x_{k}\right)-\left(g_{k}+\beta J^{k}\left(x_{k+1}\right)\right)\right] \\
J^{k+1}(y)=J^{k}(y), \text { for } y \neq x_{k}
\end{array}\right.
$$

- Step 4: $k=k+1$, move to Step 2.

Tabular TD(0) learning

Theorem (Sutton, 1988)
Assume a Markov chain associate with the policy μ is finite, irreducible and aperiodic. Given bounded costs $\left|g\left(x, a, x^{\prime}\right)\right|<G$ and learning rate s.t. $\sum_{k=0}^{\infty} \gamma_{k}=\infty, \sum_{k=0}^{\infty} \gamma_{k}^{2}<\infty$

$$
\lim _{k \rightarrow \infty} J^{k}=J_{\mu} \text { a.s. }
$$

The ℓ-step Bellman equation:

$$
J_{\mu}(x)=\mathbb{E}\left[\sum_{k=0}^{\ell} \beta^{k} g\left(x_{k}, \mu(x), x_{k+1}\right)+\beta^{\ell+1} J_{\mu}\left(x_{\ell+1}\right)\right]
$$

When $\ell \sim \operatorname{Geometric}(\lambda), 0 \leq \lambda \leq 1$, the corresponding algorithm is $\operatorname{TD}(\lambda)$ learning algorithm.

Q-factor

- Optimal Q-factor is defined as

$$
\begin{aligned}
Q^{*}(x, a) & =\sum_{x^{\prime} \in \mathcal{X}} P\left(x, a, x^{\prime}\right)\left[g\left(x, a, x^{\prime}\right)+\beta J^{*}\left(x^{\prime}\right)\right] \\
& =\mathbb{E}\left[g\left(x, a, x^{\prime}\right)+\beta J^{*}\left(x^{\prime}\right)\right] \\
& \approx \frac{1}{K} \sum_{i=1}^{K}\left(g\left(x, a, x_{i}^{\prime}\right)+\beta J^{*}\left(x_{i}^{\prime}\right)\right)
\end{aligned}
$$

- Optimal policy inference

$$
\begin{equation*}
\mu^{*}(x)=\underset{a \in \mathcal{A}(x)}{\arg \min } Q^{*}(x, a) . \tag{5}
\end{equation*}
$$

- When Q^{*} is too big for memory or (5) is too difficult, a low-dimensional representation of Q^{*} is needed.

Bellman equation for Q-factor

- Define

$$
(T Q)(x, a)=\sum_{y \in \mathcal{X}} P(x, a, y)\left[g(x, a, y)+\beta \min _{v \in A(y)} Q(y, v)\right]
$$

- Q^{*} is the unique fixed point to equation

$$
Q=T Q .
$$

- If P and g are known, value iteration (VI)

$$
Q_{k+1}=T Q_{k}
$$

converges to Q^{*} from any starting Q_{0}.

Q-learning as stochastic VI

- We can generate infinitely long sequence of triples $\left\{x_{k}, a_{k}, g_{k}\right\}$, s.t. each state-action pair (x, a) appears infinitely often.
- the Q-factor of (x_{k}, a_{k}) pair is updated:

$$
\left\{\begin{array}{l}
Q_{k+1}\left(x_{k}, a_{k}\right)=\left(1-\gamma_{k}\right) Q_{k}\left(x_{k}, a_{k}\right)+\gamma_{k}\left(g_{k}+\beta \min _{v} Q_{k}\left(x_{k+1}^{\prime}, v\right)\right) \\
Q_{k+1}(x, a)=Q_{k}(x, a), \text { if }(x, a) \neq\left(x_{k}, a_{k}\right)
\end{array}\right.
$$

- Note that $g_{k}+\beta \min _{v} Q_{k}\left(x_{k+1}^{\prime}, v\right)$ is a single sample approximation of the expected value $(T Q)\left(x_{k}, a_{k}\right)$.

Q-learning

Theorem (Watkins and Dayan, 1992)
Given

- A sequence where each state-action pair appears infinitely often
- bounded costs $|g(x, a, y)|<G$
- learning rate s.t. $0<\gamma_{k}<1, \sum_{k=0}^{\infty} \gamma_{k}=\infty, \sum_{k=0}^{\infty} \gamma_{k}^{2}<\infty$

Q-learning algorithm converges:

$$
\lim _{k \rightarrow \infty} Q_{k}(x, a)=Q^{*} \text { a.s. }
$$

Policy iteration for Q-factors

- Policy evaluation: given current policy μ^{k} find the fixed point $Q_{\mu^{k}}$ of

$$
Q(x, a)=\sum_{y \in \mathcal{X}} P(x, a, y)\left[g(x, a, y)+\beta Q\left(y, \mu^{k}(y)\right)\right]
$$

- Policy improvement: $\mu^{k+1}(x)=\arg \min _{a \in \mathcal{A}(x)} Q_{\mu^{k}}(x, a)$

optimistic PI for Q-factors: SARSA

- Step 1 (Initialization): arbitrary initialize Q^{0}, choose initial state x_{0}, initial decision a_{0}.
- Step 2 (Simulation): simulate one step starting from x_{k} with decision given by a_{k}. Observe next state x_{k+1} and cost g_{k}.
- Step 3 (Evaluation\&improvement) $a_{k+1}=\left\{\begin{array}{l}\underset{a \in \mathcal{A}}{\arg \min } Q^{k}\left(x_{k+1}, a\right) \text { w.p. } 1-\epsilon \\ \text { other action w.p. } \epsilon\end{array}\right.$
- Step 4 (Update):

$$
\left\{\begin{array}{l}
Q^{k+1}\left(x_{k}, a_{k}\right)=\left(1-\gamma_{k}\right) Q^{k}\left(x_{k}, a_{k}\right)+\gamma_{k}\left[g_{k}+\beta Q^{k}\left(x_{k+1}, a_{k+1}\right)\right], \\
Q^{k+1}(y, v)=Q^{k}(y, v), \text { for }(y, v) \neq\left(x_{k}, a_{k}\right)
\end{array}\right.
$$

- Step 5: $k=k+1$, move to Step 2. SARSA: state, action, reward, state,

References

- Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine Learning, 3:9-44.
- Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Machine Learning, 8:279-292.
- Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Volume 2: Approximate Dynamic Programming, 4th edition. Athena Scientific, Belmont.

Properties

Theorem (Monotonicity)
For any functions $J, J^{\prime}: \mathcal{X} \rightarrow \mathbb{R}$, s.t. for all $x \in \mathcal{X}$,

$$
J(x) \leq J^{\prime}(x)
$$

and any stationary policy $\mu: X \rightarrow \mathcal{A}$, we have

$$
(T J)(x) \leq\left(T J^{\prime}\right)(x) \quad\left(T_{\mu} J\right)(x) \leq\left(T_{\mu} J^{\prime}\right)(x), \text { for each } x \in \mathcal{X}
$$

Theorem (Constant Shift)
For every k, function $J: \mathcal{X} \rightarrow \mathbb{R}$, stationary policy $\mu, r \in \mathbb{R}$, and $x \in \mathcal{X}$,

$$
\begin{gathered}
(T(J+r e))(x)=(T J)(x)+\beta r \\
\left(T_{\mu}(J+r e)\right)(x)=\left(T_{\mu} J\right)(x)+\beta r
\end{gathered}
$$

Contraction mapping

- For any $J, J^{\prime}: \mathcal{X} \rightarrow \mathbb{R}$, there holds

$$
\max _{x \in X}\left|(T J)(x)-\left(T^{k} J^{\prime}\right)(x)\right| \leq \beta \max _{x \in X}\left|J(x)-J^{\prime}(x)\right| .
$$

- Proof. Let $c=\max _{x \in X}\left|J(x)-J^{\prime}(x)\right|$, then
$J(x)-c \leq J^{\prime}(x) \leq J(x)+c$ for each $x \in \mathcal{X}$.
By Monotonicity Lemma: $T(J-c e)(x) \leq T\left(J^{\prime}\right)(x) \leq T(J+c e)(x)$
By Constant shift Lemma: $(T J)(x)-\beta c \leq T\left(J^{\prime}\right)(x) \leq(T J)(x)+\beta c$

