Multi-step learning and Value-based approximation

methods

Mark Gluzman

iDDA, CUHK (Shenzhen)

January 28, 2019

(VETNCITr4n E (0] n . We{ U] o | ST P4) VM ulti-step learning and Value-based approxim January 28, 2019 1/26

Markov Decision Process

MDP is defined as M = (X, A, P, g), where
@ X is afinite state space, A = |J A(x) is a finite action space.
rzeX

@ P is a state transition probability kernel.

The system state at the next decision epoch is determined by
P{ka =y ’xk =z,ar = a} = P(z,a,y)

foreach z, € X, ar, € A(zr) C A.
@ Given (zx;ax), a new (random) state x4 is observed and a (one-step) cost
g(zk; ak; xp+1) is incurred.

@ The value function of policy p: X — A is
Ju(z) =]E[> Bk, p(an), Ther) o = x} , where 0 < 8 < 1.
k=0

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 2/26

Bellman operator

@ For J: X — R and stationary policy u

(Tud) (@) = By oo [9(2, 1), 9) + T()]

=" P(a.u(@).y)[9(@. n(@),y) + 8], v ex

yex

@ For J: X — R consider

(TJ)(I) = (Lg}i?m) Ey~P(~|:v,a) [g(fﬁ, a, y) + BJ(y)]

= min 3 P(e.a.9)[g(.0.9) +4I@)], ze X
a T yex

(VEUNCITr4nE (0] n WOl U] o | ST NP) VM ulti-step learning and Value-based approxim January 28, 2019 3/26

Bellman equation

Theorem (Bertsekas, Proposition 1.2.4)

(a) For every stationary policy ., the associated value function satisfies for all i € X :

Tu(@) = Eymplonton 9@ 1(2).9) + BIu@)] o T =T,y

(b) J. is the unique solution of equation (1).

The main purpose of this talk is to find an efficient way to estimate J,,.

(VETCITr4nE (0] n L. We{U] o | ST P4))M ulti-step learning and Value-based approxim January 28, 2019 4/26

Policy evaluation: Dynamic programming (F,, g, are known.)

A fixed point problem J, = T, J,, is equivalent to linear system of equations
Ju = gu + BPuJy,

where g,, is a X-vector with entries g,.(z) = Y P(z, u(z),y)g(z, p(z),y) and P, is
yeX
an X x X matrix with entries P, (z,y) = P(z, pu(x), y).

(VEUNCITr4nE (0] n WOl U] o | ST NP) VM ulti-step learning and Value-based approxim January 28, 2019 5/26

Monte-Carlo Simulation: P, g, are unknown

@ Let ¢ (o) = g(zo, z1) + Bg(z1, x2)... + AV g(zn, zn41) be the cumulative cost

of the mth episode, s.t. xx41 is a terminal state or % max g(z,y) = 0.
z,y
@ For all states =z € X and for all m we have
Ju(@) = Elem (2)]
thus we can estimate J,(z) forming a sample mean:

JK(2) ~ % Z cm ()

m=1
@ Equation (1) can be iteratively calculated

J™(x) = ™7 H@) + Ym (cm(m) — Jm’l(x)), m=1,.,. K

where J°(z) = 0 and v, = =.

m

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019

6/26

TD(0) learning
@ Bellman equation

Ju(@) = E[g(@,y) + 81.)]

@ Assume that we have an episode {zo, 21, ...,znx} and k., is a mth time when the
state x is visited.

K
Ju(x) = 4 21 [Q(l’km,wkmﬂ) + 5Ju(50km+1)}

@ Update step for TD(0) learning

J* () = I @n) + ym (g(xk,l‘kﬂ) + B (@hg) — Jk_l(xk)), if =z
JF(x) = T Yay), ifz#

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 7126

N-step TD learning

@ N-step Bellman operator:
N

(T (@) =E[3

m=0

B g(Thtm, Thimt1) + ﬂN+1J($k+N+1)}
@ N-step Bellman equation:
(TN J)(z) = J(z), foreachze X
@ After k + N steps
I (@r) = g + Borsr + o+ BY gren + BV TIEN T (@i v)

@ Update step for N-step TD learning

N
TR @) = TN (@) = o [IV (@n) = 3 B gen = BV (@)
n=0

JENT) = I (), y #

(VEUNCITr4nE (0] n WOl U] o | ST NP) VM ulti-step learning and Value-based approxim January 28, 2019 8/26

A-weighted multistep Bellman equation

@ Consider N ~ Geometric(A), 0 < A < 1.

Define an operator:

)\) _ Z)\nTn+1

@ The A—weighted multistep Bellman equation:

Ju(zk) = [i (Z 9(Thtm, Thtrmr) + BT ($k+n+1))}

(VEUNCITr4nE (0] n WOl U] o | ST NP) VM ulti-step learning and Value-based approxim January 28, 2019 9/26

TD()\) learning

Ju(zr) = (1 -)\)E[Z A"(Z B g(Thtm, Thimi1) + ﬂ"“h(“wu))]
n=0 m=0
= E[(l =) D BTG @hrm, Trrmt1) YA+ B T T (@) (A" - AT
m=0 n=m n=0 .

M8

Il
&=

|
Bl

Temporal Difference: d,, = g(xm, Tm+1) + BATu(@m+1) — Ju(zm)

ﬂm)\m (g(wk+m7$k+m+1) + B)\JM(Ik+m+1) - J,u(xk+m)):| + Ju(xk)

m=0

L

"B k] + Ju(r)
(0]

3
I

(VEUNCITr4nE (0] n WOl U] o | ST NP) VM ulti-step learning and Value-based approxim January 28, 2019 10/26

TD()\) learning

@)-weighted Bellman equation: J,(zx) =]E[Jﬂ(xk) + ioj (Aﬁ)mdm+k]
m=0
@ Online iterations:
J(we) = J(@e) +5 [T @)+ 3 A8) dmsn— I (@) = T@e)+7 D (AB) " dms
m=0 m=0

@ Assume we have a single infinitely long trajectory (zo, go, z1, g1, 2, -..).

@ Since we cannot afford to wait until the end of the trajectory we need an on-line

version of the algorithm.

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 11/26

TD()\) learning

Let J° is an initial guess. The first two updated are:
@ Following the transition (zo, z1) :
JH(xo) = J%(w0) + vdo
@ Following the transition (z1,z2) :
J*(x0) = J'(z0) + YABdr = J°(w0) + vdo + YABda

(1) = T (21) +ydi = JO(21) +yda
If xo = 21 there are three variants of the TD(\) algorithm:

@ The restart variant: J?(zo) = J°(x0) + ydo + vdi.
@ The first-visit variant: J?(z0) = J°(x0) 4 vdo + yABd1

@ The every-visit variant: J?(zo) = J%(z0) + vdo + vA\Bdy + vds.

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 12/26

TD()\) learning
The update equation for TD(\) becomes:
JH (@) = () + k()2 (x)dy (z), foreach z € X

where z_; = 0 and

) 1, ifzp ==
@ The restart variant: zx(z) =

BAzi—1(z), fxr #x
1, if z = x, and zy, is visited first time

@ The first-visit variant: zx(z) =
BAzi—1(z), otherwise

Brhzk—1(z) + 1, ifap ==z

BAzi—1(z), fxr #x

@ The every-visit variant: z,(z) =

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019

13/26

Approximate Dynamic Programming

Approximate dynamic programming (neuro-dynamic programming,
reinforcement learning):

A principle aim is to address problems with very large number of states in X.
@ |X|-dimensional inner product are time-consuming.

@ [t may impossible to store | X'|-vector in a computer memory.

(VEUNCITr4nE (0] n WOl U] o | ST NP) VM ulti-step learning and Value-based approxim January 28, 2019 14/26

Approximation is value space

J(z,r) is a function of some chosen form and r = (r1, ..., ;) is a parameter
vector of relatively small dimension s.

Examples:

@ Linear form:

J(z,7) = Z redr(x),

where ¢ : X - R, k=1,...,s are known as feature functions.

@ Feedforward neural network with a single hidden layer with K neurons:

. K L
J(@,r) = 3 1k (32 rikhu()),
k=1 =1
where state = is encoded as a L -dimensional vector v(z), o(+) is an activation

function.

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 15/26

Linear Approximation

@ Given a stationary policy 1 we want to estimate

Tul@) = E[& Bo(ar. plar) zi)lao =]

@ We approximate J,(z) with a linear architecture

- S

J(x,r) = > redr(z) = qb(m)Tr, re X,

k=1

where ¢(z) is an s-dimensional feature vector.

p(z1)Tr
J, = = &r,

$(ayx))r
where @ is |X| x s matrix that has as rows the feature vectors ¢(x)T.

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019

16/26

The Projected Equation

@ We want to approximate J,, within space S = {®r | r € R°}.

@ The goal is to find J* w.r.t. £—weighted norm:

J* =argmin 3 |J.(x) — J(z,r)|*¢(x) = argmin ||, — erg
Jes =zeX Jjes

@ The problem is equivalent to finding r* € R* s.t.
r* = argmin ||J, — ®r||
reRs

@ Let IT denote the projection operation onto S w.r.t the ¢ —weighted norm.

Then
IJ, = &r.)

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 17/26

The Projected Bellman Equation
@ We assume
Jyu = Ty (Or") (3)

@ Combing (3) and (2) we get
7, (®r") = or*
@ The Projected Bellman equation:
07, (®r) = or (4)

@ One can show that I17), is a contraction operator w.r.t. || - ||¢ norm when ¢ is a

stationary distribution of the DTMC with transition matrix P,.

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 18/26

The Projected Bellman Equation

@ By the definition of projection the unique solution of (4) satisfies

r* = argmin||®r — (g, + ﬂP‘L(Dr*)Hg
reR?

@ By setting to 0 the gradient w.r.t. » we obtain
T D(®r" — (g + BP.Pr)) = 0,

where D is the diagonal matrix with £ along the diagonal.

@ Equation (5) can be compactly written as
Cr* =d,
where C = ®"D(I — 3P,)® and d = &7 Dg,..

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019

19/26

TD(0) with linear approximation

@ Cr—d=®"D(— BP,)r— 3" Dg, = JE[qs(a:) (¢(m)Tr —Bo(y) " — gu(z, y))]

@ Equation Cr — d = 0 is equivalent to
r=r=3(Cr—d) =r —1E[¢() (6@) 7 = Bo(x) T — g(x,))]

@ Given an episode (xo, go, %1, 91,-..,ZN, gn), the TD(0) iteration is

Thil =Tk — %¢($k)(¢(ﬂfk)T7“k — Bd(wrgr) i — gk)

(VEUNCITr4nE (0] n WOl U] o | ST NP) VM ulti-step learning and Value-based approxim January 28, 2019 20/26

Convergence of TD(0) with linear approximation
Theorem (Tsitsiklis, Van Roy, 1997)
Assume that
@ the Markov chain assosiated with policy 1. is irreducible and aperiodic
@ the steady-state variance of transition costs is finite E[g? (xk, Tx11)] < oo.

@ the learning rate is s.t.

o0
v =00 and Y vi < oo
0 k=0

18

k

Then
@ TD(0) converges to r* that is a unique solution of 1T (®r) = Pr.

@ r* satisfies

[|Pr™ — Julle < ﬁHHJu — Julle

(VETNCITr4nE (0] n . We1U] o | ST P4) VM ulti-step learning and Value-based approxim January 28, 2019 21/26

Finite Sample Analyses for TD(0) with Function Approximation

@ Gal Dalal et. al., 2017 found convergence rate under assumption that one can
generate iid samples from a steady-state distribution, using recently developed

stochastic approximation techniques.

@ Bhandari, Russo, Singal, 2018 found convergence rate for projected TD(0)

algorithm (r, is assumed to be ||r|| < R) using information theoretic techniques.

@ Lei Ying, 2018 found convergence rate for TD(0) algorithm using Stein’s Method.

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 22/26

LSTD(0)

® € =E[p(e) () — Boty)) | and d = Elp(a)g(z.v)]

@ Based on simulation

1 N T 1 N
On = 557 ,;::0 ¢($k)(¢($k) - 5¢($k+1)) anddy = ;7 kZ::O (k) g(Th, Trt1)

@ LSTD(0) algorithm: simulate N time-steps according to a policy p

Cisr = Cr = +(o(wn) (#lon) - B¢>(wk+1))T - i)
dpy1 = dg — %((ﬁ(ﬂ?k)g(mk,mk—o—l) - dk)

After the end of simulation:

F=Cx'dy Ju(z) =~ ¢" ()7

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019

23/26

LSPE(0)

@ LSPE method is based on an idea of Projected Value lteration
Briq = T, (Pry) (6)

@ Equation (6) is equivalent to 71 = ry, — (2T D®) "' (Cry, — d)
@ a simulation-based implementation:
Thy1 = e — Ge(Crri — di),
where
T
Crir = Cic — + (0lwe) (6(zn) — Bolensn)) — Ci)
dp1 = di, — %(¢($k)g(xk,$k+1) - dk)
G _(Li(ﬁ(m Yoz)T)_I_G _ Giolen)T (@1)Gr
k+1 = \ &+1 = t t =Yk 1+¢T (21)Gro(zr)

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 24/26

Limitations

Limitations:

@ No guaranty that TD(\) with non-linear approximation will converge.

Counterexample in Tsitsiklis, Van Roy, 1997.

@ Policy improvement may not converge to the near-optimal value function
approximation: no guaranty that ./, —greedy policy is better than . Policy

oscillation-chattering often occurs (see, Bertsekas, Chapter 6.4.3).

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 25/26

References

@ Tsitsiklis, Van Roy (1997) An Analysis of Temporal-Difference Learning with
Function Approximation, IEEE Transactions on Automatic Control, 42 (5), pp
674-690

@ Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Volume 2:

Approximate Dynamic Programming, 4th edition. Athena Scientific, Belmont.

@ Gal Dalal et. al. (2017) Finite Sample Analyses for TD(0) with Function

Approximation, The Thirty-Second AAAI Conference on Artificial Intelligence.

@ Bhandari et.al. (2018) A Finite Time Analysis of Temporal Difference Learning

With Linear Function Approximation, https://arxiv.org/abs/1806.02450

@ Lei Ying (2018) Stein’s Method for Big-Data Systems: from Learning Queues to

Q-learning, Mathematical Issues in Information Sciences.

[VEElTr4n ET ({0 /AW e18) 5 [N Q(S] Yo P4)) MM ulti-step learning and Value-based approxim January 28, 2019 26/26

