
IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures

Huizhuo Yuan

Peking University

February 25, 2019

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 1 / 23

Multi-task DeepRL

General agents that are able to do many tasks simultaneously.

Going from one network per task to one network for tens of tasks
with many challenges.

Data Efficienecy- Hundreds of millions of frames for a single task.

Stability: Do we need task-specific hyperparameters?

Scale: More complicated architecture and slower to train.

Task Interference: Will multiple tasks cause interference or positive
transfer.

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 2 / 23

RL Formulation

Agent interacting with the environment. At each step t:
1 Agent takes action at
2 Environment returns reward rt+1 and state st+1

Maximize total future reward

rt+1 + γrt+2 + γ2rt+3 + · · ·

For a policy π the action value function Q:

Qπ(s, a) = E[rt + γrt+1 + γ2rt+2 + · · · | st = s, at = a]

= E[rt + γQπ(st+1, at+1) | st = s, at = a]

Q represents how good an action a is given state s.

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 3 / 23

Optimal Value Functions

An optimal value function give the maximal achievable value:

Q∗(s, a) = max
π

Qπ(s, a)

Given an optimal value function we can get an optimal policy:

π∗(s) = arg max
a

Q∗(s, a)

Optimal value functions also obay a Bellman Equation.

Q∗(st, at) = E[rt + γmax
s′

Q∗(st+1, a
′)]

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 4 / 23

DQN

High-level idea is to make Q-learning look like supervised learning

Optimize the Q-learning loss with minibatch SGD

Apply Q-learning updates on batches of past experience instead of
online

1 Experience replay
2 Previously used for better data efficiency
3 Makes the data distribution more stationary

Use an older set of weights to compute the targets, keeps the target
function from changing too quickly

Li(θi) = Es,a,s′,r∼D(r + γmaxa′Q(s′, a′; θ−i)−Q(s, a; θi))
2

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 5 / 23

Policy Gradient Methods

An alternatively class of methods directly optimize the expected
return of a policy:

∇θJ(θ) = ∇E[r1 + γr2 + γ2r3 + · · ·]

For all differentiable policies

∇θJ(θ) = E[∇θlogπθ(a | s)Qπ(s, a)]

where expectations is over states and actions.

There is an sample based easy unbiased estimation (REINFORCE)

∇θlogπθ(a|s)Rt

where
Rt = rt + γrt+1 + γ2rt+2 + · · ·

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 6 / 23

Start with a guess for each Q(s, a)

Interact with the environment using some policy based on Q
collecting tuples of experience {st, at, rt, st+1, · · · }, e.g.ε-greedy.

Apply updates based on the Bellman equation

Q(s, a)← Q(s, a) + (r + γmax
a

Q(s′, a′)−Q(s, a))

Q(s, a) is guaranteed to converge to the optimal value function Q∗

under some reasonable assumptions.

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 7 / 23

Asynchronous Advantage Actor-Critic (A3C)

The agent learns a policy and a state value function

Uses bootstrapped n-step returns to reduce variance over
REINFORCE with a baseline

The policy gradient multiplied by an estimate of the advantage.
Similar to Generalized Advantage Estimation (Schulman et al.
2015)

∇θlogπ(at | st, θ)(
N∑
k=0

γkrt+k + γN+1V (st+N+1)− V (st))

The critic/value function is trained with n-step TD learning. i.e. by
minimizing the MSE

(

N∑
k=0

γkrt+k + γN+1V (st+N+1;θ−)− V (st; θ))
2

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 8 / 23

Asynchronous Advantage Actor-Critic (A3C)

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 9 / 23

Scaling Up Distributed RL

Our goal was to scale up A3C since it has more of the desired
properties of a good multi-task agent

Adding more actor/learners does not scale

Distributed experience collection is good

Communicating gradients is bad

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 10 / 23

A Better Architecture

It is better to use a centralized learner(s) and distribute the acting

Actors receive parameters but send observations

The centralized learner can parallelize as much of the forward and
backward passes as possible

Actor Actor

Actor

ActorActor

Actor Learner

Observations
Parameters

Actor

Actor

Observations

Observations

Parameters Gradients

Learner

Worker

Master

LearnerActor

ActorActor

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 11 / 23

Decoupled Backward Pass

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 12 / 23

Decoupled Backward Pass

It is more efficient to decouple the backward pass

Actors generate trajectories/unrolls and place them into a queue

The learner continuously dequeues batches of trajectories and
performs parameter updates

Key Challenge:
1 Decoupling the backwards pass requires off-policy learning
2 Actor parameters can lag by several updates

POD architecture-Parallel Off-policy Decoupled

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 13 / 23

V-Trace

The experience generated by the actors can lag behind the learner’s
policy

We introduce a principled off-policy advantage actor critic called
V-Trace

The V-Trace corrected estimate for the value V (xs) is:

vs
def
= V (xs) +

∑s+n−1
t=s γt−s

(∏t−1
i=s ci

)
ρt
(
rt + γV (xt+1)− V (xt)

)
,(1)

where ρt
def
= min

(
ρ̄, π(at|xt)

µ(at|xt)
)

and ci
def
= min

(
c̄, π(ai|xi)
µ(ai|xi)

)
The V-Trace update for the value function is:(

vs − Vθ(xs)
)
∇θVθ(xs)

The V-Trcace update for the policy is:

ρs∇ω log πω(as|xs)
(
rs + γvs+1 − Vθ(xs)

)
Huizhuo Yuan (Peking University) IMPALA February 25, 2019 14 / 23

Actor-Critic

Now in the off-policy setting that we consider, we can use an IS weight
between the policy being evaluated πρ̄ and the behaviour policy µ, to
update our policy parameter in the direction of

Eas∼µ(·|xs)

[πρ̄(as|xs)
µ(as|xs)

∇ log πρ̄(as|xs)qs
∣∣xs] (2)

where qs
def
= rs + γvs+1 is an estimate of Qπρ̄(xs, as) built from the

V-trace estimate vs+1 at the next state xs+1. The reason why we use qs
instead of vs as the target for our Q-value Qπρ̄(xs, as) is that, assuming
our value estimate is correct at all states, i.e. V = V πρ̄ , then we have
E[qs|xs, as] = Qπρ̄(xs, as) (whereas we do not have this property if we
choose qt = vt).

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 15 / 23

Define the V-trace operator R:

RV (x)
def
= V (x) + Eµ

[∑
t≥0

γt
(
c0 . . . ct−1

)
ρt
(
rt + γV (xt+1)− V (xt)

)]
,(3)

Theorem

Let ρt = min
(
ρ̄, π(at|xt)

µ(at|xt)
)

and ct = min
(
c̄, π(at|xt)
µ(at|xt)

)
be truncated

importance sampling weights, with ρ̄ ≥ c̄. Assume that there exists
β ∈ (0, 1] such that Eµρ0 ≥ β. Then the operator R defined by (3) has a
unique fixed point V πρ̄, which is the value function of the policy πρ̄
defined by

πρ̄(a|x)
def
=

min
(
ρ̄µ(a|x), π(a|x)

)∑
b∈A min

(
ρ̄µ(b|x), π(b|x)

) , (4)

Furthermore, R is a η-contraction mapping in sup-norm, with

η
def
= γ−1 − (γ−1 − 1)Eµ

[∑
t≥0

γt
(t−2∏
i=0

ci
)
ρt−1

]
≤ 1− (1− γ)β < 1.

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 16 / 23

Theorem

Assume a tabular representation, i.e. the state and action spaces are
finite. Consider a set of trajectories, with the kth trajectory
x0, a0, r0, x1, a1, r1, . . . generated by following µ: at ∼ µ(·|xt). For each
state xs along this trajectory, update

Vk+1(xs) = Vk(xs) + αk(xs)
∑
t≥s

γt−s
(
cs . . . ct−1

)
ρt
(
rt + γVk(xt+1)− Vk(xt)

)
,

(5)

with ci = min
(
c̄, π(ai|xi)
µ(ai|xi)

)
, ρi = min

(
ρ̄, π(ai|xi)

µ(ai|xi)
)
, ρ̄ ≥ c̄. Assume that (1)

all states are visited infinitely often, and (2) the stepsizes obey the usual
Robbins-Munro conditions: for each state x,

∑
k αk(x) =∞,∑

k α
2
k(x) <∞. Then Vk → V πρ̄ almost surely.

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 17 / 23

Network Architecture

/255

Conv. 8⇥ 8, stride 4

ReLU

Conv. 4⇥ 4, stride 2

ReLU

FC 256

ReLU

Vt

rt�1 at�1

32

16

3

96⇥ 72

LSTM 256ht�1

⇡ (at)

LSTM 64

Embedding 20

blue ladder
+

Conv. 3⇥ 3, stride 1

ReLU

Conv. 3⇥ 3, stride 1

/255

Conv. 3⇥ 3, stride 1

FC 256

ReLU

Max 3⇥ 3, stride 2

Residual Block

Residual Block

⇥3

ReLU

[16, 32, 32] ch.

LSTM 256

Vt

rt�1 at�1

LSTM 256ht�1

⇡ (at)

96⇥ 72

3

ReLU

LSTM 64

Embedding 20

blue ladder

Figure 1: Model Architectures. Left: Small architecture, 2 convolutional layers
and 1.2 million parameters. Right: Large architecture, 15 convolutional layers
and 1.6 million parameters.

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 18 / 23

Throughput Comparison

Architecture CPUs GPUs1 FPS2

Single-Machine Task 1 Task 2

A3C 32 workers 64 0 6.5K 9K
Batched A2C (sync step) 48 0 9K 5K
Batched A2C (sync step) 48 1 13K 5.5K
Batched A2C (sync traj.) 48 0 16K 17.5K
Batched A2C (dyn. batch) 48 1 16K 13K
IMPALA 48 actors 48 0 17K 20.5K
IMPALA (dyn. batch) 48 actors3 48 1 21K 24K

Distributed

A3C 200 0 46K 50K
IMPALA 150 1 80K
IMPALA (optimised) 375 1 200K
IMPALA (optimised) batch 128 500 1 250K

1 Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3

Limited by amount of rendering possible on a single machine.

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 19 / 23

Single Task Results

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 20 / 23

DMLab-30 Multi-Task

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 21 / 23

DMLab-30 Multi-Task Results

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 22 / 23

Conclusions

New distributed RL architecture allows for stable learning with very
high throughput

Especially well-suited to the multi-task deep RL setting

Synchronous batch learning is more robust to hyperparameters than
async SGD

Multi-task RL on the DMLab-30:
1 Positive transfer
2 Deep ResNets finally outperforms 3 layer ConvNets (Atari was too

simple)

Huizhuo Yuan (Peking University) IMPALA February 25, 2019 23 / 23

