
Multi-step learning and Value-based approximation

methods

Mark Gluzman

iDDA, CUHK (Shenzhen)

January 28, 2019

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 1 / 26



Markov Decision Process

MDP is defined asM = (X ,A, P, g), where

X is a finite state space, A =
⋃
x∈X
A(x) is a finite action space.

P is a state transition probability kernel.

The system state at the next decision epoch is determined by

P
{
xk+1 = y

∣∣∣xk = x, ak = a
}

= P (x, a, y)

for each xk ∈ X , ak ∈ A(xk) ⊂ A.

Given (xk; ak), a new (random) state xk+1 is observed and a (one-step) cost

g(xk; ak;xk+1) is incurred.

The value function of policy µ : X → A is

Jµ(x) = E
[ ∞∑
k=0

βkg
(
xk, µ(xk), xk+1

)
|x0 = x

]
, where 0 < β < 1.
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Bellman operator

For J : X → R and stationary policy µ

(TµJ)(x) = Ey∼P (·|x,µ(x))

[
g(x, µ(x), y) + βJ(j)

]
=
∑
y∈X

P (x, µ(x), y)
[
g(x, µ(x), y) + βJ(y)

]
, x ∈ X

For J : X → R consider

(TJ)(x) = min
a∈A(x)

Ey∼P (·|x,a)

[
g(x, a, y) + βJ(y)

]
= min
a∈A(x)

∑
y∈X

P (x, a, y)
[
g(x, a, y) + βJ(y)

]
, x ∈ X
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Bellman equation

Theorem (Bertsekas, Proposition 1.2.4)

(a) For every stationary policy µ, the associated value function satisfies for all i ∈ X :

Jµ(x) = Ey∼P (·|x,µ(x))

[
g(x, µ(x), y) + βJµ(y)

]
or Jµ = TµJµ

(b) Jµ is the unique solution of equation (1).

The main purpose of this talk is to find an efficient way to estimate Jµ.
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Policy evaluation: Dynamic programming (Pµ, gµ are known.)

A fixed point problem Jµ = TµJµ is equivalent to linear system of equations

Jµ = gµ + βPµJµ,

where gµ is a X -vector with entries gµ(x) =
∑
y∈X

P (x, µ(x), y)g(x, µ(x), y) and Pµ is

an X × X matrix with entries Pµ(x, y) = P (x, µ(x), y).
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Monte-Carlo Simulation: Pµ, gµ are unknown

Let cm(x0) = g(x0, x1) + βg(x1, x2)...+ βNg(xN , xN+1) be the cumulative cost

of the mth episode, s.t. xN+1 is a terminal state or βN

1−β max
x,y∈X

g(x, y) ≈ 0.

For all states x ∈ X and for all m we have

Jµ(x) = E[cm(x)]

thus we can estimate Jµ(x) forming a sample mean:

JK(x) ≈ 1

K

K∑
m=1

cm(x) (1)

Equation (1) can be iteratively calculated

Jm(x) = Jm−1(x) + γm
(
cm(x)− Jm−1(x)

)
, m = 1, ..,K

where J0(x) = 0 and γm = 1
m
.
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TD(0) learning

Bellman equation

Jµ(x) = E
[
g(x, y) + βJµ(y)

]
Assume that we have an episode {x0, x1, ..., xN} and km is a mth time when the

state x is visited.

Jµ(x) ≈ 1
K

K∑
m=1

[
g(xkm , xkm+1) + βJµ(xkm+1)

]
Update step for TD(0) learningJ

k(x) = Jk−1(xk) + γm
(
g(xk, xk+1) + βJk−1(xk+1)− Jk−1(xk)

)
, if x = xk

Jk(x) = Jk−1(xk), if x 6= xk
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N-step TD learning

N-step Bellman operator:

(TNµ J)(xk) = E
[ N∑
m=0

βmg(xk+m, xk+m+1) + βN+1J(xk+N+1)
]

N-step Bellman equation:

(TNµ J)(x) = J(x), for each x ∈ X

After k +N steps

Jk+Nµ (xk) ≈ gk + βgk+1 + ...+ βNgk+N + βN+1Jk+N−1
µ (xk+N+1)

Update step for N-step TD learning
Jk+N+1
µ (xk) = Jk+Nµ (xk)− γk

[
Jk+Nµ (xk)−

N∑
n=0

βngk+n − βNJk+Nµ (xk+N+1)
]

Jk+N+1
µ (y) = Jk+Nµ (y), y 6= xk
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λ-weighted multistep Bellman equation

Consider N ∼ Geometric(λ), 0 ≤ λ < 1.

Define an operator:

T (λ)
µ = (1− λ)

∞∑
n=0

λnTn+1
µ

The λ−weighted multistep Bellman equation:

Jµ(xk) = (1− λ)E
[ ∞∑
n=0

λn
( n∑
m=0

βmg(xk+m, xk+m+1) + βn+1Jµ(xk+n+1)
)]
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TD(λ) learning

Jµ(xk) = (1− λ)E
[ ∞∑
n=0

λn
( n∑
m=0

βmg(xk+m, xk+m+1) + βn+1Jµ(xk+n+1)
)]

= E
[
(1− λ)

∞∑
m=0

βmg(xk+m, xk+m+1)

∞∑
n=m

λn +

∞∑
n=0

βn+1Jµ(xk+n+1)(λn − λn+1)
]

= E
[ ∞∑
m=0

βmλm
(
g(xk+m, xk+m+1) + βλJµ(xk+m+1)− Jµ(xk+m)

)]
+ Jµ(xk)

= E
[ ∞∑
m=0

λmβmdm+k

]
+ Jµ(xk)

Temporal Difference: dm = g(xm, xm+1) + βλJµ(xm+1)− Jµ(xm)
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TD(λ) learning

λ-weighted Bellman equation: Jµ(xk) = E
[
Jµ(xk) +

∞∑
m=0

(λβ)mdm+k

]
Online iterations:

J(xk) := J(xk)+γ
[
J(xk)+

∞∑
m=0

(λβ)mdm+k−J(xk)
]

= J(xk)+γ

∞∑
m=0

(λβ)mdm+k

Assume we have a single infinitely long trajectory (x0, g0, x1, g1, x2, ...).

Since we cannot afford to wait until the end of the trajectory we need an on-line

version of the algorithm.
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TD(λ) learning

Let J0 is an initial guess. The first two updated are:

Following the transition (x0, x1) :

J1(x0) = J0(x0) + γd0

Following the transition (x1, x2) :J
2(x0) = J1(x0) + γλβd1 = J0(x0) + γd0 + γλβd1

J2(x1) = J1(x1) + γd1 = J0(x1) + γd1

If x0 = x1 there are three variants of the TD(λ) algorithm:

The restart variant: J2(x0) = J0(x0) + γd0 + γd1.

The first-visit variant: J2(x0) = J0(x0) + γd0 + γλβd1

The every-visit variant: J2(x0) = J0(x0) + γd0 + γλβd1 + γd1.
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TD(λ) learning

The update equation for TD(λ) becomes:

Jk+1(x) = Jk(x) + γk(x)zk(x)dk(x), for each x ∈ X

where z−1 = 0 and

The restart variant: zk(x) =

1, if xk = x

βλzk−1(x), if xk 6= x

The first-visit variant: zk(x) =

1, if x = xk and xk is visited first time

βλzk−1(x), otherwise

The every-visit variant: zk(x) =

βλzk−1(x) + 1, if xk = x

βλzk−1(x), if xk 6= x
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Approximate Dynamic Programming

Approximate dynamic programming (neuro-dynamic programming,

reinforcement learning):

A principle aim is to address problems with very large number of states in X .

|X |-dimensional inner product are time-consuming.

It may impossible to store |X |-vector in a computer memory.
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Approximation is value space

J̃(x, r) is a function of some chosen form and r = (r1, ..., rs) is a parameter

vector of relatively small dimension s.

Examples:

Linear form:

J̃(x, r) =

s∑
k=1

rkφk(x),

where φk : X → R, k = 1, ..., s are known as feature functions.

Feedforward neural network with a single hidden layer with K neurons:

J̃(x, r) =
K∑
k=1

r(k)σ
( L∑
l=1

r(k, l)vl(x)
)
,

where state x is encoded as a L -dimensional vector v(x), σ(·) is an activation

function.
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Linear Approximation

Given a stationary policy µ we want to estimate

Jµ(x) = E
[ ∞∑
k=0

βkg(xk, µ(xk), xk+1)|x0 = x
]

We approximate Jµ(x) with a linear architecture

J̃(x, r) =
s∑

k=1

rkφk(x) = φ(x)T r, x ∈ X ,

where φ(x) is an s-dimensional feature vector.

J̃r =


φ(x1)T r

...

φ(x|X|)
T r

 = Φr,

where Φ is |X | × s matrix that has as rows the feature vectors φ(x)T .
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The Projected Equation

We want to approximate Jµ within space S = {Φr | r ∈ Rs}.

The goal is to find J̃∗ w.r.t. ξ−weighted norm:

J̃∗ = arg min
J̃∈S

∑
x∈X
|Jµ(x)− J̃(x, r)|2ξ(x) = arg min

J̃∈S
||Jµ − J̃r||2ξ

The problem is equivalent to finding r∗ ∈ Rs s.t.

r∗ = arg min
r∈Rs

||Jµ − Φr||2ξ

Let Π denote the projection operation onto S w.r.t the ξ−weighted norm.

Then

ΠJµ = Φr∗. (2)
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The Projected Bellman Equation

We assume

Jµ ≈ Tµ(Φr∗) (3)

Combing (3) and (2) we get

ΠTµ(Φr∗) ≈ Φr∗

The Projected Bellman equation:

ΠTµ(Φr) = Φr (4)

One can show that ΠTµ is a contraction operator w.r.t. || · ||ξ norm when ξ is a

stationary distribution of the DTMC with transition matrix Pµ.
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The Projected Bellman Equation

By the definition of projection the unique solution of (4) satisfies

r∗ = arg min
r∈Rs

||Φr − (gµ + βPµΦr∗)||2ξ

By setting to 0 the gradient w.r.t. r we obtain

ΦTD(Φr∗ − (gµ + βPµΦr∗)) = 0, (5)

where D is the diagonal matrix with ξ along the diagonal.

Equation (5) can be compactly written as

Cr∗ = d,

where C = ΦTD(I − βPµ)Φ and d = ΦTDgµ.
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TD(0) with linear approximation

Cr − d = ΦTD(I − βPµ)r − ΦTDgµ = E
[
φ(x)

(
φ(x)T r − βφ(y)T r − gµ(x, y)

)]
Equation Cr − d = 0 is equivalent to

r = r − γ(Cr − d) = r − γE
[
φ(x)

(
φ(x)T r − βφ(y)T r − g(x, y)

)]
Given an episode (x0, g0, x1, g1, ..., xN , gN ), the TD(0) iteration is

rk+1 = rk − γkφ(xk)
(
φ(xk)T rk − βφ(xk+1)T rk − gk

)
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Convergence of TD(0) with linear approximation

Theorem (Tsitsiklis, Van Roy, 1997)

Assume that

the Markov chain assosiated with policy µ is irreducible and aperiodic

the steady-state variance of transition costs is finite E[g2(xk, xk+!)] <∞.

the learning rate is s.t.

∞∑
k=0

γk =∞ and
∞∑
k=0

γ2
k <∞

Then

TD(0) converges to r∗ that is a unique solution of ΠT (Φr) = Φr.

r∗ satisfies

||Φr∗ − Jµ||ξ ≤ 1
1−β ||ΠJµ − Jµ||ξ
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Finite Sample Analyses for TD(0) with Function Approximation

Gal Dalal et. al., 2017 found convergence rate under assumption that one can

generate iid samples from a steady-state distribution, using recently developed

stochastic approximation techniques.

Bhandari, Russo, Singal, 2018 found convergence rate for projected TD(0)

algorithm (rk is assumed to be ||rk|| < R) using information theoretic techniques.

Lei Ying, 2018 found convergence rate for TD(0) algorithm using Stein’s Method.
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LSTD(0)

C = E
[
φ(x)

(
φ(x)− βφ(y)

)T ]
and d = E[φ(x)g(x, y)]

Based on simulation

CN = 1
N+1

N∑
k=0

φ(xk)
(
φ(xk)− βφ(xk+1)

)T
and dN = 1

N+1

N∑
k=0

φ(xk)g(xk, xk+1)

LSTD(0) algorithm: simulate N time-steps according to a policy µ

Ck+1 = Ck − 1
k

(
φ(xk)

(
φ(xk)− βφ(xk+1)

)T
− Ck

)
dk+1 = dk − 1

k

(
φ(xk)g(xk, xk+1)− dk

)
After the end of simulation:

r̃ = C−1
N dN Jµ(x) ≈ φT (x)r̃
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LSPE(0)

LSPE method is based on an idea of Projected Value Iteration

Φrk+1 = ΠTµ(Φrk) (6)

Equation (6) is equivalent to rk+1 = rk − (ΦTDΦ)−1(Crk − d)

a simulation-based implementation:

rk+1 = rk −Gk(Ckrk − dk),

where 
Ck+1 = Ck − 1

k

(
φ(xk)

(
φ(xk)− βφ(xk+1)

)T
− Ck

)
dk+1 = dk − 1

k

(
φ(xk)g(xk, xk+1)− dk

)
Gk+1 =

(
1
k+1

k∑
t=0

φ(xt)φ(xt)
T
)−1

= Gk − Gkφ(xk)φ
T (xk)Gk

1+φT (xk)Gkφ(xk)
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Limitations

Limitations:

No guaranty that TD(λ) with non-linear approximation will converge.

Counterexample in Tsitsiklis, Van Roy, 1997.

Policy improvement may not converge to the near-optimal value function

approximation: no guaranty that J̃µ−greedy policy is better than µ. Policy

oscillation-chattering often occurs (see, Bertsekas, Chapter 6.4.3).
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