
Multi-step learning and Value-based approximation

methods

Mark Gluzman

iDDA, CUHK (Shenzhen)

January 28, 2019

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 1 / 26

Markov Decision Process

MDP is defined asM = (X ,A, P, g), where

X is a finite state space, A =
⋃
x∈X
A(x) is a finite action space.

P is a state transition probability kernel.

The system state at the next decision epoch is determined by

P
{
xk+1 = y

∣∣∣xk = x, ak = a
}

= P (x, a, y)

for each xk ∈ X , ak ∈ A(xk) ⊂ A.

Given (xk; ak), a new (random) state xk+1 is observed and a (one-step) cost

g(xk; ak;xk+1) is incurred.

The value function of policy µ : X → A is

Jµ(x) = E
[∞∑
k=0

βkg
(
xk, µ(xk), xk+1

)
|x0 = x

]
, where 0 < β < 1.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 2 / 26

Bellman operator

For J : X → R and stationary policy µ

(TµJ)(x) = Ey∼P (·|x,µ(x))

[
g(x, µ(x), y) + βJ(j)

]
=
∑
y∈X

P (x, µ(x), y)
[
g(x, µ(x), y) + βJ(y)

]
, x ∈ X

For J : X → R consider

(TJ)(x) = min
a∈A(x)

Ey∼P (·|x,a)

[
g(x, a, y) + βJ(y)

]
= min
a∈A(x)

∑
y∈X

P (x, a, y)
[
g(x, a, y) + βJ(y)

]
, x ∈ X

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 3 / 26

Bellman equation

Theorem (Bertsekas, Proposition 1.2.4)

(a) For every stationary policy µ, the associated value function satisfies for all i ∈ X :

Jµ(x) = Ey∼P (·|x,µ(x))

[
g(x, µ(x), y) + βJµ(y)

]
or Jµ = TµJµ

(b) Jµ is the unique solution of equation (1).

The main purpose of this talk is to find an efficient way to estimate Jµ.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 4 / 26

Policy evaluation: Dynamic programming (Pµ, gµ are known.)

A fixed point problem Jµ = TµJµ is equivalent to linear system of equations

Jµ = gµ + βPµJµ,

where gµ is a X -vector with entries gµ(x) =
∑
y∈X

P (x, µ(x), y)g(x, µ(x), y) and Pµ is

an X × X matrix with entries Pµ(x, y) = P (x, µ(x), y).

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 5 / 26

Monte-Carlo Simulation: Pµ, gµ are unknown

Let cm(x0) = g(x0, x1) + βg(x1, x2)...+ βNg(xN , xN+1) be the cumulative cost

of the mth episode, s.t. xN+1 is a terminal state or βN

1−β max
x,y∈X

g(x, y) ≈ 0.

For all states x ∈ X and for all m we have

Jµ(x) = E[cm(x)]

thus we can estimate Jµ(x) forming a sample mean:

JK(x) ≈ 1

K

K∑
m=1

cm(x) (1)

Equation (1) can be iteratively calculated

Jm(x) = Jm−1(x) + γm
(
cm(x)− Jm−1(x)

)
, m = 1, ..,K

where J0(x) = 0 and γm = 1
m
.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 6 / 26

TD(0) learning

Bellman equation

Jµ(x) = E
[
g(x, y) + βJµ(y)

]
Assume that we have an episode {x0, x1, ..., xN} and km is a mth time when the

state x is visited.

Jµ(x) ≈ 1
K

K∑
m=1

[
g(xkm , xkm+1) + βJµ(xkm+1)

]
Update step for TD(0) learningJ

k(x) = Jk−1(xk) + γm
(
g(xk, xk+1) + βJk−1(xk+1)− Jk−1(xk)

)
, if x = xk

Jk(x) = Jk−1(xk), if x 6= xk

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 7 / 26

N-step TD learning

N-step Bellman operator:

(TNµ J)(xk) = E
[N∑
m=0

βmg(xk+m, xk+m+1) + βN+1J(xk+N+1)
]

N-step Bellman equation:

(TNµ J)(x) = J(x), for each x ∈ X

After k +N steps

Jk+Nµ (xk) ≈ gk + βgk+1 + ...+ βNgk+N + βN+1Jk+N−1
µ (xk+N+1)

Update step for N-step TD learning
Jk+N+1
µ (xk) = Jk+Nµ (xk)− γk

[
Jk+Nµ (xk)−

N∑
n=0

βngk+n − βNJk+Nµ (xk+N+1)
]

Jk+N+1
µ (y) = Jk+Nµ (y), y 6= xk

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 8 / 26

λ-weighted multistep Bellman equation

Consider N ∼ Geometric(λ), 0 ≤ λ < 1.

Define an operator:

T (λ)
µ = (1− λ)

∞∑
n=0

λnTn+1
µ

The λ−weighted multistep Bellman equation:

Jµ(xk) = (1− λ)E
[∞∑
n=0

λn
(n∑
m=0

βmg(xk+m, xk+m+1) + βn+1Jµ(xk+n+1)
)]

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methods January 28, 2019 9 / 26

TD(λ) learning

Jµ(xk) = (1− λ)E
[∞∑
n=0

λn
(n∑
m=0

βmg(xk+m, xk+m+1) + βn+1Jµ(xk+n+1)
)]

= E
[
(1− λ)

∞∑
m=0

βmg(xk+m, xk+m+1)

∞∑
n=m

λn +

∞∑
n=0

βn+1Jµ(xk+n+1)(λn − λn+1)
]

= E
[∞∑
m=0

βmλm
(
g(xk+m, xk+m+1) + βλJµ(xk+m+1)− Jµ(xk+m)

)]
+ Jµ(xk)

= E
[∞∑
m=0

λmβmdm+k

]
+ Jµ(xk)

Temporal Difference: dm = g(xm, xm+1) + βλJµ(xm+1)− Jµ(xm)

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 10 / 26

TD(λ) learning

λ-weighted Bellman equation: Jµ(xk) = E
[
Jµ(xk) +

∞∑
m=0

(λβ)mdm+k

]
Online iterations:

J(xk) := J(xk)+γ
[
J(xk)+

∞∑
m=0

(λβ)mdm+k−J(xk)
]

= J(xk)+γ

∞∑
m=0

(λβ)mdm+k

Assume we have a single infinitely long trajectory (x0, g0, x1, g1, x2, ...).

Since we cannot afford to wait until the end of the trajectory we need an on-line

version of the algorithm.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 11 / 26

TD(λ) learning

Let J0 is an initial guess. The first two updated are:

Following the transition (x0, x1) :

J1(x0) = J0(x0) + γd0

Following the transition (x1, x2) :J
2(x0) = J1(x0) + γλβd1 = J0(x0) + γd0 + γλβd1

J2(x1) = J1(x1) + γd1 = J0(x1) + γd1

If x0 = x1 there are three variants of the TD(λ) algorithm:

The restart variant: J2(x0) = J0(x0) + γd0 + γd1.

The first-visit variant: J2(x0) = J0(x0) + γd0 + γλβd1

The every-visit variant: J2(x0) = J0(x0) + γd0 + γλβd1 + γd1.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 12 / 26

TD(λ) learning

The update equation for TD(λ) becomes:

Jk+1(x) = Jk(x) + γk(x)zk(x)dk(x), for each x ∈ X

where z−1 = 0 and

The restart variant: zk(x) =

1, if xk = x

βλzk−1(x), if xk 6= x

The first-visit variant: zk(x) =

1, if x = xk and xk is visited first time

βλzk−1(x), otherwise

The every-visit variant: zk(x) =

βλzk−1(x) + 1, if xk = x

βλzk−1(x), if xk 6= x

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 13 / 26

Approximate Dynamic Programming

Approximate dynamic programming (neuro-dynamic programming,

reinforcement learning):

A principle aim is to address problems with very large number of states in X .

|X |-dimensional inner product are time-consuming.

It may impossible to store |X |-vector in a computer memory.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 14 / 26

Approximation is value space

J̃(x, r) is a function of some chosen form and r = (r1, ..., rs) is a parameter

vector of relatively small dimension s.

Examples:

Linear form:

J̃(x, r) =

s∑
k=1

rkφk(x),

where φk : X → R, k = 1, ..., s are known as feature functions.

Feedforward neural network with a single hidden layer with K neurons:

J̃(x, r) =
K∑
k=1

r(k)σ
(L∑
l=1

r(k, l)vl(x)
)
,

where state x is encoded as a L -dimensional vector v(x), σ(·) is an activation

function.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 15 / 26

Linear Approximation

Given a stationary policy µ we want to estimate

Jµ(x) = E
[∞∑
k=0

βkg(xk, µ(xk), xk+1)|x0 = x
]

We approximate Jµ(x) with a linear architecture

J̃(x, r) =
s∑

k=1

rkφk(x) = φ(x)T r, x ∈ X ,

where φ(x) is an s-dimensional feature vector.

J̃r =


φ(x1)T r

...

φ(x|X|)
T r

 = Φr,

where Φ is |X | × s matrix that has as rows the feature vectors φ(x)T .

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 16 / 26

The Projected Equation

We want to approximate Jµ within space S = {Φr | r ∈ Rs}.

The goal is to find J̃∗ w.r.t. ξ−weighted norm:

J̃∗ = arg min
J̃∈S

∑
x∈X
|Jµ(x)− J̃(x, r)|2ξ(x) = arg min

J̃∈S
||Jµ − J̃r||2ξ

The problem is equivalent to finding r∗ ∈ Rs s.t.

r∗ = arg min
r∈Rs

||Jµ − Φr||2ξ

Let Π denote the projection operation onto S w.r.t the ξ−weighted norm.

Then

ΠJµ = Φr∗. (2)

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 17 / 26

The Projected Bellman Equation

We assume

Jµ ≈ Tµ(Φr∗) (3)

Combing (3) and (2) we get

ΠTµ(Φr∗) ≈ Φr∗

The Projected Bellman equation:

ΠTµ(Φr) = Φr (4)

One can show that ΠTµ is a contraction operator w.r.t. || · ||ξ norm when ξ is a

stationary distribution of the DTMC with transition matrix Pµ.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 18 / 26

The Projected Bellman Equation

By the definition of projection the unique solution of (4) satisfies

r∗ = arg min
r∈Rs

||Φr − (gµ + βPµΦr∗)||2ξ

By setting to 0 the gradient w.r.t. r we obtain

ΦTD(Φr∗ − (gµ + βPµΦr∗)) = 0, (5)

where D is the diagonal matrix with ξ along the diagonal.

Equation (5) can be compactly written as

Cr∗ = d,

where C = ΦTD(I − βPµ)Φ and d = ΦTDgµ.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 19 / 26

TD(0) with linear approximation

Cr − d = ΦTD(I − βPµ)r − ΦTDgµ = E
[
φ(x)

(
φ(x)T r − βφ(y)T r − gµ(x, y)

)]
Equation Cr − d = 0 is equivalent to

r = r − γ(Cr − d) = r − γE
[
φ(x)

(
φ(x)T r − βφ(y)T r − g(x, y)

)]
Given an episode (x0, g0, x1, g1, ..., xN , gN), the TD(0) iteration is

rk+1 = rk − γkφ(xk)
(
φ(xk)T rk − βφ(xk+1)T rk − gk

)

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 20 / 26

Convergence of TD(0) with linear approximation

Theorem (Tsitsiklis, Van Roy, 1997)

Assume that

the Markov chain assosiated with policy µ is irreducible and aperiodic

the steady-state variance of transition costs is finite E[g2(xk, xk+!)] <∞.

the learning rate is s.t.

∞∑
k=0

γk =∞ and
∞∑
k=0

γ2
k <∞

Then

TD(0) converges to r∗ that is a unique solution of ΠT (Φr) = Φr.

r∗ satisfies

||Φr∗ − Jµ||ξ ≤ 1
1−β ||ΠJµ − Jµ||ξ

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 21 / 26

Finite Sample Analyses for TD(0) with Function Approximation

Gal Dalal et. al., 2017 found convergence rate under assumption that one can

generate iid samples from a steady-state distribution, using recently developed

stochastic approximation techniques.

Bhandari, Russo, Singal, 2018 found convergence rate for projected TD(0)

algorithm (rk is assumed to be ||rk|| < R) using information theoretic techniques.

Lei Ying, 2018 found convergence rate for TD(0) algorithm using Stein’s Method.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 22 / 26

LSTD(0)

C = E
[
φ(x)

(
φ(x)− βφ(y)

)T]
and d = E[φ(x)g(x, y)]

Based on simulation

CN = 1
N+1

N∑
k=0

φ(xk)
(
φ(xk)− βφ(xk+1)

)T
and dN = 1

N+1

N∑
k=0

φ(xk)g(xk, xk+1)

LSTD(0) algorithm: simulate N time-steps according to a policy µ

Ck+1 = Ck − 1
k

(
φ(xk)

(
φ(xk)− βφ(xk+1)

)T
− Ck

)
dk+1 = dk − 1

k

(
φ(xk)g(xk, xk+1)− dk

)
After the end of simulation:

r̃ = C−1
N dN Jµ(x) ≈ φT (x)r̃

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 23 / 26

LSPE(0)

LSPE method is based on an idea of Projected Value Iteration

Φrk+1 = ΠTµ(Φrk) (6)

Equation (6) is equivalent to rk+1 = rk − (ΦTDΦ)−1(Crk − d)

a simulation-based implementation:

rk+1 = rk −Gk(Ckrk − dk),

where 
Ck+1 = Ck − 1

k

(
φ(xk)

(
φ(xk)− βφ(xk+1)

)T
− Ck

)
dk+1 = dk − 1

k

(
φ(xk)g(xk, xk+1)− dk

)
Gk+1 =

(
1
k+1

k∑
t=0

φ(xt)φ(xt)
T
)−1

= Gk − Gkφ(xk)φ
T (xk)Gk

1+φT (xk)Gkφ(xk)

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 24 / 26

Limitations

Limitations:

No guaranty that TD(λ) with non-linear approximation will converge.

Counterexample in Tsitsiklis, Van Roy, 1997.

Policy improvement may not converge to the near-optimal value function

approximation: no guaranty that J̃µ−greedy policy is better than µ. Policy

oscillation-chattering often occurs (see, Bertsekas, Chapter 6.4.3).

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 25 / 26

References

Tsitsiklis, Van Roy (1997) An Analysis of Temporal-Difference Learning with

Function Approximation, IEEE Transactions on Automatic Control, 42 (5), pp

674–690

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Volume 2:

Approximate Dynamic Programming, 4th edition. Athena Scientific, Belmont.

Gal Dalal et. al. (2017) Finite Sample Analyses for TD(0) with Function

Approximation, The Thirty-Second AAAI Conference on Artificial Intelligence.

Bhandari et.al. (2018) A Finite Time Analysis of Temporal Difference Learning

With Linear Function Approximation, https://arxiv.org/abs/1806.02450

Lei Ying (2018) Stein’s Method for Big-Data Systems: from Learning Queues to

Q-learning, Mathematical Issues in Information Sciences.

Mark Gluzman (iDDA, CUHK (Shenzhen)) Multi-step learning and Value-based approximation methodsJanuary 28, 2019 26 / 26

