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Figure 3: Libratus



Motivation: a Long-Standing Goal of AlI...

Figure 4: StarCraft II: A New Challenge for Reinforcement Learning.
DeepMind AlphaStar Jan. 2019; Tencent AI Lab T'StarBots Sep. 2018




...with Potential Applications in Real-World Environments

e Security

e Negotiation

e Diplomatic and Military Strategy

e HFinancial Market

e E-Commerce

e Distributed Cooperated and Competitive Robotics
e Game Al
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Normal Form Games

The Game

Set of players N ={1,---,n}
Action sets A;, joint action set A = A; x --- x A,

Joint action a € A, player ¢’s action a;, all other players’ a_;

Utility (payoff/reward) function u : A — R™,

Player ¢’s utility u; : A - R
Maized strategies

e Joint strategy o € D(A) is distribution over A, such that
a(a) = H g; (ai)
i=1

e Utility of a strategy for player ¢ (expected utility):

w(o) =Y Y oi(a)o_i(as) uw(am, a )

a; a—;



Normal Form Games

The Game

e Best response:
0'2( € BR (O'_i) iff Vo, € D(Az'), U; (0'2(, 0'_1') > U (0'7;, 0'_1)

e Nash equilibrium: ¢ is a Nash equilibrium iff V4,0, € BR(0_;)
e Every finite game has a Nash equilibrium! [Nash, 1950]
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Finite Two-Player Zero-Sum Games

The Game

Set of players N = {1,2} = {¢,7}
Action sets A;, joint action set A = A; x As

Joint action a € A, player 4’s action a;, all other players’ a;

Utility (payoff/reward) function u : A — R™, player ¢’s utility
U; - A—R

Va€ A, w(a)=—-u(a)
Mized strategies
e Nash equilibrium [Minimax theorem (von Neumann, 1928)]

(07,0%) = argmax min u (01,02)
o1 0Og

= arg min max up (01, 02)
o1 g2

e Value of the game

V = max,, min,, % (01,02) = min,, max,, u1(01,02) 11



Rock-Paper-Scissors The Game

Action set A; = Ay ={(R)ock, (P)aper, (S)cissor}

R P S
R| 00|-1,1]1,-1
1,-1| 0,0]-1,1

S|-1,1|1,-1| 0,0

bl

T
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Rock-Paper-Scissors The Solution

Action set A; = Ay ={(R)ock, (P)aper, (S)cissor}

R P S
R| 00|-1,1]1,-1
P|1,-1| 0,0|-1,1
S|-1,1|1,-1| 0,0

e if (07,0%) is a Nash equilibrium, then
o] = BR (0}) = argmax u; (01, 03)
o1

:argn}rax Z o1(a1) w1 (ar,03)
! a1€A;

13



Rock-Paper-Scissors The Solution

Action set A; = Ay ={(R)ock, (P)aper, (S)cissor}

R P S
R| 00|-1,1]1,-1
P|1,-1| 0,0|-1,1
S|-1,1|1,-1| 0,0

e if (07,0%) is a Nash equilibrium, then
o] = BR (0}) = argmax u; (01, 03)
o1
— *
= arg max Z o1 (a1) u1 (a1,0%)
a1€A;
=Va; GA, ulzul(al,og)

13



Rock-Paper-Scissors The Solution (sketch)

R P S
R| o00|-1,1]1,-1
Pl1,-1| 00|-1,1
S|-1,1]1,-1] 0,0

)

o Let 05 = (02(R),02(P), 02(S)) the strategy of player column,
Uy = Uy (R, 0'2) = 002(R) — 10'2(P) + 102(5)

U = U (}D7 02) = IUQ(R) + OG'Q(P) — 102(8)
Uy = U (S, 0'2) = 710’2(R) + 10’2(P) + 00’2(3)

= UQ(R) + 0'2(P) + O'Q(S)

14



Rock-Paper-Scissors The Solution (sketch)

R P S
R| o00|-1,1]1,-1
Pl1,-1| 00|-1,1
S|-1,1]1,-1] 0,0

)

o Let 05 = (02(R),02(P), 02(S)) the strategy of player column,
Uy = Uy (R, 0'2) = 002(R) — 10'2(P) + 102(5)

U = U (}D7 02) = IUQ(R) + OG'Q(P) — 102(8)
Uy = U (S, 0'2) = 710’2(R) + 10’2(P) + 00’2(3)

= UQ(R) + 0'2(P) + O'Q(S)

e Solving for all variables gives 05 = (1/3,1/3,1/3) and u; =0

14



Rock-Paper-Scissors The Solution (sketch)

R P S
R| o00|-1,1]1,-1
Pl1,-1| 00|-1,1
S|-1,1]1,-1] 0,0

)

o Let 05 = (02(R),02(P), 02(S)) the strategy of player column,
U = U (R, 02) = 002(R) — 1oa(P) + 1o2(S)
U = g (P,02) = 1o2(R) + 002(P) — 1o2(S)
Uy = Uy (S, 02) = —1oz(R) + 1oa(P) + 002(S)
1 =03(R) + 02(P) + 02(S)

e Solving for all variables gives 05 = (1/3,1/3,1/3) and u; =0
e Repeating for player row gives o7 = (1/3,1/3,1/3) and uz =0

e (07,0%) is a Nash equilibrium and the value of the game is V =0

14



A Single-Player Perspective

Sequential game

e Fort=1,...,n
e Player 1 chooses o1
e Player 2 chooses o2,
e Players play actions a1 ¢ ~ 01,+ and az ¢ ~ 02

e Players receive payoffs w1 (ai1,¢, az¢) and up (a1,t, az,¢)

Solution: Nash equilibrium

(0%,0%) = argmax min u (01, 02)
o1 g2

15



A Single-Player Perspective

Sequential game = Single-player game

e Fort=1,...,n
e Player 1 chooses o1

o Player-2-choosesozr

Players play actions a3, ~ 01,: and @z7~o27
e Players receive payoffs ui (a1, az,¢) and wz{earrzr)

Solution: Nash equilibrium = Mazimize the (average) utility

1»Y2) — o1 T2 )
n
* * _ 1
(al,la coogp a’l,n) = arg max — U1 (al,t7 af2,t)
(a1,1,..,01,0) TV —1

1 n
=arg max = Z Uy, ¢ (al,t)
t=1

(a1,1,..,01,0) T

16



The (Multi-Armed Bandit) Problem

A learning problem

e Fort=1,...,n
e Player 1 chooses o01,¢
e Player 1 plays action a1t ~ o1,
e Player 1 receives payoff ui . (ai,:)

Remarks

e No information about a; and utility u,

e Utility function w; ; is only observed for a; ; (i-e., bandit
feedback u1 ¢ (a1,¢))

17



The (Multi-Armed Bandit) Problem

e Regret in hindisight w.r.t. any fixed action a;

1 — 1 —
R, (al) = n Z Uyt (al) h Z Ut (al,t)
t=1 t=1

e Objective: find actions (a1,1,. .., a1,,) that maximize average
utility &~ minimize the regret w.r.t. the best action g; in
hindsight

o 1<
Utility: P E Ul,t(al,t)
t=1

1 — 1 &
Regret: R, = max ; upt(a1) — oy ; Uz, (a1,¢)

18



Regret Minimization and Nash Equilibrium

Theorem
A learning algorithm is Hannan’s consistent if
limsup R, =0 a.s.
n—00

Given a two-player zero-sum game with value V, if players choose

strategies 01 ; and o2 ; using a Hannan’s consistent algorithm, then

lim *g u (a1, a0t) = V

n—oo N

Furthermore, let empirical frequency strategies be
Oin(a) = — Zﬂ{alt =a} and 0Oy, (a2) = ZH{aQt— az}
then the joint empirical strategy

a\1,71 X 32,77, ni>>0 {(UL U;)}Nash

19



Regret Minimization and Nash Equilibria [proof]

e Hannan'’s consistency

o 1 &
limsupR, <0 <= limsup (mazllxg ; ur ¢ (a1) — b ; U ¢ (a1,1)> <0

n— o0 n—00

e linearity of utility function

1 & 1 & 1 &
TI}T?X;;MJ(UO = H;?X;Z > o1(a)ue (@) = Hﬁxggul,t(al)

t=1a1€A;

20



Regret Minimization and Nash Equilibria [proof]

e Hannan'’s consistency

limsupR, <0 <— 11msup<maxfzu1t(a1 **Zuu aH)SO
¢

n— o0 n—00

e linearity of utility function
l = 1= 1=
HLITaX g Z uu (01) = n}ax ; Z Z o1 (a1) ul,t (al) = n}lax ; Z ulyt (al)
! t=1 ! t=1a,€4, * t=1

e definition u; ¢ (01) = w1 (01, az¢) =

*Zuu o1) Z Z I{a; = ax} wy (01, ) = Z ul(ﬁ,%)%zﬂ{%,t:az}

t 1 axEAs €A

77\2,n(112)

20



Regret Minimization and Nash Equilibria [proof]

Hannan'’s consistency

limsupR, <0 <— 11msup<maxfzu1t(a1 **Zuu aH)SO
¢

n— o0 n—00

linearity of utility function

1 & 1 & 1 &
TI}T?X;;MJ(UO = H;?X;Z > o1(a)ue (@) = Hﬁxggul,t(al)

t=1a1€A;

definition Uyt (Ul) = Uy (0’1, ag,t) =

*Zuu o1) Z Z I{a; = ax} wy (01, ) = Z ul(ﬁ,%)%zﬂ{%,t:az}

t 1 axEAs €A

77\2,n(112)

one-side of the result

o1 02

maxf E Uy ¢ (01) max E U (01,02,n) >maxm1nf E U (01,02) =V
o1
niz nia nia

20



e one-side of the result

11m1nf— g Uy ¢ alt,agt)>maxm1n— E uy (01,02) =

14

21



e one-side of the result

11m1nf—2u1t alt,agt)>maxm1n—2u1 (01,02) =V

n—oo M
=il =il

e If player 2 also plays Hannan consistent strategies, then we get

1
n(lng;ug,t (02) > maxmln—Zug (01,02) =V

g2 o1
t=1

n n

1 1
lim sup — Zu’lt alt,agt)<m1nmax—Zu1 (01,02) =V

n—00 nt 1 o2 01 =1

hm—g Ut (a1, 00¢) =V as.

n—oo N

21



Regret Minimization and Nash Equilibria

Remark
The joint empirical strategy converges to the set of correlated

equilibrium almost surly as n — co.

In particular, for any (finite) two-person zero-sum game, for each
player, the empirical distribution of play converges to the set of

optimal mixed actions.
—~ —~ n— oo * *
O1,n X O02,n {(01’02)}Nash a.s.

Note that approaching to a set does not imply convergence to
particular point.

22



Regret Minimization and Nash Equilibria

Corollary
If
R, <e

then the joint empirical strategy is e-Nash (more precisely,

correlated e-equilibrium), i.e.,

Uy (El,n X 32,n) >V —e¢

23



Hannan’s Consistent Algorithms

A learning problem

e Fort=1,...,n

e Player 1 chooses o1
e Player 1 plays action a1t ~ 01,¢

e Player 1 receives payoff ui(ai,:)
Objective
e Regret
1 <« 1 —
R, = max — Z uit(a1) — o, Z u,t (a1,¢)
t=1 t=1
e Hannan’s consistent algorithm

limsupR, <0 a.s.

n— 00

24



Learning the Nash Equilibrium

Version 1: fictitious play full information (aka follow-the-leader)

e Fort=1,...,n
e Compute greedy action

t—1
ai = arg max E i (a)
aCAq
s=1

e Player chooses 01, = 6 (a;)
e Player plays action a1t ~ o1,
e Player receives payoff u + (a1,t)

Remarks
e This strategy is easily exploitable R, = O(1)

e E.g. Opponents set u; ¢(a = a1¢) = —1and ui¢(a # a1¢) =1

25



Learning the Nash Equilibrium

Version 1: fictitious play full information (aka follow-the-leader)

e Fort=1,...,n

e Compute greedy action

t—1
aif = arg max E ur (a)
aCAq
s=1

e Player chooses 01, = ¢ (a}’)
e Player plays action a1 ¢ ~ o1,

e Player receives payoff u ¢ (a1,t)
Remarks

e This strategy is easily exploitable R, = O(1)

e Self play does not converge in general [Recall Hannan’s

consistency]

26



Learning the Nash Equilibrium

Version 2: [Randomization]

27



Learning the Nash Equilibrium

Version 2: [Randomization] exponentially weighted forcaster (EWF')

e Initialize weights wo(a) =1 for all a € A,
e Fort=1,...,n

e Player chooses

’LUt,]_(G,)

2veay wi-1(0)

e Player plays action a1 ¢ ~ 01,

o1t(a) = [prop. to weights |

e Player receives payoff w1 ¢ (a1,t) and w(a) for all a [full info]
e Update weights w1 ¢ (a1,t)

wi(a) = wi_1(a)exp (n:u1,t(a)) [exponentiated utility]

27



Learning the Nash Equilibrium

Theorem

If EWF is run over n steps with n; = 7, then with probability 1 — §

1 & g log (A1) 7 1 1
R, = — E —— g < — 4= — log —
II%Z?X n s Uyt (al) n 2 Uyt (al,t) S n +8+ on og 5

Setting n = /8log (A1) /n we obtain

R, < ¢ el J — log(1/9)

Remarks

e limsup,_ ,., Rn <0 = Hannan’s consistency
e Rate of convergence O(1/4/n)
e In self-play EWF converges to the Nash equilibrium

28



Learning the Nash Equilibrium

Version 2: [Randomization] exponentially weighted forcaster (EWF')

e Initialize weights wo(a) =0 for all a € A;
e Fort=1,...,n
e Player chooses

_ wi—1(a)
2sea, Wera(b)

e Player plays action a1 ¢ ~ o1,

e Player receives payoff w1 ; (a1,t) and—urrfa)forall-a{fullinfe]

e Update weights u1 ¢ (a1¢)

o1,¢(a) [prop. to weights]

wi(a) = wi—1(a) exp (Mru1,s(a)) [exponentiated utility]

29



Learning the Nash Equilibrium

Problem:

e Player plays action a; ; ~ 01,
e Player receives payoff u; 1 (a1¢)

e Update weights ui ¢ (a1,¢)

wi(a) = wi—1(a) exp (n:u1¢(a)) [exponentiated utility]

30



Learning the Nash Equilibrium

Problem:
e Player plays action a; ; ~ 01,
e Player receives payoff u; 1 (a1¢)
e Update weights ui ¢ (a1,¢)
wi(a) = wi—1(a) exp (n:u1¢(a)) [exponentiated utility]
Solution:

e Importance sampling

Ul,t(al,t)

0 otherwise

(o) i g — ai ¢
U t(a) = 7

e Unbiased estimator

u1,¢(a) +(1 — 01,¢4(a))x0 = uy +(a)

Eovs, [T1()] = o14(a) 22

Ya € Al
30



Learning the Nash Equilibrium

Version 3: EWF for Exploration-Exploitation (EXP3)

e Initialize weights wo(a) =0 for all a € A;
e Fort=1,...,n
e Player chooses

wi—1(a)

(a) = TR0

e Player plays action ay ¢ ~ o1,

o1t [prop. to weights ]

e Player receives payoff u ¢ (a1,t)

e Compute pseudo-payoffs
u1,t(a1,t) q
- ———+  ifa=a
’Url,t(a) = 01,t(a1,t) 1.t
0 otherwise
e Update weights wi ¢ (a1,¢)
wi(a) = wi—1(a)exp (n:U1,:(a))

31



Learning the Nash Equilibrium

Theorem

If EXP3 is run over n steps with n; = 1/2log (A1) / (nA1), then its
psuedo-regret is bounded as

2A1 log (Al)

— 1 & 1 &
Rn :II](.I?.XEZE[U]_’t(al)] — EZE[ullt(al,t)] S n
=1l =

32



Learning the Nash Equilibrium

Theorem

If EXP3 is run over n steps with n; = 1/2log (A1) / (nA1), then its
psuedo-regret is bounded as

2A1 log (Al)

— 1 & 1 &
Rn :II](.I?.XEZE[U]_’t(al)] — EZE[ullt(al,t)] S n
=1l =

Remarks

e limsup, ,,, R, <0 = Hannan’s consistency?
e Rate of convergence O(1/4/n)
e Regret larger by a factor v/A; (observing 1 vs A; payofs)

32



Rock-Paper-Scissors— The Simulation

Action set A; = As = {(R)ock, (P)aper, (S)cissor}

R P S
R|00|-1,1]5,-5
P|1,-1] 0,0 |-1,1
S|-1,11,-1|0,0

e Equilibrium o7 = (1/7,11/21,1/3)
e Value of the game V =4/21(~ 0.1904)

33



Learning the Nash Equilibrium

Problem:

e Importance sampling is unbiased

i) f g =g

27 a, ¢ — YLt o 27 —

Uye(a) = ¢ omlons) i Eaney, [Une(a)] = ure(a)
0 otherwise '

e Variance
- o1,¢(a)—0
Vafol,t [ul,t(a)] ' t—> 0

34



Learning the Nash Equilibrium

Problem:

e Importance sampling is unbiased

wilany) f g — g

27 a, ¢ — YLt o 27 —

Uye(a) = ¢ omlons) i Eaney, [Une(a)] = ure(a)
0 otherwise '

e Variance

—~ zrl,ta—>0
Vanor, [B(a)] 4570 00

Solution:

e Bias both pseudo-payoff
u g (ar,e) I{a = a1t} + Be
O1,t (al,t)
e Mix strategy with uniform exploration (now bounded below)

'wl,t(a) n l
E be Alwlst(b) Al

'T],l,t(a) =

ot(a) = (1 —t)

34



Learning the Nash Equilibrium

Version 3: EWF for Exploration-Exploitation w.h.p. (EXP3.P)

e Initialize weights wo(a) =0 for all a € A;
e Fort=1,...,n

e Player chooses

wit(a) v

@) = (=) S @) T A

Player plays action a; ¢ ~ o1,¢

Player receives payoff ui ¢ (a1,¢)
e Compute pseudo-payoffs

Ut (a1,) I{a = a1,:} + Bt
O1,t (alat)

ﬂlgt(a) =

Update weights u1 ¢ (a1,¢)

wi(a) = wi—1(a)exp (n:U1,:(a))

35



Learning the Nash Equilibrium

Lemma
For g; <1, let

Uyt (a1,:)I{a = a1 :} + Bt
o1,¢ (a1,¢)

ﬁl,t(a) =

Then, w.p. at least 1 — 6,

n

Z u;t(a) < i U,¢(a) + logd *

=1 =1 Bt

36



Learning the Nash Equilibrium

Theorem
If EXP3 is run over n steps with f: ~ n; = 1/2log (A1) / (nA1),
v+ = 4/ A1 log (A1) /n, then with probability 1 — ¢ its regret is

bounded as
1 & 1« Ay log (A1)
R, = max — tz::l ue (01) = — ; ure (a1,4) < 64/ —— ——
Remarks

e lim, ,,, R, <0 = Hannan'’s consistency!

e EXP3.P in self-play converges to Nash equilibrium

37



+ EXP3.P minimizes regret in adversarial environments
+ EXP3.P converges to Nash equilibria in self-play
+ No need to know

o Utility function (i.e., the rules of the game)

e Actions performed by the adversary
~ Some of this can be extended to learn correlated equilibria
— Exponential may be tricky to manage

— Convergence is only in the empirical frequency
— Convergence is relatively slow

38
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Imperfect Information Extensive Form Games

The game

e Set of players N ={1,...,n} and c chance player (e.g., deck)

e Set of possible sequences of actions H,Z C H set of terminal

histories
e Player function P : H — N U{c}

e Set of information sets Z = {I} (i.e., I is a subset of histories that

are not distinguishable)
e Utility of a terminal history w; : Z — R
o Strategy o; : Z — D(A) (in all A € [ such that P(h) = 1)

40



Extensive Form Games

Histories

Prob. of reaching history h € H following joint strategy o, 77 (h)
Prob. of reaching information set I € Z following joint strategy
o, 77 (I) = 3o per ™7 (h)

Prob. of reaching history h € H following joint strategy o_;,
except player ¢ following actions in A w.p. 1, 77, (h)

Prob. of reaching history h € H following player ¢’s actions,
except others, 77 (h)

Replacement of o(I) to 6(a), o7,

Solution concept

Nash equilibrium (o7, 03) = arg max,, min,, u; (01, 02)
Value of the game V = max,, min,, u; (01, 02)

Remark: other concepts exist in this case, NE

41



The Regret View

e Regret in hindsight w.r.t. any fixed strategy o

g i
R, (01) = n Z Uy (01, Uz,t) T Z Uy (Ul,t7 Uz,t)
t=1 t=1

o Regret against the best strategy in hindsight
R, = max R, (01)
o1
e Empirical strategy:

5 _ Z?:l W?t(f)o't(f, a’)
bl ) = S

42



Regret Minimization and Nash Equilibria

Theorem

A learning algorithm is Hannan’s consistent if

limsup R, <0 a.s.

n— o0

Given a two-player zero-sum extensive-form game with value V, if
players choose strategies 01 and 05 ; using a Hannan’s consistent

algorithm, then

n—oo M

1
lim —Zul (Ul,t,ag,t) = WV
=il

Furthermore, the joint empirical strategy

El,n X a'\2,n n1>>0 {(UI’ U;)}Nash

43



Regret Matching Algorithm

e Back to Rock-Paper-Scissors
e Let a; = rock and a, = paper

e Then the counterfactual regret
r (al — TOC]C) = U (’I’OC]C7 az,t) — U (al,t, a,2,t) =-1- (—1) =0
7 (a1 — paper ) = u; ( paper, , azt)—u1 (a1,¢, a2,¢) = 0—(=1) =1
r (a1 — scissors ) = wuy (scissors, ag ¢)—us (a1,¢, G2¢) = 1—(—1) =2
e Regret matching idea

o(a) — r(a; — a)
(a) = ZbeAl r (a1 — b)

44



Sequential Problem

A learning problem

e Fort=1,...,n
e Player 1 chooses o1,¢

e Player 1 executes actions prescribed by o1, through a full game
e Player 1 receives payoff u ¢

45



Counterfactual Regret

e Counterfactual value of a history
vi(o,h) = > 77i(R)7 (h, 2)ui(2)
z€Z,hCz
e Counterfactual regret of not taking a in h
rl(h,a) = v (614,h) —vi(o,h), IDh
e Counterfactual regret of not taking a in an information set [
rf(I,a) =) r{(h,a)
Rel

e Cumulative counterfactual regret

t

Ri+(I,a) = Zr{”([,a)

G=il

46



Learning the Nash Equilibrium

Version 1: Counterfactual Regret Minimization (CFR)
e Fort=1,...,n
e Player 1 chooses strategy

R}, (l,a)

Ulat(l, a) = EbeAl Rti([*b)
1

Ay

if ) ,ea, Bis(L0)>0
otherwise

e Player 1 executes actions prescribed by o1, through a full game
e Player 1 receives payoff u; ¢

e Player 1 computes instantaneous regret r* over information sets

observed over the game

R = max{0, R}

47



Learning the Nash Equilibrium

Theorem

If CFR is run over n steps, then the regret is bounded as

1 & 1 & [A
R, = — U - — U <|Til 4] 22
n n}r?xn; 1(01,02,t) n; 1(01,t,02,t)_| z| ”

Remarks

e lim, ..« R, <0 = Hannan’s consistency

e Rate of convergence O(1/4/n)

Player 1 receives payoff u; ;

Linear dependence on the number of information sets

In self-play EWF converges to the Nash equilibrium

48



Learning the Nash Equilibrium

Version 2: Counterfactual Regret Minimization+ (CFR+)

e Fort=1,...,n
e At ¢ even player 1 chooses strategy

Q1,¢(l,a) :
72 f if E Ql,t(l, b) >0
o1,t(l,a) = { 1 beay F1t(i0) e

Vi otherwise
1

At t odd player 1 chooses strategy o1,t = 01,11
e Player 1 executes actions prescribed by o1, through a full game

Player 1 receives payoff u ¢

Player 1 computes instantaneous regret r* over information sets
observed over the game

e Return .

~ 2t
O1,n = E O1,t
" £~ n?+n
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Qut = (Que-1 + 7";”‘1)+ instead of Ry, = (Z 'rfs)
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Learning the Nash Equilibrium

If CFR+ is run over n steps, then the regret is bounded as

1 & 1 — A;
R, = max — Zul (01,02,¢) — — Zul (01,6,02,¢) <|Li| ) —
ami "

Remarks

e Same performance as CFR
e Empirically is more reactive

e Empirically 7, tends to converge
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CFR in Large Problems: Heads-up Limit Texas Hold’em

The problem

e Four rounds of cards, four rounds of betting, discrete bets

e About 10'8 states, 3.2 x 10'* information sets
Abstraction: cluster together similar histories

e Symmetries (reducing to 10'3 information sets)

e Clustering
e Buckets based on (roll-out) hand strength
e Hierarchical buckets (e.g., second hand is indexed by the first
bucket as well)
e About 1.65 x 10'? states, 5.73 x 107 information sets

Engineering:

e Rounding: o(a) = 0.0 if smaller than threshold, fixed-point arithmetic
e Dynamic compression regret and strategy (from 262 TiB to 10.9 TiB)

e Distribute recursive computation of regret and strategy over rounds
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CFR in Large Problems: Heads-up Limit Texas

Game Size (Information Sets)

Exploitability (mbb/g)
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10|
10" L
10"2 |
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1010 |
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r Rhode ]
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Hold'em
P _SFLP CFR ) CFR+
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Year

L 1 1 1 \N
107! 100 10’ 102 108

Computation Time (CPU-years)
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