
Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy Gradient Methods
Reinforcement Learning Seminar

Yingru Li

The Chinese University of Hong Kong, Shenzhen

February 11, 2019

 https://rlseminar.github.io/

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Table of Contents

1 Introduction
Policy based Reinforcement Learning
Policy Search
Finite Difference Policy Gradient

2 Monte-Carlo Policy Gradient
Likelihood Ratios
Policy Gradient Theorem

3 Actor-Critic Policy Gradient
Compatible Function Approximation
Advantage Function Critic
Eligibility Traces
Natural Policy Gradient

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Table of Contents

1 Introduction
Policy based Reinforcement Learning
Policy Search
Finite Difference Policy Gradient

2 Monte-Carlo Policy Gradient
Likelihood Ratios
Policy Gradient Theorem

3 Actor-Critic Policy Gradient
Compatible Function Approximation
Advantage Function Critic
Eligibility Traces
Natural Policy Gradient

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy based Reinforcement Learning

Policy-Based Reinforcement Learning

In the last lecture we approximated the Value or Action-value
function (Q-factor) using parameters θ,

Vθ(s) ≈ V π(s)

Qθ(s, a) ≈ Qπ(s, a)

A policy was generated directly from the value function (e.g.
using ε-greedy)

In this lecture we will directly parameterize the policy

πθ(s, a) = P[a | s, θ]

We will focus again on model-free reinforcement learning

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy based Reinforcement Learning

Value-Based and Policy-Based RL

Value Based

Learnt Value Function
Implicit policy (ε-greedy)

Policy Based

No Value Function
Learnt Policy

Actor-Critic

Learnt Value Function
Learnt Policy

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy based Reinforcement Learning

Value-Based and Policy-Based RL

Policy-Based Value-Based
Actor-Critic

Policy Value Function

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy based Reinforcement Learning

Advantages of Policy-Based RL

Advantages:

Better convergence properties

Effective in high-dimensional or continuous action spaces

Can learn stochastic policies

Disadvantages:

Typically converge to a local rather than global optimum

Evaluating a policy is typically inefficient and high variance

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy based Reinforcement Learning

Advantages of Policy-Based RL

Advantages:

Better convergence properties

Effective in high-dimensional or continuous action spaces

Can learn stochastic policies

Disadvantages:

Typically converge to a local rather than global optimum

Evaluating a policy is typically inefficient and high variance

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy based Reinforcement Learning

Example: Rock-Paper-Scissors

Two-player game of rock-paper-scissors

Scissors beats paper
Rock beats scissors
Paper beats rock

Consider policies for iterated rock-paper-scissors

A deterministic policy is easily exploited
A uniform random policy is optimal (i.e. Nash equilibrium)

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy Search

Policy Objective Functions

Goal: given policy πθ(s, a) with parameters θ, find best θ

But how do we measure the quality of a policy πθ?

In episodic environments we can use the start value

J1(θ) = V πθ(s1) = Eπθ [v1]

In continuing environments we can use the average value

JavV (θ) =
∑
s

dπθ(s)V πθ(s)

Or the average reward per time-step

JavR(θ) =
∑
s

dπθ(s)
∑
a

πθ(s, a)Ra
s

where dπθ(s) is stationary distribution of Markov chain for πθ

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy Search

Policy Optimization

Policy based reinforcement learning is an optimization problem

Find θ that maximises J(θ)

Some approaches do not use gradient (gradient-free)

Hill climbing
Simplex / amoeba / Nelder Mead
Genetic algorithms

Greater efficiency often possible using gradient

Gradient descent
Conjugate gradient
Quasi-newton

We focus on gradient descent, many extensions possible

And on methods that exploit sequential structure

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Finite Difference Policy Gradient

Policy Gradient

Let J(θ) be any policy objective function

Policy gradient algorithms search for a local
maximum in J(θ) by ascending the gradient
of the policy, w. r.t. parameters θ

Where ∇θJ(θ) is the policy gradient

∇θJ(θ) =

∂J(θ)
∂θ1
...

∂J(θ)
∂θn

and α is a step-size parameter

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Finite Difference Policy Gradient

Computing Gradients By Finite Differences

To evaluate policy gradient of πθ(s, a)

For each dimension k ∈ [1, n]

Estimate k-th partial derivative of objective function w.r.t. θ
By perturbing θ by small amount ε in k-th dimension

∂J(θ)

∂θk
≈ J(θ + εuk)− J(θ)

ε

where uk is unit vector with 1 in kth component, 0 elsewhere

Uses n evaluations to compute policy gradient in n dimensions

Simple, noisy, inefficient - but sometimes effective

Works for arbitrary policies, even if policy is not differentiable

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Table of Contents

1 Introduction
Policy based Reinforcement Learning
Policy Search
Finite Difference Policy Gradient

2 Monte-Carlo Policy Gradient
Likelihood Ratios
Policy Gradient Theorem

3 Actor-Critic Policy Gradient
Compatible Function Approximation
Advantage Function Critic
Eligibility Traces
Natural Policy Gradient

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Likelihood Ratios

Score Function

We now compute the policy gradient analytically

Assume policy πθ is differentiable whenever it is non-zero

and we know the gradient ∇θπθ(s, a)

Likelihood ratios exploit the following identity

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)

= πθ(s, a)∇θ log πθ(s, a)

The score function is ∇θ log πθ(s, a)

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Likelihood Ratios

Softmax Policy

We will use a softmax policy as a running example

Weight actions using linear combination of features φ(s, a)T θ

Probability of action is proportional to exponential weight

πθ(s, a) ∝ eφ(s,a)T θ

The score function is

∇θ log πθ(s, a) = φ(s, a)− Eπθ [φ(s, ·)]

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Likelihood Ratios

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural

Mean is a linear combination of state features µ(s) = φ(s)T θ

Variance may be fixed σ2, or can also parameterized

Policy is Gaussian, a ∼ N (µ(s), σ2)

The score function is

∇θ log πθ(s, a) =
(a− µ(s))φ(s)

σ2

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy Gradient Theorem

One-Step MDPs

Consider a simple class of one-step MDPs

Starting in state s ∼ d(s)

Terminating after one time-step with reward r = Rs,a

Use likelihood ratios to compute the policy gradient

J(θ) = Eπθ [r]

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Rs,a

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇θ log πθ(s, a)Rs,a

= Eπθ [∇θ log πθ(s, a)r]

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy Gradient Theorem

Policy Gradient Theorem

The policy gradient theorem generalises the likelihood ratio
approach to multi-step MDPs

Replaces instantaneous reward r with long-term value Qπ(s, a)

Policy Gradient Theorem

For any differentiable policy πθ(s, a), for any of the policy objective
functions J = J1, JavR , or 1

1−γ Jaw , the policy gradient is

∇θJ(θ) =
∑
s∈S

dπθ(s)
∑
a

∇θπθ(s, a)Qπθ(s, a)

= Eπθ∇θ log πθ(s, a)Qπθ(s, a)

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Policy Gradient Theorem

Monte-Carlo Policy Gradient (REINFORCE)

Update parameters by stochastic gradient ascent

Using return vt as an unbiased sample of Qπθ(st , at)

∆θt = α∇θ log πθ(st , at)vt

Algorithm 1 REINFORCE

1: Init θ arbitrarily
2: for each episode {s1, a1, r2, · · · , sT−1, aT−1, rT} ∼ πθ do
3: for t = 1 to T − 1 do
4: θ ← θ + α∇θ log πθ(st , at)vt
5: end for
6: end for
7: return θ

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Table of Contents

1 Introduction
Policy based Reinforcement Learning
Policy Search
Finite Difference Policy Gradient

2 Monte-Carlo Policy Gradient
Likelihood Ratios
Policy Gradient Theorem

3 Actor-Critic Policy Gradient
Compatible Function Approximation
Advantage Function Critic
Eligibility Traces
Natural Policy Gradient

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Reducing Variance Using a Critic

Monte-Carlo policy gradient still has high variance

We use a critic to estimate the action-value function,

Qw (s, a) ≈ Qπθ(s, a)

Actor-critic algorithms maintain two sets of parameters
Critic Updates action-value function parameters w
Actor Updates policy parameters θ, in direction suggested by
critic

Actor-critic algorithms follow an approximate policy gradient

∇θJ(θ) ≈ Eπθ [∇θ log πθ(s, a)Qw (s, a)]

∆θ = α∇θ log πθ(s, a)Qw (s, a)

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Estimating the Action-Value Function

The critic is solving a familiar problem: policy evaluation

How good is policy πθ for current parameters θ?

This problem was explored in previous two lectures, e.g.

Monte-Carlo policy evaluation
Temporal-Difference learning
TD(λ)

Could also use e.g. least-squares policy evaluation

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Action-Value Actor-Critic

Using linear value fn approx. Qw (s, a) = φ(s, a)Tw
Critic Updates w by linear TD(0)
Actor Updates θ by policy gradient

Algorithm 2 QAC

1: Init s, θ, Sample a ∼ πθ
2: for each step do
3: Sample reward r = Ra

s , s ′ ∼ Pa
s,· and a′ ∼ πθ(s ′, a′)

4: θ = θ + α∇θ log π(s, a)Qw (s, a)
5: w ← w + β (r + γQw (s ′, a′)− Qw (s, a))φ(s, a)
6: a← a′, s ← s ′

7: end for

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Compatible Function Approximation

Bias in Actor-Critic Algorithms

Approximating the policy gradient introduces bias

A biased policy gradient may not find the right solution

Luckily, if we choose value function approximation carefully

Then we can avoid introducing any bias

i.e. We can still follow the exact policy gradient

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Compatible Function Approximation

Compatible Function Approximation

Compatible Function Approximation Theorem

If the following two conditions are satisfied:

Value function approximator is compatible to the policy

∇wQw (s, a) = ∇θ log πθ(s, a)

Value function parameters w minimize the mean-squared error

ε = Eπθ
[
(Qπθ(s, a)− Qw (s, a))2

]
Then the policy gradient is exact,

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qw (s, a)]

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Compatible Function Approximation

Proof of Compatible Function Approximation Theorem

If w is chosen to minimise mean-squared error, gradient of ε w r.t.
w must be zero,

∇w ε = 0

Eπθ [(Qθ(s, a)− Qw (s, a))∇wQw (s, a)] = 0

Eπθ [(Qθ(s, a)− Qw (s, a))∇θ log πθ(s, a)] = 0

Eπθ [Qθ(s, a)∇θ log πθ(s, a)] = Eπθ [Qw (s, a)∇θ log πθ(s, a)]

So Qw (s, a) can be substituted directly into the policy gradient,

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qw (s, a)]

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Advantage Function Critic

Reducing Variance Using a Baseline

We subtract a baseline function B(s) from the policy gradient

This can reduce variance, without changing expectation

Eπθ [∇θ log πθ(s, a)B(s)] =
∑
s∈S

dπθ(s)
∑
a

∇θπθ(s, a)B(s)

=
∑
s∈S

dπθB(s)∇θ
∑
a∈A

πθ(s, a) = 0

A good baseline is the state value function B(s) = V πθ(s)

So we can rewrite the policy gradient using the advantage
function Aπθ(s, a)

Aπθ(s, a) = Qπθ(s, a)− V πθ(s)

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Aπθ(s, a)]

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Advantage Function Critic

Estimating the Advantage Function (1)

The advantage function can significantly reduce variance of
policy gradient

So the critic should really estimate the advantage function

For example, by estimating both V πθ(s) and Qπθ(s, a)

Using two function approximators and two parameter vectors,

Vv (s) ≈ V πθ(s)

Qw (s, a) ≈ Qπθ(s, a)

A(s, a) = Qw (s, a)− Vv (s)

And updating both value functions by e.g. TD learning

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Advantage Function Critic

Estimating the Advantage Function (2)

For the true value function V πθ(s) , the TD error δπθ

δπθ = r + γV πθ(s ′)− V πθ(s)

is an unbiased estimate of the advantage function

Eπθ [δπθ |s, a] = Eπθ [r + γV πθ(s ′)|s, a]− V πθ(s)

= Qπθ(s, a)− V πθ(s) = Aπθ(s, a)

So we can use the TD error to compute the policy gradient

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)δπθ]

In practice we can use an approximate TD error

δv = r + γVv (s ′)− Vv (s)

This approach only requires one set of critic parameters v

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Eligibility Traces

Critics at Different Time-Scales

Critic can estimate value function Vθ(s) from many targets at
different time-scales

For MC, the target is the return vt

∆θ = α(vt − Vθ(s))φ(s)

For TD(0) , the target is the TD target r + γV (s ′)

∆θ = α(r + γV (s ′)− Vθ(s))φ(s)

For forward-view TD(λ) , the target is the λ-return vλ
t

∆θ = α(vλ
t − Vθ(s))φ(s)

For backward-view TD(λ), we use eligibility traces

δt = rt+1 + γV (st+1)− V (st)

et = γλet−1 + φ(st)

∆θ = αδtet

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Eligibility Traces

Actors at Different Time-Scales

The policy gradient can also be estimated at many time-scales

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Aπθ(s, a)]

Monte-Carlo policy gradient uses error from complete return

∆θ = α(Vt − Vv (st))∇θ log πθ(st , at)

Actor-critic policy gradient uses the one-step TD error

∆θ = α(r + γVv (st+1)− Vv (st))∇θ log πθ(st , at)

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Eligibility Traces

Policy Gradient with Eligibility Traces

Just like forward-view TD(λ), we can mix over time-scales

∆θ = α(vλt − Vv (st))∇θ log πθ(st , at)

where vλt − Vv (st) is a biased estimate of advantage fn

Like backward-view TD(λ) , we can also use eligibility traces

By equivalence with TD(λ) , substituting
φ(s) = ∇θ log πθ(s, a)

δ = rt+1 + γVv (st+1)− Vv (st)

et+1 = γλet +∇θ log πθ(s, a)

∆θ = αδet

This update can be applied online, to incomplete sequences

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Natural Policy Gradient

Alternative Policy Gradient Directions

Gradient ascent algorithms can follow any ascent direction

A good ascent direction can significantly speed convergence

Also, a policy can often be reparametrized without changing
action probabilities

For example, increasing score of all actions in a softmax policy

The vanilla gradient is sensitive to these reparametrizations

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Natural Policy Gradient

Natural Policy Gradient

The natural policy gradient is parametrization independent

It finds ascent direction that is closest to vanilla gradient,
when changing policy by a small, fixed amount

∇nat
θ πθ(s, a) = G−1

θ ∇θπθ(s, a)

where Gθ is the Fisher information matrix

Gθ = Eπθ [∇θ log πθ(s, a)∇θ log πθ(s, a)T]

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Natural Policy Gradient

Natural Policy Gradient

Using compatible function approximation,

∇wAw (s, a) = ∇θ log πθ(s, a)

So the natural policy gradient simplifies,

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Aπθ(s, a)]

= Eπθ [∇θ log πθ(s, a)∇θ log πθ(s, a)Tw]

= Gθw

∇nat
θ J(θ) = w

i.e. update actor parameters in direction of critic parameters

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Natural Policy Gradient

Summary of Policy Gradient Algorithms

The policy gradient has many equivalent forms

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)vt] REINFORCE

= Eπθ [∇θ log πθ(s, a)Qw (s, a)] Actor-Critic

= Eπθ [∇θ log πθ(s, a)Aw (s, a)] Advantage actor-Critic

= Eπθ [∇θ log πθ(s, a)δ] TD Actor-Critic

= Eπθ [∇θ log πθ(s, a)δe] TD(λ) Actor-Critic

G−1
θ ∇θJ(θ) = w Natural Actor-Critic

Each leads a stochastic gradient ascent algorithm

Critic uses policy evaluation (e.g. MC or TD learning) to
estimate Qπ(s, a) , Aπ(s, a) or V π(s)

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Natural Policy Gradient

State of the art not yet covered

Deep Deterministic Policy Gradient (DDPG)

Asynchronous Advantage Actor-Critic Algorithm (A3C),
Importance Weighted Actor-Learner Architectures (IMPALA)

Trust Region Policy Optimization (TRPO), Proximal Policy
Optimization (PPO)

Soft Actor-Critic

Introduction Monte-Carlo Policy Gradient Actor-Critic Policy Gradient

Natural Policy Gradient

References

Sutton, Richard S., and Andrew G. Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Sutton, Richard S., et al. ”Policy gradient methods for
reinforcement learning with function approximation.”
Advances in neural information processing systems. 2000.

https://github.com/dalmia/David-Silver-Reinforcement-
learning, Reinforcement Learning Courses at UCL, David
Silver

	Introduction
	Policy based Reinforcement Learning
	Policy Search
	Finite Difference Policy Gradient

	Monte-Carlo Policy Gradient
	Likelihood Ratios
	Policy Gradient Theorem

	Actor-Critic Policy Gradient
	Compatible Function Approximation
	Advantage Function Critic
	Eligibility Traces
	Natural Policy Gradient

