IMPALA: Scalable Distributed Deep-RL with

Importance Weighted Actor-Learner Architectures

Huizhuo Yuan

Peking University

March 25, 2019

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 1/ 27

Multi-task DeepRL

e General agents that are able to do many tasks simultaneously.

e Going from one network per task to one network for tens of tasks
with many challenges.

e Data Efficienecy- Hundreds of millions of frames for a single task.
e Stability: Do we need task-specific hyperparameters?
@ Scale: More complicated architecture and slower to train.

e Task Interference: Will multiple tasks cause interference or positive
transfer.

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 2 /27

RL Formulation

e Agent interacting with the environment. At each step t:

Q Agent takes action ay
© Environment returns reward r;; and state sy

e Maximize total future reward
Pl T2 + Y T
e For a policy 7 the action value function Q:
Q" (s,a) = Ery +yrer1 + Vorepo + - - | st = s, a4 = al

=E[ri + vQ" (St41, a141) | 5t = s, a¢ = a

@ () represents how good an action a is given state s.

Huizhuo Yuan (Peking University) IMPALA March 25, 2019

Optimal Value Functions

@ An optimal value function give the maximal achievable value:
Q*(s,a) = max Q" (s,a)

e Given an optimal value function we can get an optimal policy:
7 (s) = arg max Q*(s,a)

e Optimal value functions also obay a Bellman Equation.

Q" (st,at) = E[ry + ’YH?X Q" (st41,0a)]

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 4 /27

DQN

e High-level idea is to make ()-learning look like supervised learning

@ Optimize the Q-learning loss with minibatch SGD

Apply @Q-learning updates on batches of past experience instead of
online

@ Experience replay
© Previously used for better data efficiency
© Makes the data distribution more stationary

@ Use an older set of weights to compute the targets, keeps the target
function from changing too quickly

Lz(ez) - Es,a,s’,er(T + ’Ymaxa’Q(Sla a/; 9@_) — Q(S, a; 91))2

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 5/ 27

Policy Gradient Methods

@ An alternatively class of methods directly optimize the expected
return of a policy:

VQJ(Q) = VE[’I“l + yro + ’>/2r3 + ..]
e For all differentiable policies
Vo J(0) = E[Vglogmg(a | s)Q7 (s, a)]

where expectations is over states and actions.
@ There is an sample based easy unbiased estimation (REINFORCE)

Vologmg(als) Ry

where
Ry =1+ g1 + 7 reg + -

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 6 /27

e Start with a guess for each Q(s,a)

e Interact with the environment using some policy based on ()
collecting tuples of experience {s;, a;, r¢, S¢y1,- - }, €.g.e-greedy.

e Apply updates based on the Bellman equation
Q(s,a) < Q(s,a) + (r + ymax Q(s',a’) — Q(s,a))

@ (Q(s,a) is guaranteed to converge to the optimal value function Q*
under some reasonable assumptions.

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 7/ 27

Asynchronous Advantage Actor-Critic (A3C)

@ The agent learns a policy and a state value function

e Uses bootstrapped n-step returns to reduce variance over
REINFORCE with a baseline

@ The policy gradient multiplied by an estimate of the advantage.
Similar to Generalized Advantage Estimation (Schulman et al.
2015)

Vologm(as | s¢,0 27 (S —I-’y V(St_|_N_|_1) — V(st))

@ The critic/value function is trained with n-step TD learning. i.e. by
minimizing the MSE

(Z ’Yk"“t+k: + 7N+1V(3t+N+1;9—) — Vi(st; 9))2
k=0

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 8 / 27

Asynchronous Advantage Actor-Critic (A3C)

-~

Environment experiences

little kid in snow
and in the front

Environment

second bag
from left

{(se. a0,) k=01

~ >y

experiences

(st @e.) }e=o.1

AN J

context-aware policy and
value network

N '
Environment

guy white shirt
with shorts
and strap

experiences

{(se.ap. Tedke=o.1

h

Asynchronous update

batching

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 9 /27

Scaling Up Distributed RL

@ Our goal was to scale up A3C since it has more of the desired
properties of a good multi-task agent

e Adding more actor/learners does not scale
e Distributed experience collection is good

e Communicating gradients is bad

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 10 / 27

A Better Architecture

o It is better to use a centralized learner(s) and distribute the acting
@ Actors receive parameters but send observations

@ The centralized learner can parallelize as much of the forward and
backward passes as possible

Observations
Worker

< ' | I Learner
Parameters ‘

Master

‘ Learner
Observations

Observations
Parameters

Gradients

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 11 / 27

Decoupled Backward Pass

Environment steps . Forward pass . Backward pas
) Actor 0 FEFETETE m:xt unm]l
4 time ataps Aetor 1 PH EEE
- Actor 2 THTH u u
Actaor 0 Actor 3 FETETETE
Actor 1 Actor 4 "H'HTH"H
Actor 2 Actor 5 TH HENR
Actor 3 Actor B DECE []
Actor 7 FEFETETE
(a) Batched A2C (sync step.) i
d thme steps
Actor 0 PHTETETE EEHEN
Actor 1 TH HENR | HENR
Acter 2 THTHE | HE [|
Actor 3 PECECECE EEEE (c) IMPALA

(b) Batched A2C (sync traj.)

Figure 2. Timeline for one unroll with 4 steps using different ar-
chitectures. Strategies shown in (a) and (b) can lead to low GPU
utilisation due to rendering time variance within a batch. In (a),
the actors are synchronised after every step. In (b) after every n
steps. IMPALA (c) decouples acting from learning.

Huizhuo Yuan (Peking University) IMPALA March 25, 2019

Decoupled Backward Pass

e It is more efficient to decouple the backward pass

e Actors generate trajectories/unrolls and place them into a queue

@ The learner continuously dequeues batches of trajectories and
performs parameter updates

e Key Challenge:

@ Decoupling the backwards pass requires off-policy learning
© Actor parameters can lag by several updates

e POD architecture-Parallel Off-policy Decoupled

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 13 / 27

The experience generated by the actors can lag behind the learner’s
policy

We introduce a principled off-policy advantage actor critic called
V-Trace

The V-Trace corrected estimate for the value V' (xy) is:

Vs 1e] (ms> + Zs-H”L 1 t—S (Hf i Cz)pt (’r’t + ’yV(.fCt_|_1 mtﬁ)-

m(at|t) 7T(Ctz'|90i))
p(at|zt) ? plailzi)
The V-Trace update for the value function is:

(Us — ‘/b(xs))VHVb(xs)

The V-Trcace update for the policy is:

def . def . _
where p; = min (p,) and ¢; = min (c

psvw 10g 7"-(,u(aa9|5(33) (Ts + YUs4+1 — ‘/b(xs))

Huizhuo Yuan (Peking University) IMPALA March 25, 2019

e In the on-policy case reduces to the on-policy n-steps Bellman
target.

@ V-trace targets can be computed recursively:
vs = V(xs) + 05V + e ('U5_|_1 — V(zcs+1)).

e Like in Retrace()\), we can also consider an additional discounting

parameter A € [0, 1] in the definition of V-trace by setting
r(as[7)

c; = Amin ((a ’)) In the on-policy case, when n = oo, V-trace

then reduces to TD()\).

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 15 / 27

1’}] _if(f(‘)f
= —Vi(s) +

1, ..
EL\-HA(SJ

)
(1-)\)Aﬂ[rfﬂ +YVi(se41)]

+ (1= M)A [ren + A2 + 77 Vi(s042)]

+ (1= M)A [rey + e + Vres + 7 Vilsees)]

—Vi(st)
(YA [res1 + AVi(se41) — Y AVi(5041)]
(YA [re42 + YVilst42) — ¥AVi(5042)]
/\) [re3 + YVilsi13) — YAVi(s¢43)]

~ AV (s)
Ok

= (”}")')0 Fepr +YVi(se1) — Vilse)]
+ (YA [reg2 + YVi(Ser2) — Vilse)]
+ (yA)? [Tev3 + YVi(si43) = Vi(si42)]

Figure 1

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 16 / 27

@ The weight p; appears in the definition of the temporal difference
0;V and defines the fixed point of this update rule. The weights ¢;
are similar to the “trace cutting” coefficients in Retrace.

o Notice that (?7) estimates the policy gradient for 75 which is the
policy evaluated by the V-trace algorithm when using a truncation
level p. However assuming the bias V™ — V7 is small (e.g. if p is
large enough) then we can expect ¢s to provide us with a good
estimate of Q™ (x5, as).

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 17 / 27

Elgs|zs,as] = rs + vE [V”ﬁ(ajsﬂ) + 0501V + yeg110510VTP + .. }
=rs+~YE [V”ﬁ(msﬂ)}
= Qwﬁ(fbs’as)

whereas

Elvg|xs, as] = V™ (xs) + ps (7“3 +~E [Vﬁﬁ($8+1
= V™ (zs) + ps (7“3 +~E [V”ﬁ(azsﬂ
= V7 (335)(1 — ps) + PSQWE(CU& as),

which is different from Q77 (xs,as) when V7™ (x5) # Q™7 (x5, as).

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 18 / 27

Define the V-trace operator R:

RV (x) e —I—EM[Z’Y cce-1) pe(re + YV (@p51) — V(2 ﬁz

t>0

Let py = min (p, Mgajizg) and ¢; = min (¢, Wgat{itg) be truncated

importance sampling weights, with p > ¢. Assume that there exists

B € (0,1] such that E,po > B. Then the operator R defined by (2) has a
unique fized point V77, which s the value function of the policy w5
defined by

| et _min (pu(ale). m(ala)
e min (pu(bje), 7(0}2)

Furthermore, R is a n-contraction mapping in sup-norm, with

T5(alz

(3)

=

77d§f7_1— ZW HCz Pt— 1]§1—(1—7)5<1-

t>0 1=0

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 19 / 27

First notice that we can rewrite R as

RV (z) =(1—-Eupo)V(z)+E,

> <H > (ere + y|pr — Ctﬂt+1]V(9€t+1)>

t>0 s=0

Thus

RVi(x)—RVa(z 27 (HCS) |pi— l_Ct 1Pt] [Vl(ﬂ?t) V2($t)] ;
t>0 s=0

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 20 / 27

Theorem

Assume a tabular representation, i.e. the state and action spaces are
finite. Consider a set of trajectories, with the k' trajectory

Tg, 0,70, T1,01,T1, ... generated by following pu: ay ~ u(-|z). For each
state x5 along this trajectory, update

Vk+1($3) — Vk:(xs> + ak(xs) Z f)/t_s (Cs <. Ct—l)pt (Tt + f)/vlc(xH—l) - Vk(xl)

t>s
(4)
with ¢; = min (C, Zgzzlijg), pi = min (p, Zggz}iz%), p > ¢. Assume that (1)
all states are visited infinitely often, and (2) the stepsizes obey the usual
Robbins-Munro conditions: for each state x,), ar(x) = oo,
SLai(z) < oo. Then Vi, — V™ almost surely.

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 21 / 27

Network Architecture

m(ar) Vi

hi_1— LSTM 256

/

m(az) ro i a7 | FC 256 | | LST:A 64 |
hi_1— LSTM 256 | Embed;ling 20 |
’_L‘ \ [blue ladder
Rel.U :, ’ Residual Block ‘
re i ar | FC 256 || 1sTMes | | i
Residual Block
| Rty | 32 ‘ | Embedding 20 | s | i [!
Conv. 4 x 4, stride 2 } X I Max 3 X 3. stride 2 \‘\ Conv. 3 x 3,stride 1 ‘
Iy blue ladder 16:32:32)ch.| | Masx 3 x 3, stride? | | e
fell - ‘, ‘ Conv. 3 x 3, stride 1 ‘ \‘\
‘ Conv. 8 x 8, stride4 ‘ ! ' \

| Conv. 3 x 3,stride1 |

O

Figure 2: Model Architectures. Left: Small architecture, 2 convolutional layers

and 1.2 million parameters. Right: Large architecture. 15 convolutional layers
Huizhuo Yuan (Peking University) IMPALA March 25, 2019 22 /27

Throughput Comparison

Architecture CPUs GPUs! FPS?
Single-Machine Task 1 Task 2
A3C 32 workers 64 0 6.0K 9K
Batched A2C (sync step) 48 0 9K 5K
Batched A2C (sync step) 48 1 13K 5.5K
Batched A2C (sync traj.) 48 0 16K 17.5K
Batched A2C (dyn. batch) 48 1 16K 13K
IMPALA 48 actors 48 0 17K 20.5K
IMPALA (dyn. batch) 48 actors® 48 1 21K 24K
Distributed

A3C 200 0 46K 50K
IMPALA 150 1 80K
IMPALA (optimised) 375 1 200K
IMPALA (optimised) batch 128 500 1 250K

! Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3

Limited by amount of rendering possible on a single machine.

Huizhuo Yuan (Peking University) IMPALA March 25, 2019

Single Task Results

—— IMPALA - 1 GPU - 200 actors Batched AZC - Single Machine - 32 warkers —— A3C - Single Machine - 32 workers —— A3C - Distributed - 200 workers
rooms_watermaze rooms_keys_doors_puzzie lasertag_three_opponents_small explore_goal_lecations_small seskavoid_arena_01
55 30 35 250
50 30
a5 23 s 200
a0 20
g s 20 150
23 15 15
@
25 10 12 1on
20 50
15] o
1 B K § Exe
.0 0.2 0.4 0.6 0.8 1o X 0.2 0.4 0.6 0.8 L0 .o 0.2 0.4 0.6 0.B 10 .0 0.2 0.4 [0.8 1.0 Do 0.2 0.4 0.6 0.8 1.0
Environment Frames 1&% Environment Frames 19 Environment Frames 129 Environment Frames 1e9 Environment Frames 129
rooms_watermaze rooms_keys_doors_puzzle lasertag_three_opponents_small explore_goal_locations_small seekavoid_arena_01

T H T3 1 I 24 H 5 13 _ 17 21 24 1 B g 13 _ 17 21 24 i H 5 13 17 21 24 1 5 g 13 _ 17 21 24
Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination

Figure 4. Top Row: Single task training on 5 DeepMind Lab tasks. Each curve is the mean of the best 3 runs based on final return.
IMPALA achieves better performance than A3C. Bottom Row: Stability across hyperparameter combinations sorted by the final
performance across different hyperparameter combinations. IMPALA is consistently more stable than A3C.

March 25, 2019 24 / 27

Huizhuo Yuan (Peking University)

DMLab-30 Multi-Task

Huizhuo Yuan (Peking University) March 25, 2019 25 / 27

DMLab-30 Multi-Task Results

60

Mean Capped Normalized Score

]
0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames lelD
= |MPALA, deep, PBT - 8 GPUs — IMPALA, shallow
IMPALA, deep, PET IMPALA-Experts, deep
IMPALA, deep —_— ASC, deep

Huizhuo Yuan (Peking University) IMPALA March 25, 2019

Conclusions

e New distributed RL architecture allows for stable learning with very
high throughput

e Especially well-suited to the multi-task deep RL setting

@ Synchronous batch learning is more robust to hyperparameters than
async SGD

e Multi-task RL on the DMLab-30:

@ Positive transfer
© Deep ResNets finally outperforms 3 layer ConvNets (Atari was too
simple)

Huizhuo Yuan (Peking University) IMPALA March 25, 2019 27 | 27

