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Main Statement

Derive the finite error bounds on the moments of the error of the linear
stochastic approximation algorithm:

Θk+1 = Θk + ε(A(Xk)Θk + b(Xk)) (1)

1. {Xk , k ≥ 0} is an underlying Markov chain

2. A(Xk) is a random matrix; b(Xk) is a random vector; Θk is a
random vector

3. algorithm updates Θk using recursion (1)

4. ε is a constant step size
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TD Learning: TD(0)

Setup:

1. MDP over a finite space S = {1, . . . ,N}
2. Fix a stationary policy µ

3. {Zk}: the resulting Markov chain

4. Value function

V (i) := E

[ ∞∑
k=0

αkc(Zk , µ(Zk),Zk+1)

∣∣∣∣Z0 = i

]
(2)

where c is one-step reward.

5. Purpose: estimate the value function V associated with µ by
observing a trajectory {z0, z1, z2, . . .}
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TD(0): Linear Approximation

1. V satisfies the Bellman equation: V = TµV

V (i) = Ej [c(i , µ(i), j) + αV (j)] = E[c(i , µ(i), j)] + α
∑
j

pijV (j)

(3)

denote c := (E[c(1, µ(i), j)], . . . ,E[c(N, µ(i), j)])t

2. If the transition probabilities pij are known, we can solve (3) to get
V .

3. still, when N = |S| is large, we approximate value function V by a
linear function of feature functions φt(i) = (φ1(i), . . . φd(i)):

V (i) ∼=
d∑

k=1

θkφk(i) (4)

where d is small compared to N. Now: estimate weights θk
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TD Learning: Algorithm Design

1. Goal: approximate V by a member from L = {φtθ : θ ∈ Rd}
2. Minimizing L2-error

θ∗ = arg min
θ∈Rd

‖V − φtθ‖2
ξ (5)

where

‖f ‖2
ξ :=

∫
S
f 2(s)ξ(ds) (6)

3. ΠL := projection operator onto L with respect to ‖‖2
ξ; Solve the

projected Bellman equation:

ΠLTµ(φtθ) = φtθ (7)

4. since θ∗ should satisfy

Tµ(φtθ∗) ∼= V (8)
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TD Learning: Algorithm Design

1. one can show ΠLTµ is a contraction mapping when ξ is chosen to
be the stationary distribution of {Zk}

2. by solving (7), one can show it is equivalent to solving for θ∗ so that

E[φ(i)(φ(i)tθ∗ − αφ(j)tθ∗ − c(i , µ(i), j)] = 0 (9)

3. observe that

θ∗ − εE[φ(i)(φ(i)tθ∗ − αφ(j)tθ∗ − c(i , µ(i), j)] = θ∗ (10)

4. for an episode {Z0,Z1, . . .},

Θk+1 = Θk − εφ(Zk)
(
φt(Zk)Θk − c(Zk)− αφt(Zk+1)Θk

)
(11)

where Θk is the estimate of θ∗ at time k , ε ∈ (0, 1) is a constant
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TD(0): Convergence

Theorem (Tsitsiklis, Van Roy 1997)
Θk converges to θ∗ where

ΠLTµ(φtθ∗) = φtθ∗ (12)

Srikant and Ying 2019 provides finite-time error bounds on E‖Θk − θ∗‖2.
Rewrite (11) as

Θk+1 = Θk + ε(A(Xk)Θk + b(Xk)) (13)

where

Xk := (Zk ,Zk+1), A(Xk) := −φ(Zk)(φt(Zk)− αφt(Zk+1)) (14)

and

b(Xk) := c(Zk)φ(Zk)− A(Xk)θ∗, Θ← Θ− θ∗ (15)
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Assumptions

From now on, we focus on linear stochastic recursion (1). We use 2-norm
for all vectors and induced 2-norm for all matrices.
Assumptions:

1. {Xk} is a Markov chain with state space S.

lim
k→∞

E[A(Xk)] = A, lim
k→∞

E[b(Xk)] = 0 (16)

For mixing time τε of {Xk} so that for all i and k ≥ τε

‖E[b(Xk)
∣∣X0 = i ]‖ ≤ ε, ‖E[A(Xk)

∣∣X0 = i ]− A‖ ≤ ε, (17)

there exists K ≥ 1 so that τε ≤ K log 1
ε .

2. Assumption 2:

bmax := sup
i∈S
‖b(i)‖ <∞, Amax := sup

i∈S
‖A(i)‖ ≤ 1 (18)

3. Assumption 3: A is Hurwitz: all eigenvalues have strictly negative
parts

One can check that TD algorithms satisfy assumptions 1-3.
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Relevant Quantities

1. Fact: there exists a symmetric matrix P > 0 so that

A
t
P + PA

t
= −I (19)

γmax := largest eigenvalue of P; γmin := smallest eigenvalue of P

2. some universal constants

κ1 = 62γmax(1 + bmax), κ2 = 55γmax(1 + bmax)3, κ̃2 = 2(κ2 + γmaxb
2
max)

(20)
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Theorem Statement

Theorem
For ε so that κ1ετε + εγmax ≤ 0.05 and all k ≥ τε,

E[‖Θk‖2] ≤ γmax

γmin

(
1− 0.9ε

γmax

)k−γ

(1.5‖Θ0‖+ 0.5bmax)2 +
κ̃2γmax

0.9γmin
ετ

(21)

1. this is a finite error bound compared to the convergence result from
Tsitsiklis and Van Roy 1997

2. if k ≥ τε + O( 1
ε log 1

ε ), then E‖Θk‖2 = O(ετε).

3. step size ε is fixed. Not difficult to extend analysis to algorithms
with diminishing step sizes.
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Theorem: Motivation

A standard way to study (1) is to consider

E[W (Θk+1)−W (Θk)
∣∣Hk ] (22)

where Hk is some appropriate history.
Two questions:

1. what is a suitable Lyapunov function W ?

2. how to decide Hk?

To answer the first question, we rely on intuitions from

1. Stein’s Method

2. Stability (equilibrium) of the associated ODE
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Stein’s Method: Taylor Expansion of Operator

Stochastic Recursion:

Θk+1 = Θk + ε(A(Xk)Θk + b(Xk)) (23)

1. think about the problem in steady state + i.i.d. samples

2. for any proper function H,

E[H(Θk+1)− H(Θk)] = 0 (24)

3. Taylor expansion:

E
[
∇tH(Θk)(Θk+1 −Θk) +

1

2
(Θk+1 −Θk)t∇2H(Θ̃)(Θk+1 −Θk)

]
= 0

(25)

for appropriate Θ̃
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Stein’s Method: Poisson Equation

1. set up the Poisson equation:

∇tW (Θk)E[Θk+1 −Θk

∣∣Θk ] = −‖Θk‖2, for each Θk (26)

2. Combining Poisson equation and Taylor expansion

E[‖Θk‖2] = E
[

1

2
(Θk+1 −Θk)t∇2W (Θ̃)(Θk+1 −Θk)

]
(27)

3. one can use Hession bound to obtain bounds on E[‖Θk‖2]

4. We focus on Poisson equation (26). By i.i.d. assumption,

∇tW (Θk)AΘk = −‖Θk‖2 (28)
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Stein’s Method: Intuition

1. Candidate solution to (28):

W (Θk) = Θt
kPΘk (29)

for P a symmetric positive definite matrix

2. Solve P so that

A
t
P + PA

t
= −I (30)

The solution is unique due to the assumption that A is Hurwitz

3. Stein’s method (Poisson equation) removes the guesswork for a
good Lyapunov function W
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ODE

Stochastic Recursion:

Θk+1 = Θk + ε(A(Xk)Θk + b(Xk)) (31)

1. the corresponding ODE:

θ̇ = Aθ (32)

2. Fact: Θk converges to the equilibrium point of ODE (32)

3. how one could derive bounds on ‖θt‖2?
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ODE: Same Lyapunov function

Consider

W (θ) = θtPθ (33)

1. consider the time derivative of W (θ)

dW

dt
= θt

(
A
t
P + PA

t
)
θ = −‖θ‖2 (34)

2. W (θ) ≤ γmax‖θ‖2 ⇒ dW
dt ≤ −

1
γmax

W

3. Thus,

‖θt‖2 ≤ 1

γmin
W (θt) ≤

γmax

γmin
e−t/γmax‖θ0‖2 (35)

4. indicates that W is a correct choice of Lyapunov function
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Two Methods, One Lyapunov Function and Similar Bounds

1. both Stein’s method and analysis of ODE point to the same
Lyapunov function W

2. analysis of stochastic system is similar to ODE:
drift of W versus time derivative of W along the trajectory of ODE

E[‖Θk‖2] ≤ γmax

γmin

(
1− 0.9ε

γmax

)k−γ

(1.5‖Θ0‖+ 0.5bmax)2 +
κ̃2γmax

0.9γmin
ετ

(36)

∼ γmax

γmin

(
1− 0.9ε

γmax

)k−γ

‖Θ0‖2 (37)

similar to γmax

γmin
e−t/γmax‖θ0‖2 for small ε.
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How to Decide Hk?

1. Lyapunov function W as a solution to Poisson equation: applying
Stein’s method to steady state approximation

2. ODE is determined by the steady states of A(Xk) and b(Xk)

3. given history Hk , for drift analysis of W to be effective, we need to
wait an initial transient period τε for A(Xk), b(Xk) close enough to
steady states

4. Hk := Θk−τ
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Proof of the Theorem

1. Use W as Lyapunov function and obtain bound on the drift

E[W (Θk+1)−W (Θk)|Θk−τ ] ≤ − 0.9ε

γmax
E[W (Θk)|Θk−τ ] + k̃2ε

2τε

(38)

2. Combine drift bound with

E‖Θk‖2 ≤ 1

γmin
E[W (Θk)] (39)

and various vector inequalities
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