Learning in Zero-sum games

Reinforcement Learning Seminar

Yingru Li

May 12, 2019

yingruli@link.cuhk.edu.cn The Chinese University of Hong Kong, Shenzhen

Figure 1: Deep Blue

Figure 2: AlphaGo

Figure 3: Libratus

Figure 4: StarCraft II: A New Challenge for Reinforcement Learning. DeepMind AlphaStar Jan. 2019; Tencent AI Lab TStarBots Sep. 2018

- Security
- Negotiation
- Diplomatic and Military Strategy
- Financial Market
- E-Commerce
- Distributed Cooperated and Competitive Robotics
- Game AI
- • • • •

Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibrium The Exp3 Algorithms

From Normal Form to Extensive Form Imperfect Information Games Regret Minimization and Nash Equilibria Counterfactual Regret Minimization

Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibrium The Exp3 Algorithms

From Normal Form to Extensive Form Imperfect Information Games

Regret Minimization and Nash Equilibria

Counterfactual Regret Minimization

Normal Form Games

The Game

- Set of players $N = \{1, \cdots, n\}$
- Action sets A_i , joint action set $A = A_1 \times \cdots \times A_n$
- Joint action $a \in A$, player *i*'s action a_i , all other players' a_{-i}
- Utility (payoff/reward) function $u: A \to \mathbb{R}^n$,
- Player i's utility $u_i: A \to \mathbb{R}$

Mixed strategies

• Joint strategy $\sigma \in \mathcal{D}(A)$ is distribution over A, such that

$$\sigma(a) = \prod_{i=1}^n \sigma_i(a_i)$$

• Utility of a strategy for player *i* (expected utility):

$$u_i(\sigma) = \sum_{a_i} \sum_{a_{-i}} \sigma_i\left(a_i
ight) \sigma_{-i}\left(a_{-i}
ight) u_i\left(a_i,a_{-i}
ight)$$

The Game

• Best response:

 $\sigma_{i}^{*} \in BR\left(\sigma_{-i}
ight) ext{ iff } orall \sigma_{i} \in \mathcal{D}(A_{i}), u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}
ight) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}
ight)$

- Nash equilibrium: σ is a Nash equilibrium iff $\forall i, \sigma_i \in BR(\sigma_{-i})$
- Every finite game has a Nash equilibrium! [Nash, 1950]

Finite Two-Player Zero-Sum Games

The Game

- Set of players $N = \{1, 2\} = \{i, j\}$
- Action sets A_i , joint action set $A = A_1 \times A_2$
- Joint action $a \in A$, player *i*'s action a_i , all other players' a_j
- Utility (payoff/reward) function $u: A \to \mathbb{R}^n$, player *i*'s utility $u_i: A \to \mathbb{R}$

$$\forall a \in A, \quad u_1(a) = -u_2(a)$$

Mixed strategies

• Nash equilibrium [Minimax theorem (von Neumann, 1928)]

$$\begin{aligned} (\sigma_1^*, \sigma_2^*) &= \arg \max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2) \\ &= \arg \min_{\sigma_1} \max_{\sigma_2} u_2(\sigma_1, \sigma_2) \end{aligned}$$

• Value of the game

 $V=\max_{\sigma_1}\min_{\sigma_2}u_1(\sigma_1,\sigma_2)=\min_{\sigma_2}\max_{\sigma_1}u_1(\sigma_1,\sigma_2)$

Action set $A_1 = A_2 = \{(R)ock, (P)aper, (S)cissor\}$

	R	Р	S
R	<mark>0, 0</mark>	-1, 1	1, -1
Р	1, -1	<mark>0,0</mark>	-1, 1
S	-1 , 1	1, -1	<mark>0, 0</mark>

Rock-Paper-Scissors The Solution

Action set $A_1 = A_2 = \{(R)ock, (P)aper, (S)cissor\}$

	R	Р	S
R	<mark>0, 0</mark>	-1, 1	1, -1
P	1, -1	<mark>0,0</mark>	-1, 1
\boldsymbol{S}	-1, 1	1, -1	<mark>0, 0</mark>

• if (σ_1^*, σ_2^*) is a Nash equilibrium, then

$$egin{aligned} &\sigma_1^* = ext{BR}\left(\sigma_2^*
ight) = rg\max_{\sigma_1} u_1\left(\sigma_1,\sigma_2^*
ight) \ &= rg\max_{\sigma_1} \sum_{a_1 \in A_1} \sigma_1\left(a_1
ight) u_1\left(a_1,\sigma_2^*
ight) \end{aligned}$$

Rock-Paper-Scissors The Solution

Action set $A_1 = A_2 = \{(R)ock, (P)aper, (S)cissor\}$

	R	Р	S
R	<mark>0, 0</mark>	-1, 1	1, -1
P	1, -1	<mark>0,0</mark>	-1, 1
\boldsymbol{S}	-1, 1	1, -1	<mark>0, 0</mark>

• if (σ_1^*, σ_2^*) is a Nash equilibrium, then

$$egin{aligned} & \sigma_1^* = ext{BR}\left(\sigma_2^*
ight) = ext{arg}\max_{\sigma_1} u_1\left(\sigma_1,\sigma_2^*
ight) \ & = ext{arg}\max_{\sigma_1} \sum_{a_1 \in A_1} \sigma_1\left(a_1
ight) u_1\left(a_1,\sigma_2^*
ight) \end{aligned}$$

$$\Rightarrow \forall a_1 \in A, \quad u_1 = u_1(a_1, \sigma_2^*)$$

Rock-Paper-Scissors The Solution (sketch)

	R	Р	S
R	0, <mark>0</mark>	-1, <mark>1</mark>	1, -1
Ρ	1, -1	0, <mark>0</mark>	-1, <mark>1</mark>
S	-1, 1	1, -1	0, <mark>0</mark>

• Let $\sigma_2 = (\sigma_2(R), \sigma_2(P), \sigma_2(S))$ the strategy of player column,

 $u_{1} = u_{1}(R, \sigma_{2}) = 0\sigma_{2}(R) - 1\sigma_{2}(P) + 1\sigma_{2}(S)$ $u_{1} = u_{1}(P, \sigma_{2}) = 1\sigma_{2}(R) + 0\sigma_{2}(P) - 1\sigma_{2}(S)$ $u_{1} = u_{1}(S, \sigma_{2}) = -1\sigma_{2}(R) + 1\sigma_{2}(P) + 0\sigma_{2}(S)$ $1 = \sigma_{2}(R) + \sigma_{2}(P) + \sigma_{2}(S)$

Rock-Paper-Scissors The Solution (sketch)

	R	Р	S
R	0, <mark>0</mark>	-1, <mark>1</mark>	1, -1
Ρ	1, -1	0, <mark>0</mark>	-1, 1
S	-1, 1	1, -1	0, <mark>0</mark>

• Let $\sigma_2 = (\sigma_2(R), \sigma_2(P), \sigma_2(S))$ the strategy of player column,

 $u_{1} = u_{1}(R, \sigma_{2}) = 0\sigma_{2}(R) - 1\sigma_{2}(P) + 1\sigma_{2}(S)$ $u_{1} = u_{1}(P, \sigma_{2}) = 1\sigma_{2}(R) + 0\sigma_{2}(P) - 1\sigma_{2}(S)$ $u_{1} = u_{1}(S, \sigma_{2}) = -1\sigma_{2}(R) + 1\sigma_{2}(P) + 0\sigma_{2}(S)$ $1 = \sigma_{2}(R) + \sigma_{2}(P) + \sigma_{2}(S)$

• Solving for all variables gives $\sigma_2^* = (1/3, 1/3, 1/3)$ and $u_1 = 0$

Rock-Paper-Scissors The Solution (sketch)

	R	Р	S
R	0, <mark>0</mark>	-1, <mark>1</mark>	1, -1
Ρ	1, -1	0, <mark>0</mark>	-1, 1
S	-1, 1	1, -1	0, <mark>0</mark>

• Let $\sigma_2 = (\sigma_2(R), \sigma_2(P), \sigma_2(S))$ the strategy of player column,

 $u_{1} = u_{1}(R, \sigma_{2}) = 0\sigma_{2}(R) - 1\sigma_{2}(P) + 1\sigma_{2}(S)$ $u_{1} = u_{1}(P, \sigma_{2}) = 1\sigma_{2}(R) + 0\sigma_{2}(P) - 1\sigma_{2}(S)$ $u_{1} = u_{1}(S, \sigma_{2}) = -1\sigma_{2}(R) + 1\sigma_{2}(P) + 0\sigma_{2}(S)$ $1 = \sigma_{2}(R) + \sigma_{2}(P) + \sigma_{2}(S)$

- Solving for all variables gives $\sigma_2^* = (1/3, 1/3, 1/3)$ and $u_1 = 0$
- Repeating for player row gives $\sigma_1^* = (1/3, 1/3, 1/3)$ and $u_2 = 0$
- (σ_1^*, σ_2^*) is a Nash equilibrium and the value of the game is V = 0

Sequential game

- For t = 1, ..., n
 - Player 1 chooses $\sigma_{1,t}$
 - Player 2 chooses $\sigma_{2,t}$
 - Players play actions $a_{1,t} \sim \sigma_{1,t}$ and $a_{2,t} \sim \sigma_{2,t}$
 - Players receive payoffs $u_1(a_{1,t}, a_{2,t})$ and $u_2(a_{1,t}, a_{2,t})$

Solution: Nash equilibrium

$$(\sigma_1^*,\sigma_2^*) = rg\max_{\sigma_1}\min_{\sigma_2}u_1(\sigma_1,\sigma_2)$$

A Single-Player Perspective

Sequential game \Rightarrow Single-player game

- For t = 1, ..., n
 - Player 1 chooses $\sigma_{1,t}$
 - Player 2 chooses $\sigma_{2,t}$
 - Players play actions $a_{1,t} \sim \sigma_{1,t}$ and $a_{2,t} \sim \sigma_{2,t}$
 - Players receive payoffs $u_1(a_{1,t}, a_{2,t})$ and $\frac{u_2(a_{1,t}, a_{2,t})}{u_2(a_{1,t}, a_{2,t})}$

Solution: Nash equilibrium \Rightarrow Maximize the (average) utility

 $(\sigma_1^*, \sigma_2^*) = \arg \max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2)$

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

A learning problem

- For t = 1, ..., n
 - Player 1 chooses $\sigma_{1,t}$
 - Player 1 plays action $a_{1,t} \sim \sigma_{1,t}$
 - Player 1 receives payoff $u_{1,t}(a_{1,t})$

Remarks

- No information about $a_{2,t}$ and utility u_2
- Utility function u_{1,t} is only observed for a_{1,t} (i.e., bandit feedback u_{1,t} (a_{1,t}))

The (Multi-Armed Bandit) Problem

• Regret in hindisight w.r.t. any fixed action a_1

$$R_{n}\left(a_{1}
ight)=rac{1}{n}\sum_{t=1}^{n}u_{1,t}\left(a_{1}
ight)-rac{1}{n}\sum_{t=1}^{n}u_{1,t}\left(a_{1,t}
ight)$$

Objective: find actions (a_{1,1},..., a_{1,n}) that maximize average utility ≈ minimize the regret w.r.t. the best action a₁ in hindsight

Utility:
$$\frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1,t})$$

Regret: $R_n = \max_{a_1} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_1) - \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1,t})$

Regret Minimization and Nash Equilibrium

Theorem

A learning algorithm is Hannan's consistent if

 $\limsup_{n\to\infty}R_n=0\quad a.s.$

Given a two-player zero-sum game with value V, if players choose strategies $\sigma_{1,t}$ and $\sigma_{2,t}$ using a Hannan's consistent algorithm, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n u_1\left(a_{1,t}, a_{2,t}\right) = V$$

Furthermore, let empirical frequency strategies be

$$\widehat{\sigma}_{1,n}\left(a_{1}\right)=\frac{1}{n}\sum_{t=1}\mathbb{I}\left\{a_{1,t}=a_{1}\right\}\quad\text{and}\quad\widehat{\sigma}_{2,n}\left(a_{2}\right)=\frac{1}{n}\sum_{t=1}\mathbb{I}\left\{a_{2,t}=a_{2}\right\}$$

then the joint empirical strategy

$$\widehat{\sigma}_{1,n} imes \widehat{\sigma}_{2,n} \stackrel{n o \infty}{\longrightarrow} \{(\sigma_1^*, \sigma_2^*)\}_{ ext{Nash}}$$

Regret Minimization and Nash Equilibria [proof]

• Hannan's consistency

$$\limsup_{n \to \infty} R_n \leq 0 \quad \Longleftrightarrow \quad \limsup_{n \to \infty} \left(\max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_1\right) - \frac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_{1,t}\right) \right) \leq 0$$

• linearity of utility function

$$\max_{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(\sigma_{1}) = \max_{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} \sum_{a_{1} \in A_{1}} \sigma_{1}(a_{1}) u_{1,t}(a_{1}) = \max_{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1})$$

Regret Minimization and Nash Equilibria [proof]

• Hannan's consistency

$$\limsup_{n \to \infty} R_n \leq 0 \quad \Longleftrightarrow \quad \limsup_{n \to \infty} \left(\max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_1\right) - \frac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_{1,t}\right) \right) \leq 0$$

• linearity of utility function

$$\max_{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(\sigma_{1}) = \max_{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} \sum_{a_{1} \in A_{1}} \sigma_{1}(a_{1}) u_{1,t}(a_{1}) = \max_{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1})$$

• definition
$$u_{1,t}(\sigma_1) = u_1(\sigma_1, a_{2,t}) \Rightarrow$$

$$\frac{1}{n}\sum_{t=1}^{n}u_{1,t}\left(\sigma_{1}\right) = \frac{1}{n}\sum_{t=1}^{n}\sum_{a_{2}\in A_{2}}\mathbb{I}\left\{a_{2,t} = a_{2}\right\}u_{1}\left(\sigma_{1}, a_{2}\right) = \sum_{z_{2}\in A_{2}}u_{1}\left(\sigma_{1}, a_{2}\right)\underbrace{\frac{1}{n}\sum_{t=1}^{n}\mathbb{I}\left\{a_{2,t} = a_{2}\right\}}_{\widehat{\sigma}_{2,n}\left(a_{2}\right)}$$

Regret Minimization and Nash Equilibria [proof]

• Hannan's consistency

$$\limsup_{n \to \infty} R_n \leq 0 \quad \Longleftrightarrow \quad \limsup_{n \to \infty} \left(\max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_1\right) - \frac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_{1,t}\right) \right) \leq 0$$

• linearity of utility function

$$\max_{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(\sigma_{1}) = \max_{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} \sum_{a_{1} \in A_{1}} \sigma_{1}(a_{1}) u_{1,t}(a_{1}) = \max_{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1})$$

• definition
$$u_{1,t}\left(\sigma_{1}\right)=u_{1}\left(\sigma_{1},a_{2,t}\right)\Rightarrow$$

$$\frac{1}{n}\sum_{t=1}^{n}u_{1,t}\left(\sigma_{1}\right) = \frac{1}{n}\sum_{t=1}^{n}\sum_{a_{2}\in A_{2}}\mathbb{I}\left\{a_{2,t} = a_{2}\right\}u_{1}\left(\sigma_{1}, a_{2}\right) = \sum_{z_{2}\in A_{2}}u_{1}\left(\sigma_{1}, a_{2}\right)\underbrace{\frac{1}{n}\sum_{t=1}^{n}\mathbb{I}\left\{a_{2,t} = a_{2}\right\}}_{\widehat{\sigma}_{2,n}\left(a_{2}\right)}$$

• one-side of the result

$$\max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}\left(\sigma_1\right) = \max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_1\left(\sigma_1, \widehat{\sigma}_{2,n}\right) \geq \max_{\sigma_1} \min_{\sigma_2} \frac{1}{n} \sum_{t=1}^n u_1\left(\sigma_1, \sigma_2\right) = V$$

• one-side of the result

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{t=1}^n u_{1,t} \left(a_{1,t}, a_{2,t} \right) \geq \max_{\sigma_1} \min_{\sigma_2} \frac{1}{n} \sum_{t=1}^n u_1 \left(\sigma_1, \sigma_2 \right) = V$$

• one-side of the result

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{t=1}^n u_{1,t} \left(a_{1,t}, a_{2,t} \right) \geq \max_{\sigma_1} \min_{\sigma_2} \frac{1}{n} \sum_{t=1}^n u_1 \left(\sigma_1, \sigma_2 \right) = V$$

• If player 2 also plays Hannan consistent strategies, then we get

$$\max_{\sigma_2} \frac{1}{n} \sum_{t=1}^n u_{2,t}\left(\sigma_2\right) \geq \max_{\sigma_2} \min_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_2\left(\sigma_1, \sigma_2\right) = V$$

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{t=1}^n u_{1,t} \left(a_{1,t}, a_{2,t} \right) \leq \min_{\sigma_2} \max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_1 \left(\sigma_1, \sigma_2 \right) = V$$

$$\lim_{n
ightarrow\infty}rac{1}{n}\sum_{t=1}^n u_{1,t}\left(a_{1,t},a_{2,t}
ight) = V \quad a.s.$$

Remark

The joint empirical strategy converges to the set of correlated equilibrium almost surly as $n \to \infty$.

In particular, for any (finite) two-person zero-sum game, for each player, the empirical distribution of play converges to the set of optimal mixed actions.

$$\widehat{\sigma}_{1,n} \times \widehat{\sigma}_{2,n} \stackrel{n \to \infty}{\longrightarrow} \{(\sigma_1^*, \sigma_2^*)\}_{\mathrm{Nash}} \quad a.s.$$

Note that approaching to a set does not imply convergence to particular point.

Corollary

If

$$R_n \leq \epsilon$$

then the joint empirical strategy is ϵ -Nash (more precisely, correlated ϵ -equilibrium), i.e.,

$$u_1\left(\widehat{\sigma}_{1,n} imes \widehat{\sigma}_{2,n}
ight) \geq V - \epsilon$$

A learning problem

- For t = 1, ..., n
 - Player 1 chooses $\sigma_{1,t}$
 - Player 1 plays action $a_{1,t} \sim \sigma_{1,t}$
 - Player 1 receives payoff $u_{1,t}(a_{1,t})$

Objective

• Regret

$$R_n = \max_{a_1} rac{1}{n} \sum_{t=1}^n u_{1,t} \left(a_1
ight) - rac{1}{n} \sum_{t=1}^n u_{1,t} \left(a_{1,t}
ight)$$

• Hannan's consistent algorithm

$$\limsup_{n\to\infty} R_n \leq 0 \quad a.s.$$

Version 1: fictitious play full information (aka follow-the-leader)

- For t = 1, ..., n
 - Compute greedy action

$$a_t^* = \arg \max_{a \in A_1} \sum_{s=1}^{t-1} u_{1,t}(a)$$

- Player chooses $\sigma_{1,t} = \delta\left(a_t^*\right)$
- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$

Remarks

- This strategy is easily exploitable $R_n = O(1)$
- E.g. Opponents set $u_{1,t}(a = a_{1,t}) = -1$ and $u_{1,t}(a \neq a_{1,t}) = 1$

Version 1: fictitious play full information (aka follow-the-leader)

- For t = 1, ..., n
 - Compute greedy action

$$a_t^* = \arg \max_{a \in A_1} \sum_{s=1}^{t-1} u_{1,t}(a)$$

- Player chooses $\sigma_{1,t} = \delta\left(a_t^*\right)$
- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$

Remarks

- This strategy is easily exploitable $R_n = O(1)$
- Self play does not converge in general [Recall Hannan's consistency]

Version 2: [Randomization]

Version 2: [Randomization] exponentially weighted forcaster (EWF)

- Initialize weights $w_0(a) = 1$ for all $a \in A_1$
- For t = 1, ..., n
 - Player chooses

$$\sigma_{1,t}(a) = rac{w_{t-1}(a)}{\sum_{b \in A_1} w_{t-1}(b)} \hspace{0.4cm} ext{[prop. to weights]}$$

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$ and $u_{1,t}(a)$ for all a [full info]
- Update weights $u_{1,t}(a_{1,t})$

 $w_t(a) = w_{t-1}(a) \exp\left(\eta_t u_{1,t}(a)
ight) \quad ext{[exponentiated utility]}$

Theorem

If EWF is run over n steps with $\eta_t = \eta$, then with probability $1 - \delta$

$$R_n = \max_{a_1} rac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_1
ight) - rac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_{1,t}
ight) \leq rac{\log\left(A_1
ight)}{n\eta} + rac{\eta}{8} + \sqrt{rac{1}{2n}\lograc{1}{\delta}}$$

Setting $\eta = \sqrt{8 \log \left(A_1\right) / n}$ we obtain

$$R_n \leq \sqrt{rac{\log{(A_1)}}{2n}} + \sqrt{rac{1}{2n}\log(1/\delta)}$$

Remarks

- $\limsup_{n \to \infty} R_n \leq 0 \quad \Rightarrow$ Hannan's consistency
- Rate of convergence $O(1/\sqrt{n})$
- In self-play EWF converges to the Nash equilibrium

Version 2: [Randomization] exponentially weighted forcaster (EWF)

- Initialize weights $w_0(a) = 0$ for all $a \in A_1$
- For t = 1, ..., n
 - Player chooses

$$\sigma_{1,t}(a) = rac{w_{t-1}(a)}{\sum_{b \in A_1} W_{t-1}(b)} \hspace{0.3cm} [ext{prop. to weights}]$$

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$ and $u_{1,t}(a)$ for all a [full info]
- Update weights $u_{1,t}(a_{1,t})$

 $w_t(a) = w_{t-1}(a) \exp\left(\eta_t u_{1,t}(a)
ight)$ [exponentiated utility]

Problem:

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$
- Update weights $u_{1,t}(a_{1,t})$

 $w_t(a) = w_{t-1}(a) \exp\left(\eta_t u_{1,t}(a)
ight)$ [exponentiated utility]

Problem:

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$
- Update weights $u_{1,t}(a_{1,t})$

 $w_t(a) = w_{t-1}(a) \exp\left(\eta_t u_{1,t}(a)
ight)$ [exponentiated utility]

Solution:

• Importance sampling

$$\widetilde{\mu}_{1,t}(a) = \left\{egin{array}{c} rac{u_{1,t}(a_{1,t})}{\sigma_{1,t}(a_{1,t})} & ext{if } a = a_{1,t} \\ 0 & ext{otherwise} \end{array}
ight.$$

• Unbiased estimator

$$\forall a \in A_1 \quad \mathbb{E}_{a \sim \sigma_{1,t}}\left[\widetilde{u}_{1,t}(a)\right] = \sigma_{1,t}(a) \frac{u_{1,t}(a)}{\sigma_{1,t}} + (1 - \sigma_{1,t}(a)) \times 0 = u_{1,t}(a)$$

Version 3: EWF for Exploration-Exploitation (EXP3)

- Initialize weights $w_0(a) = 0$ for all $a \in A_1$
- For t = 1, ..., n
 - Player chooses

$$\sigma_{1,t}(a) = rac{w_{t-1}(a)}{\sum_{b \in A_1} w_{t-1}(b)} \hspace{0.3cm} [ext{prop. to weights}]$$

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$
- Compute pseudo-payoffs

$$\widetilde{u}_{1,t}(a) = \left\{egin{array}{c} rac{u_{1,t}(a_{1,t})}{\sigma_{1,t}(a_{1,t})} & ext{if } a = a_{1,t} \ 0 & ext{otherwise} \end{array}
ight.$$

• Update weights $u_{1,t}(a_{1,t})$

$$w_t(a) = w_{t-1}(a) \exp\left(\eta_t \widetilde{u}_{1,t}(a)
ight)$$

Theorem

If EXP3 is run over *n* steps with $\eta_t = \sqrt{2 \log (A_1) / (nA_1)}$, then its psuedo-regret is bounded as

$$\overline{R}_n = \max_{a_1} \frac{1}{n} \sum_{t=1}^n \mathbb{E}\left[u_{1,t}\left(a_1\right)\right] - \frac{1}{n} \sum_{t=1}^n \mathbb{E}\left[u_{1,t}\left(a_{1,t}\right)\right] \leq \sqrt{\frac{2A_1 \log\left(A_1\right)}{n}}$$

Theorem

If EXP3 is run over *n* steps with $\eta_t = \sqrt{2 \log (A_1) / (nA_1)}$, then its psuedo-regret is bounded as

$$\overline{R}_n = \max_{a_1} \frac{1}{n} \sum_{t=1}^n \mathbb{E}\left[u_{1,t}\left(a_1\right)\right] - \frac{1}{n} \sum_{t=1}^n \mathbb{E}\left[u_{1,t}\left(a_{1,t}\right)\right] \leq \sqrt{\frac{2A_1 \log\left(A_1\right)}{n}}$$

Remarks

- $\limsup_{n\to\infty} \overline{R}_n \leq 0 \quad \Rightarrow \text{Hannan's consistency}?$
- Rate of convergence $O(1/\sqrt{n})$
- Regret larger by a factor $\sqrt{A_1}$ (observing 1 vs A_1 payoffs)

Action set $A_1 = A_2 = \{(R)ock, (P)aper, (S)cissor\}$

	R	Р	S
R	0, 0	-1, 1	5, -5
Ρ	1, -1	0,0	-1, 1
S	-1, 1	1, -1	0,0

- Equilibrium $\sigma_1^* = (1/7, 11/21, 1/3)$
- Value of the game $V = 4/21 (\approx 0.1904)$

Problem:

• Importance sampling is unbiased

$$\widetilde{u}_{1,t}(a) = \left\{ egin{array}{c} rac{u_{1,t}(a_{1,t})}{\sigma_{1,t}(a_{1,t})} & ext{if } a = a_{1,t} \ 0 & ext{otherwise} \end{array}
ight; \quad \mathbb{E}_{a \sim \sigma_{1,t}}\left[\widetilde{u}_{1,t}(a)
ight] = u_{1,t}(a)$$

• Variance

$$\mathbb{V}_{a\sim\sigma_{1,t}}\left[\widetilde{u}_{1,t}(a)
ight]\stackrel{\sigma_{1,t}(a)
ightarrow 0}{\longrightarrow}\infty$$

Problem:

• Importance sampling is unbiased

$$\widetilde{u}_{1,t}(a) = \left\{ egin{array}{c} rac{u_{1,t}(a_{1,t})}{\sigma_{1,t}(a_{1,t})} & ext{if } a = a_{1,t} \ 0 & ext{otherwise} \end{array}
ight; \quad \mathbb{E}_{a \sim \sigma_{1,t}}\left[\widetilde{u}_{1,t}(a)
ight] = u_{1,t}(a)$$

• Variance

$$\mathbb{V}_{a\sim\sigma_{1,t}}\left[\widetilde{u}_{1,t}(a)
ight]\stackrel{\sigma_{1,t}(a)
ightarrow 0}{\longrightarrow}\infty$$

Solution:

• Bias both pseudo-payoff

$$\widetilde{u}_{1,t}(a) = rac{u_{1,t}\left(a_{1,t}
ight)\mathbb{I}\left\{a=a_{1,t}
ight\}+eta_{t}}{\sigma_{1,t}\left(a_{1,t}
ight)}$$

• Mix strategy with uniform exploration (now bounded below)

$$\sigma_{1,t}(a) = (1-\gamma_t) \, rac{w_{1,t}(a)}{\sum b \in A_1 w_{1,t}(b)} + rac{\gamma_t}{A_1}$$

Version 3: EWF for Exploration-Exploitation w.h.p. (EXP3.P)

- Initialize weights $w_0(a) = 0$ for all $a \in A_1$
- For t = 1, ..., n
 - Player chooses

$$\sigma_{1,t}(a) = (1-\gamma_t) \, rac{w_{1,t}(a)}{\sum b \in A_1 w_{1,t}(b)} + rac{\gamma_t}{A_1}$$

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$
- Compute pseudo-payoffs

$$\widetilde{u}_{1,t}(a) = rac{u_{1,t}\left(a_{1,t}
ight)\mathbb{I}\left\{a=a_{1,t}
ight\}+eta_{t}}{\sigma_{1,t}\left(a_{1,t}
ight)}$$

• Update weights $u_{1,t}(a_{1,t})$

$$w_t(a) = w_{t-1}(a) \exp\left(\eta_t \widetilde{u}_{1,t}(a)
ight)$$

Lemma

For $\beta_t \leq 1$, let

$$\widetilde{u}_{1,t}(a) = rac{u_{1,t}\left(a_{1,t}
ight)\mathbb{I}\left\{a=a_{1,t}
ight\}+eta_{t}}{\sigma_{1,t}\left(a_{1,t}
ight)}$$

Then, w.p. at least $1 - \delta$,

$$\sum_{t=1}^n u_{i,t}(a) \leq \sum_{t=1}^n ilde{u}_{i,t}(a) + rac{\log \delta^{-1}}{eta_t}$$

Theorem

If EXP3 is run over *n* steps with $\beta_t \approx \eta_t = \sqrt{2 \log(A_1) / (nA_1)}$, $\gamma_t = \sqrt{A_1 \log(A_1) / n}$, then with probability $1 - \delta$ its regret is bounded as

$$R_n = \max_{a_1} rac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_1
ight) - rac{1}{n} \sum_{t=1}^n u_{1,t}\left(a_{1,t}
ight) \leq 6 \sqrt{rac{A_1 \log\left(A_1/\delta
ight)}{n}}$$

Remarks

- $\lim_{n\to\infty} R_n \leq 0 \quad \Rightarrow$ Hannan's consistency!
- EXP3.P in self-play converges to Nash equilibrium

- + EXP3.P minimizes regret in adversarial environments
- + EXP3.P converges to Nash equilibria in self-play
- + No need to know
 - Utility function (i.e., the rules of the game)
 - Actions performed by the adversary
- \approx Some of this can be extended to learn correlated equilibria
- Exponential may be tricky to manage
- Convergence is only in the empirical frequency
- Convergence is relatively slow

Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibrium The Exp3 Algorithms

From Normal Form to Extensive Form Imperfect Information Games Regret Minimization and Nash Equilibria Counterfactual Regret Minimization

The game

- Set of players $N = \{1, \ldots, n\}$ and c chance player (e.g., deck)
- Set of possible sequences of actions H, Z ⊆ H set of terminal histories
- Player function $P: H \to N \cup \{c\}$
- Set of information sets \$\mathcal{I} = {I}\$ (i.e., I is a subset of histories that are not distinguishable)
- Utility of a terminal history $u_i:Z
 ightarrow\mathbb{R}$
- Strategy $\sigma_i: \mathcal{I} \to \mathcal{D}(A)$ (in all $h \in l$ such that P(h) = i)

Extensive Form Games

Histories

- Prob. of reaching history $h \in H$ following joint strategy $\sigma, \pi^{\sigma}(h)$
- Prob. of reaching information set $I \in \mathcal{I}$ following joint strategy $\sigma, \pi^{\sigma}(I) = \sum_{h \in I} \pi^{\sigma}(h)$
- Prob. of reaching history h ∈ H following joint strategy σ_{-i}, except player i following actions in h w.p. 1, π^σ_{-i}(h)
- Prob. of reaching history $h \in H$ following player *i*'s actions, except others, $\pi_i^\sigma(h)$
- Replacement of $\sigma(I)$ to $\delta(a), \sigma_{I \rightarrow a}$

Solution concept

- Nash equilibrium $(\sigma_1^*, \sigma_2^*) = \arg \max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2)$
- Value of the game $V = \max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2)$
- Remark: other concepts exist in this case, NE

• Regret in hindsight w.r.t. any fixed strategy σ_1

$$R_n\left(\sigma_1
ight)=rac{1}{n}\sum_{t=1}^nu_1\left(\sigma_1,\sigma_{2,t}
ight)-rac{1}{n}\sum_{t=1}^nu_1\left(\sigma_{1,t},\sigma_{2,t}
ight)$$

• Regret against the best strategy in hindsight

$$R_n = \max_{\sigma_1} R_n\left(\sigma_1\right)$$

• Empirical strategy:

$$\widehat{\sigma}_{1,n}(I,a) = rac{\sum_{t=1}^n \pi_i^{\sigma_t}(I) \sigma_t(I,a)}{\sum_{t=1}^n \pi_i^{\sigma_t}(l)}$$

Regret Minimization and Nash Equilibria

Theorem

A learning algorithm is Hannan's consistent if

$$\limsup_{n\to\infty}R_n\leq 0$$
 a.s.

Given a two-player zero-sum extensive-form game with value V, if players choose strategies $\sigma_{1,t}$ and $\sigma_{2,t}$ using a Hannan's consistent algorithm, then

$$\lim_{n
ightarrow\infty}rac{1}{n}\sum_{t=1}^{n}u_{1}\left(\sigma_{1,t},\sigma_{2,t}
ight)=V$$

Furthermore, the joint empirical strategy

$$\widehat{\sigma}_{1,n} imes \widehat{\sigma}_{2,n} \overset{n o \infty}{\longrightarrow} \{(\sigma_1^*, \sigma_2^*)\}_{Nash}$$

Regret Matching Algorithm

- Back to Rock-Paper-Scissors
- Let $a_1 = rock$ and $a_2 = paper$
- Then the counterfactual regret

$$r\left(a_{1}
ightarrow rock
ight) = u_{1}\left(rock, a_{2,t}
ight) - u_{1}\left(a_{1,t}, a_{2,t}
ight) = -1 - (-1) = 0$$

$$r(a_1 \rightarrow ext{ paper }) = u_1(ext{ paper, },a_{2,t}) - u_1(a_{1,t},a_{2,t}) = 0 - (-1) = 1$$

 $r(a_1 \rightarrow \text{ scissors }) = u_1(ext{scissors, } a_{2,t}) - u_1(a_{1,t}, a_{2,t}) = 1 - (-1) = 2$

• Regret matching idea

$$\sigma(a) = rac{r\,(a_1 o a)}{\sum_{b \in A_1} r\,(a_1 o b)}$$

A learning problem

- For t = 1, ..., n
 - Player 1 chooses $\sigma_{1,t}$
 - Player 1 executes actions prescribed by $\sigma_{1,t}$ through a full game
 - Player 1 receives payoff $u_{1,t}$

Counterfactual Regret

• Counterfactual value of a history

$$v_i(\sigma,h) = \sum_{z \in Z, h \subseteq z} \pi^{\sigma}_{-i}(h) \pi^{\sigma}(h,z) u_i(z) \, .$$

• Counterfactual regret of not taking a in h

$$r_i^\sigma(h,a) = v_i\left(\sigma_{I
ightarrow a},h
ight) - v_i(\sigma,h), \quad I \supset h$$

• Counterfactual regret of not taking a in an information set I

$$r^\sigma_i(I,a) = \sum_{m{h} \in I} r^\sigma_i(h,a)$$

• Cumulative counterfactual regret

$$R_{i,t}(I,a) = \sum_{s=1}^t r_i^{\sigma_t}(I,a)$$

Version 1: Counterfactual Regret Minimization (CFR)

• For
$$t = 1, ..., n$$

• Player 1 chooses strategy

$$\sigma_{1,t}(l,a) = \begin{cases} \frac{R_{1,t}^+(l,a)}{\sum_{b \in A_1} R_{1,t}^+(l,b)} & \text{ if } \sum_{b \in A_1} R_{1,t}^+(l,b) > 0\\ \frac{1}{A_1} & \text{ otherwise} \end{cases}$$

- Player 1 executes actions prescribed by $\sigma_{1,t}$ through a full game
- Player 1 receives payoff $u_{1,t}$
- Player 1 computes instantaneous regret $r_i^{\sigma_t}$ over information sets observed over the game

$$R^+ = \max\{0, R\}$$

Theorem

If CFR is run over n steps, then the regret is bounded as

$$R_n = \max_{\sigma_1} rac{1}{n} \sum_{t=1}^n u_1\left(\sigma_1, \sigma_{2,t}
ight) - rac{1}{n} \sum_{t=1}^n u_1\left(\sigma_{1,t}, \sigma_{2,t}
ight) \leq |\mathcal{I}_i| \, \sqrt{rac{A_1}{n}}$$

Remarks

- $\lim_{n \to \infty} R_n \leq 0 \quad \Rightarrow$ Hannan's consistency
- Rate of convergence $O(1/\sqrt{n})$
- Player 1 receives payoff $u_{1,t}$
- Linear dependence on the number of information sets
- In self-play EWF converges to the Nash equilibrium

Version 2: Counterfactual Regret Minimization+ (CFR+)

- For t = 1, ..., n
 - At t even player 1 chooses strategy

$$\sigma_{1,t}(l,a) = \begin{cases} \frac{Q_{1,t}(l,a)}{\sum_{b \in A_1} Q_{1,t}(I,b)} & \text{ if } \sum_{b \in A_1} Q_{1,t}(l,b) > 0\\ \frac{1}{A_1} & \text{ otherwise} \end{cases}$$

• At t odd player 1 chooses strategy $\sigma_{1,t} = \sigma_{1,t-1}$

- Player 1 executes actions prescribed by $\sigma_{1,t}$ through a full game
- Player 1 receives payoff $u_{1,t}$
- Player 1 computes instantaneous regret $r_i^{\sigma_t}$ over information sets observed over the game
- Return

$$\widehat{\sigma}_{1,n} = \sum_{t=1}^n rac{2t}{n^2 + n} \sigma_{1,t}$$

$$Q_{1,t} = (Q_{1,t-1} + r_i^{\sigma_{t-1}})^+$$
 instead of $R_{1,t}^+ = \left(\sum_{s=1}^{t-1} r_i^{\sigma_s}\right)^+$ 49

If CFR+ is run over n steps, then the regret is bounded as

$$R_n = \max_{\sigma_1} rac{1}{n} \sum_{t=1}^n u_1\left(\sigma_1, \sigma_{2,t}
ight) - rac{1}{n} \sum_{t=1}^n u_1\left(\sigma_{1,t}, \sigma_{2,t}
ight) \leq \left|\mathcal{I}_i
ight| \sqrt{rac{A_1}{n}}$$

Remarks

- Same performance as CFR
- Empirically is more reactive
- Empirically $\widehat{\sigma}_{1,t}$ tends to converge

CFR in Large Problems: Heads-up Limit Texas Hold'em

The problem

- Four rounds of cards, four rounds of betting, discrete bets
- About 10^{18} states, 3.2×10^{14} information sets

Abstraction: cluster together similar histories

- Symmetries (reducing to 10¹³ information sets)
- Clustering
 - Buckets based on (roll-out) hand strength
 - Hierarchical buckets (e.g., second hand is indexed by the first bucket as well)
 - About 1.65×10^{12} states, 5.73×10^7 information sets

Engineering:

- Rounding: $\sigma(a) = 0.0$ if smaller than threshold, fixed-point arithmetic
- Dynamic compression regret and strategy (from 262 TiB to 10.9 $\mathrm{TiB})$
- Distribute recursive computation of regret and strategy over rounds

CFR in Large Problems: Heads-up Limit Texas Hold'em

52