
Introduction to Reinforcement Learning

Jim Dai

iDDA, CUHK-Shenzhen

January 21, 2019

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 1 / 29

Sequential decision problems

Let N > 0 be the time horizon of the decision problem.

For each k ∈ [0, N + 1], xk ∈ Xk is the state at time k.

At time k, observing state xk, an action ak ∈ Ak is taken.

Given (xk, ak), a new (random) state xk+1 is observed and a (one-step) cost

gk(xk, ak, xk+1) is incurred.

The sequence

(x0, a0, x1, a1, . . . , xN , aN , xN+1)

is known as an episode.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 2 / 29

Policies and total costs

The total cost for the episode is

N∑
k=0

gk(xk, ak, xk+1).

π = {µ0, µ1, . . . , µN} is known as a policy if for k ∈ [0, N]

µk : Xk → Ak,

ak = µk(xk).

Expected total cost Jπ(x) = Eπ
[N∑
k=0

gk(xk, ak, xk+1)|x0 = x
]
, where Eπ is the

expectation over randomness for transitions from xk to xk+1, k ∈ [0, N], under

policy π.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 3 / 29

Models for dynamics

The system state at the next decision epoch is determined by

P
{
xk+1 = y

∣∣∣xk = x, ak = a
}

= Pk(x, a, y)

for each x ∈ Xk, ak ∈ Ak, and y ∈ Xk+1.

Case I: transition probabilities are known. The model is known.

Case II: transition probabilities are unknown, but episodes can be observed from

data.

Case III: transition probabilities are unknown, but given (xk, ak), xk+1 can be

sampled. A simulator is available.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 4 / 29

Objective and optimal value function

Π is the set of feasible policies. The optimal value function is

J∗(x) = inf
π∈Π

Jπ(x), x ∈ X0. (1)

A policy π∗ is an optimal policy if J∗(x) = Jπ∗(x).

In general, the infimum in (1) may not be achievable. In such a case, an optimal

policy does not exist.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 5 / 29

Bellman equation and backward induction algorithm

Bellman equation when N is finite.

JN+1(x) = 0, x ∈ XN+1, and for k = N, . . . , 0,

Jk(x) = min
a∈Ak(x)

∑
y∈Xk+1

Pk(x, a, y)
(
gk(x, a, y) + Jk+1(y)

)
for x ∈ Xk,

(cost-to-go function Jk)

J∗(x) = J0(x), x ∈ X0. complexity: ΠN
k=0|Ak||Xk+1|.

Bellman equation when N is infinite, assuming time homogeneity with a

discounted factor β < 1, (Pk = P and gk = βkg)

J∗(x) = min
a∈A

∑
y∈X

P (x, a, y)
(
g(x, a, y) + βJ∗(y)

)
Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 6 / 29

Bellman’s equation: optimal value function

Theorem (Bellman optimality equation; Bertsekas, Proposition 1.2.3)

Assume that the state space X and action space A are finite.

(a) The optimal value function J∗ satisfies

J∗(x) = min
a∈A(x)

Ex′∼P (·|x,a)

[
g(x, a, x′) + βJ∗(x′)

]
for all x ∈ X

(b) J∗ is the unique solution of the Bellman’s equation.

Notation: P{x′ = y|x, a} = P (x, a, y) for y ∈ X .

∑
y∈X

P (x, a, y)
(
g(x, a, y) + βJ∗(y)

)
= Ex′∼P (·|x,a)

[
g(x, a, x′) + βJ∗(x′)

]

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 7 / 29

Bellman’s equation: optimal policy

Theorem (Bertsekas, Proposition 1.2.5)

Assume that the state space X and action space A are finite.

Let J∗ : X → R be the unique solution to the Bellman equation.

Define µ∗ : X → A via

µ∗(x) = arg min
a∈A(x)

Ex′∼P (·|x,a)

[
g(x, a, x′) + βJ∗(x′)

]
for all x ∈ X .

The stationary policy π∗ = {µ∗, . . . , µ∗, . . .} is optimal.

For a function h : X → R, define h-greedy policy µh : X → A via

µh(x) = arg min
a∈A(x)

Ex′∼P (·|x,a)

[
g(x, a, x′) + βh(x′)

]
for all x ∈ X .

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 8 / 29

Bellman operator

Define Bellman operator T : for J : X → R

(TJ)(x) = min
a∈A(x)

Ex′∼P (·|x,a)

[
g(x, a, x′) + βJ(x′)

]
Fix a stationary policy µ. Define its Bellman operator Tµ: for J : X → R

(TµJ)(x) = Ex′∼P (·|x,µ(x))

[
g(x, µ(x), x′) + βJ(x′)

]
For any J ,

(TµJJ)(x) = (TJ)(x) x ∈ X .

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 9 / 29

Value iteration

Theorem (Bertsekas, Proposition 1.2.1)

For any function J : X → R, we have for all x ∈ X ,

J∗(x) = lim
N→∞

(TNJ)(x).

Value iteration: Jn = TJn−1, starting with arbitrary J0 = J.

Convergence rate:

max
x∈X
|JN (x)− J∗(x)| = max

x∈X
|TJN−1(x)− TJ∗(x)| ≤

βmax
x∈X
|JN−1(x)− J∗(x)| ≤ βN max

x∈X
|J(x)− J∗(x)|.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 10 / 29

Value iteration: Complexity

One iteration step, for one state x ∈ X :

Let g(x, a) =
∑
y∈X

P (x, a, y)g(x, a, y) be expected cost, then

Jn(x) = (TJn−1)(x) = min
a∈A(x)

[
g(x, a) + β

∑
y∈X

P (x, a, y)Jn−1(y)
]

The complexity is |A||X |.

Complexity of value iteration algorithm for N steps:

N |A||X |2.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 11 / 29

Policy evaluation

Given a stationary policy µ, its value function Jµ satisfies Bellman equation

Jµ(x) = g(x, µ(x)) + β
∑
y∈X

P (x, µ(x), y)Jµ(y) x ∈ X . (2)

Thus

Jµ = (I − βPµ)−1gµ,

where g is an X -vector with entries gµ(x) = g(x, µ(x)) and Pµ is an X × X

matrix with entries Pµ(x, y) = P (x, µ(x), y).

There are many algorithms solving (2).

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 12 / 29

Policy iteration

Step 1: (Initialization) Guess an initial stationary policy µ0.

Step 2: (Policy evaluation: Find Jµk)

Solve Jµk = TµkJµk or the linear system of equations w.r.t. J :

(I − βPµk)J = gµk

Step 3: (Policy improvement: Find Jµk -greedy policy)

Obtain a new stationary policy µk+1 that is Jµk -greedy.

If Jµk = Jµk+1 stop; else return to step 2.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 13 / 29

Policy iteration

µk

old policy
−→

Jµk

value function of the old policy
−→

µk+1

new improved policy

Theorem (Bertsekas, Proposition 2.3.1)

Fix a policy µ. Let µ̂ be a Jµ-greedy policy. Then we have

Jµ̂(x) ≤ Jµ(x), for each x ∈ X .

Moreover, if µ is not optimal, strict inequality holds for at least one state.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 14 / 29

Reinforcement learning

Dynamic Programming:

- model of the environment’s dynamics is given (P, g are known).

Reinforcement learning:

- model of the environment’s dynamics is not given (P, g are unknown).

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 15 / 29

Policy evaluation

Given a stationary policy µ we want to estimate

Jµ(x) = E
[∞∑
k=0

βkg(xk, µ(xk), xk+1)|x0 = x
]

Jµ has to satisfy Bellman equation:

Jµ(x) = E[g(x, µ(x), x1)] + βE[Jµ(x1)]

= gµ(x) + β(PµJµ)(x) = (TµJµ)(x)

Solving fixed point Jµ from Jµ = TµJµ is equivalent solving

Jµ = arg min
J∈R|X|

∑
x∈X

|J(x)− (TµJ)(x)|2ξ(x).

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 16 / 29

Bellman error

Lost function:

||J − TµJ ||ξ ≡
∑
x∈X

|J(x)−
(
gµ(x) + β(PµJ)(x)

)
|2ξ(x). (3)

is known as the (weighted) Bellman error.

Most visited states should be weighted more. So ξ is often chosen to be the

stationary distribution of the DTMC with transition matrix Pµ.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 17 / 29

Policy evaluation

By setting the gradient of (3) (w.r.t J) to 0, we get

D(J − (gµ + βPµJ)) = 0, (4)

where D is the diagonal matrix with ξ along the diagonal.

Note that equation (4) is equivalent to the fixed point problem

J = J − γD
[
(I − βPµ)J − gµ

]
D
[
(I − βPµ)J − gµ

]
= Eξ

[
J(x)− βJ(x′)− g(x, x′)

]

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 18 / 29

Tabular TD(0) learning

Step 1 (Initialization): arbitrary initialize J0, choose initial state x0

Step 2 (Simulation): simulate one step starting from xk with decision given by µ.

Observe next state xk+1 and one-step cost gk.

Step 3 (Update):J
k+1(xk) = Jk(xk)− γk

[
Jk(xk)−

(
gk + βJk(xk+1)

)]
,

Jk+1(y) = Jk(y), for y 6= xk

Step 4: k = k + 1 , move to Step 2.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 19 / 29

Tabular TD(0) learning

Theorem (Sutton, 1988)

Assume a Markov chain associate with the policy µ is finite, irreducible and aperiodic.

Given bounded costs |g(x, a, x′)| < G and learning rate s.t.
∞∑
k=0

γk =∞,
∞∑
k=0

γ2
k <∞

lim
k→∞

Jk = Jµ a.s.

The `-step Bellman equation:

Jµ(x) = E
[∑̀
k=0

βkg(xk, µ(x), xk+1) + β`+1Jµ(x`+1)
]
.

When ` ∼ Geometric(λ), 0 ≤ λ ≤ 1, the corresponding algorithm is TD(λ) learning

algorithm.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 20 / 29

Q-factor

Optimal Q-factor is defined as

Q∗(x, a) =
∑
x′∈X

P (x, a, x′)
[
g(x, a, x′) + βJ∗(x′)

]
= E[g(x, a, x′) + βJ∗(x′)]

≈ 1

K

K∑
i=1

(
g(x, a, x′i) + βJ∗(x′i)

)

Optimal policy inference

µ∗(x) = arg min
a∈A(x)

Q∗(x, a). (5)

When Q∗ is too big for memory or (5) is too difficult, a low-dimensional

representation of Q∗ is needed.
Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 21 / 29

Bellman equation for Q-factor

Define

(TQ)(x, a) =
∑
y∈X

P (x, a, y)
[
g(x, a, y) + β min

v∈A(y)
Q(y, v)

]
Q∗ is the unique fixed point to equation

Q = TQ.

If P and g are known, value iteration (VI)

Qk+1 = TQk

converges to Q∗ from any starting Q0.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 22 / 29

Q-learning as stochastic VI

We can generate infinitely long sequence of triples {xk, ak, gk}, s.t. each

state-action pair (x, a) appears infinitely often.

the Q-factor of (xk, ak) pair is updated:
Qk+1(xk, ak) = (1− γk)Qk(xk, ak) + γk

(
gk + βmin

v
Qk(x′k+1, v)

)
Qk+1(x, a) = Qk(x, a), if (x, a) 6= (xk, ak)

Note that gk + βmin
v
Qk(x′k+1, v) is a single sample approximation of the

expected value (TQ)(xk, ak).

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 23 / 29

Q-learning

Theorem (Watkins and Dayan, 1992)

Given

A sequence where each state-action pair appears infinitely often

bounded costs |g(x, a, y)| < G

learning rate s.t. 0 < γk < 1,
∞∑
k=0

γk =∞,
∞∑
k=0

γ2
k <∞

Q-learning algorithm converges:

lim
k→∞

Qk(x, a) = Q∗ a.s.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 24 / 29

Policy iteration for Q-factors

Policy evaluation: given current policy µk find the fixed point Qµk of

Q(x, a) =
∑
y∈X

P (x, a, y)[g(x, a, y) + βQ(y, µk(y))]

Policy improvement: µk+1(x) = arg min
a∈A(x)

Qµk (x, a)

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 25 / 29

optimistic PI for Q-factors: SARSA

Step 1 (Initialization): arbitrary initialize Q0, choose initial state x0, initial decision

a0.

Step 2 (Simulation): simulate one step starting from xk with decision given by ak.

Observe next state xk+1 and cost gk.

Step 3 (Evaluation&improvement) ak+1 =


arg min
a∈A

Qk(xk+1, a) w.p. 1− ε

other action w.p. ε

Step 4 (Update):Q
k+1(xk, ak) = (1− γk)Qk(xk, ak) + γk

[
gk + βQk(xk+1, ak+1)

]
,

Qk+1(y, v) = Qk(y, v), for (y, v) 6= (xk, ak)

Step 5: k = k + 1 , move to Step 2. SARSA: state, action, reward, state,

action.Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 26 / 29

References

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.

Machine Learning, 3:9–44.

Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Machine Learning,

8:279–292.

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Volume 2:

Approximate Dynamic Programming, 4th edition. Athena Scientific, Belmont.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 27 / 29

Properties

Theorem (Monotonicity)

For any functions J, J ′ : X → R, s.t. for all x ∈ X ,

J(x) ≤ J ′(x),

and any stationary policy µ : X → A, we have

(TJ)(x) ≤ (TJ ′)(x) (TµJ)(x) ≤ (TµJ
′)(x), for each x ∈ X .

Theorem (Constant Shift)

For every k, function J : X → R, stationary policy µ, r ∈ R, and x ∈ X ,

(T (J + re))(x) = (TJ)(x) + βr,

(Tµ(J + re))(x) = (TµJ)(x) + βr.

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 28 / 29

Contraction mapping

For any J, J ′ : X → R, there holds

max
x∈X
|(TJ)(x)− (T kJ ′)(x)| ≤ βmax

x∈X
|J(x)− J ′(x)|.

Proof. Let c = max
x∈X
|J(x)− J ′(x)|, then

J(x)− c ≤ J ′(x) ≤ J(x) + c for each x ∈ X .

By Monotonicity Lemma: T (J − ce)(x) ≤ T (J ′)(x) ≤ T (J + ce)(x)

By Constant shift Lemma: (TJ)(x)− βc ≤ T (J ′)(x) ≤ (TJ)(x) + βc

Jim Dai (iDDA, CUHK-Shenzhen) Introduction to Reinforcement Learning January 21, 2019 29 / 29

