Learning in Zero-sum games

Reinforcement Learning Seminar

Yingru Li
May 12, 2019
yingruli@link.cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen

Motivation: a Long-Standing Goal of AI...

Figure 1: Deep Blue

Motivation: a Long-Standing Goal of AI...

Figure 2: AlphaGo

Motivation: a Long-Standing Goal of AI...

Figure 3: Libratus

Motivation: a Long-Standing Goal of AI...

Figure 4: StarCraft II: A New Challenge for Reinforcement Learning. DeepMind AlphaStar Jan. 2019; Tencent AI Lab TStarBots Sep. 2018

- Security
- Negotiation
- Diplomatic and Military Strategy
- Financial Market
- E-Commerce
- Distributed Cooperated and Competitive Robotics
- Game AI
-

Table of Contents

Learning in Two-Player Zero-Sum Games
Regret Minimization and Nash Equilibrium
The Exp3 Algorithms

From Normal Form to Extensive Form Imperfect Information Games
Regret Minimization and Nash Equilibria
Counterfactual Regret Minimization

Table of Contents

Learning in Two-Player Zero-Sum Games
Regret Minimization and Nash Equilibrium
The Exp3 Algorithms

From Normal Form to Extensive Form Imperfect Information Games
Regret Minimization and Nash Equilibria
Counterfactual Regret Minimization

Normal Form Games

The Game

- Set of players $N=\{1, \cdots, n\}$
- Action sets A_{i}, joint action set $A=A_{1} \times \cdots \times A_{n}$
- Joint action $a \in A$, player i 's action a_{i}, all other players' a_{-i}
- Utility (payoff/reward) function $u: A \rightarrow \mathbb{R}^{n}$,
- Player i 's utility $u_{i}: A \rightarrow \mathbb{R}$

Mixed strategies

- Joint strategy $\sigma \in \mathcal{D}(A)$ is distribution over A, such that

$$
\sigma(a)=\prod_{i=1}^{n} \sigma_{i}\left(a_{i}\right)
$$

- Utility of a strategy for player i (expected utility):

$$
u_{i}(\sigma)=\sum_{a_{i}} \sum_{a_{-i}} \sigma_{i}\left(a_{i}\right) \sigma_{-i}\left(a_{-i}\right) u_{i}\left(a_{i}, a_{-i}\right)
$$

Normal Form Games

The Game

- Best response:

$$
\sigma_{i}^{*} \in B R\left(\sigma_{-i}\right) \text { iff } \forall \sigma_{i} \in \mathcal{D}\left(A_{i}\right), u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}\right)
$$

- Nash equilibrium: σ is a Nash equilibrium iff $\forall i, \sigma_{i} \in B R\left(\sigma_{-i}\right)$
- Every finite game has a Nash equilibrium! [Nash, 1950]

Finite Two-Player Zero-Sum Games

The Game

- Set of players $N=\{1,2\}=\{i, j\}$
- Action sets A_{i}, joint action set $A=A_{1} \times A_{2}$
- Joint action $a \in A$, player i 's action a_{i}, all other players' a_{j}
- Utility (payoff/reward) function $u: A \rightarrow \mathbb{R}^{n}$, player i 's utility $u_{i}: A \rightarrow \mathbb{R}$

$$
\forall a \in A, \quad u_{1}(a)=-u_{2}(a)
$$

Mixed strategies

- Nash equilibrium [Minimax theorem (von Neumann, 1928)]

$$
\begin{aligned}
\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) & =\arg \max _{\sigma_{1}} \min _{\sigma_{2}} u_{1}\left(\sigma_{1}, \sigma_{2}\right) \\
& =\arg \min _{\sigma_{1}} \max _{\sigma_{2}} u_{2}\left(\sigma_{1}, \sigma_{2}\right)
\end{aligned}
$$

- Value of the game

$$
V=\max _{\sigma_{1}} \min _{\sigma_{2}} u_{1}\left(\sigma_{1}, \sigma_{2}\right)=\min _{\sigma_{2}} \max _{\sigma_{1}} u_{1}\left(\sigma_{1}, \sigma_{2}\right)
$$

Rock-Paper-Scissors The Game

Action set $A_{1}=A_{2}=\{(\mathrm{R})$ ock, (P) aper, (S)cissor $\}$

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

Rock-Paper-Scissors The Solution

Action set $A_{1}=A_{2}=\{(\mathrm{R})$ ock, (P)aper, (S)cissor $\}$

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

- if $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ is a Nash equilibrium, then

$$
\begin{aligned}
\sigma_{1}^{*} & =\operatorname{BR}\left(\sigma_{2}^{*}\right)=\arg \max _{\sigma_{1}} u_{1}\left(\sigma_{1}, \sigma_{2}^{*}\right) \\
& =\arg \max _{\sigma_{1}} \sum_{a_{1} \in A_{1}} \sigma_{1}\left(a_{1}\right) u_{1}\left(a_{1}, \sigma_{2}^{*}\right)
\end{aligned}
$$

Rock-Paper-Scissors The Solution

Action set $A_{1}=A_{2}=\{(\mathrm{R})$ ock, (P)aper, (S)cissor $\}$

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

- if $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ is a Nash equilibrium, then

$$
\begin{aligned}
\sigma_{1}^{*} & =\operatorname{BR}\left(\sigma_{2}^{*}\right)=\arg \max _{\sigma_{1}} u_{1}\left(\sigma_{1}, \sigma_{2}^{*}\right) \\
& =\arg \max _{\sigma_{1}} \sum_{a_{1} \in A_{1}} \sigma_{1}\left(a_{1}\right) u_{1}\left(a_{1}, \sigma_{2}^{*}\right) \\
& \Rightarrow \forall a_{1} \in A, \quad u_{1}=u_{1}\left(a_{1}, \sigma_{2}^{*}\right)
\end{aligned}
$$

Rock-Paper-Scissors The Solution (sketch)

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

- Let $\sigma_{2}=\left(\sigma_{2}(R), \sigma_{2}(P), \sigma_{2}(S)\right)$ the strategy of player column,

$$
\begin{gathered}
u_{1}=u_{1}\left(R, \sigma_{2}\right)=0 \sigma_{2}(R)-1 \sigma_{2}(P)+1 \sigma_{2}(S) \\
u_{1}=u_{1}\left(P, \sigma_{2}\right)=1 \sigma_{2}(R)+0 \sigma_{2}(P)-1 \sigma_{2}(S) \\
u_{1}=u_{1}\left(S, \sigma_{2}\right)=-1 \sigma_{2}(R)+1 \sigma_{2}(P)+0 \sigma_{2}(S) \\
1=\sigma_{2}(R)+\sigma_{2}(P)+\sigma_{2}(S)
\end{gathered}
$$

Rock-Paper-Scissors The Solution (sketch)

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

- Let $\sigma_{2}=\left(\sigma_{2}(R), \sigma_{2}(P), \sigma_{2}(S)\right)$ the strategy of player column,

$$
\begin{gathered}
u_{1}=u_{1}\left(R, \sigma_{2}\right)=0 \sigma_{2}(R)-1 \sigma_{2}(P)+1 \sigma_{2}(S) \\
u_{1}=u_{1}\left(P, \sigma_{2}\right)=1 \sigma_{2}(R)+0 \sigma_{2}(P)-1 \sigma_{2}(S) \\
u_{1}=u_{1}\left(S, \sigma_{2}\right)=-1 \sigma_{2}(R)+1 \sigma_{2}(P)+0 \sigma_{2}(S) \\
1=\sigma_{2}(R)+\sigma_{2}(P)+\sigma_{2}(S)
\end{gathered}
$$

- Solving for all variables gives $\sigma_{2}^{*}=(1 / 3,1 / 3,1 / 3)$ and $u_{1}=0$

Rock-Paper-Scissors The Solution (sketch)

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

- Let $\sigma_{2}=\left(\sigma_{2}(R), \sigma_{2}(P), \sigma_{2}(S)\right)$ the strategy of player column,

$$
\begin{gathered}
u_{1}=u_{1}\left(R, \sigma_{2}\right)=0 \sigma_{2}(R)-1 \sigma_{2}(P)+1 \sigma_{2}(S) \\
u_{1}=u_{1}\left(P, \sigma_{2}\right)=1 \sigma_{2}(R)+0 \sigma_{2}(P)-1 \sigma_{2}(S) \\
u_{1}=u_{1}\left(S, \sigma_{2}\right)=-1 \sigma_{2}(R)+1 \sigma_{2}(P)+0 \sigma_{2}(S) \\
1=\sigma_{2}(R)+\sigma_{2}(P)+\sigma_{2}(S)
\end{gathered}
$$

- Solving for all variables gives $\sigma_{2}^{*}=(1 / 3,1 / 3,1 / 3)$ and $u_{1}=0$
- Repeating for player row gives $\sigma_{1}^{*}=(1 / 3,1 / 3,1 / 3)$ and $u_{2}=0$
- $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ is a Nash equilibrium and the value of the game is $V=0$

A Single-Player Perspective

Sequential game

- For $t=1, \ldots, n$
- Player 1 chooses $\sigma_{1, t}$
- Player 2 chooses $\sigma_{2, t}$
- Players play actions $a_{1, t} \sim \sigma_{1, t}$ and $a_{2, t} \sim \sigma_{2, t}$
- Players receive payoffs $u_{1}\left(a_{1, t}, a_{2, t}\right)$ and $u_{2}\left(a_{1, t}, a_{2, t}\right)$

Solution: Nash equilibrium

$$
\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)=\arg \max _{\sigma_{1}} \min _{\sigma_{2}} u_{1}\left(\sigma_{1}, \sigma_{2}\right)
$$

A Single-Player Perspective

Sequential game \Rightarrow Single-player game

- For $t=1, \ldots, n$
- Player 1 chooses $\sigma_{1, t}$
- Player 2 chooses $\sigma_{2, t}$
- Players play actions $a_{1, t} \sim \sigma_{1, t}$ and $a_{2, t} \sim \sigma_{2, t}$
- Players receive payoffs $u_{1}\left(a_{1, t}, a_{2, t}\right)$ and $u_{2}\left(a_{1, t}, a_{2, t}\right)$

Solution: Nash equilibrium \Rightarrow Maximize the (average) utility

$$
\begin{aligned}
\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) & =\operatorname{argmax}_{\sigma_{1}} \min _{\sigma_{2}} u_{1}\left(\sigma_{1}, \sigma_{2}\right) \\
\left(a_{1,1}^{*}, \ldots, a_{1, n}^{*}\right) & =\arg \max _{\left(a_{\left.1,1, \ldots, a_{1, n}\right)} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(a_{1, t}, a_{2, t}\right)\right.} \\
& =\arg \max _{\left(a_{1,1}, \ldots, a_{1, n}\right)} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right)
\end{aligned}
$$

The (Multi-Armed Bandit) Problem

A learning problem

- For $t=1, \ldots, n$
- Player 1 chooses $\sigma_{1, t}$
- Player 1 plays action $a_{1, t} \sim \sigma_{1, t}$
- Player 1 receives payoff $u_{1, t}\left(a_{1, t}\right)$

Remarks

- No information about $a_{2, t}$ and utility u_{2}
- Utility function $u_{1, t}$ is only observed for $a_{1, t}$ (i.e., bandit feedback $\left.u_{1, t}\left(a_{1, t}\right)\right)$

The (Multi-Armed Bandit) Problem

- Regret in hindisight w.r.t. any fixed action a_{1}

$$
R_{n}\left(a_{1}\right)=\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right)
$$

- Objective: find actions ($a_{1,1}, \ldots, a_{1, n}$) that maximize average utility \approx minimize the regret w.r.t. the best action a_{1} in hindsight

$$
\begin{gathered}
\text { Utility: } \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right) \\
\text { Regret: } R_{n}=\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right)
\end{gathered}
$$

Regret Minimization and Nash Equilibrium

Theorem

A learning algorithm is Hannan's consistent if

$$
\limsup _{n \rightarrow \infty} R_{n}=0 \quad \text { a.s. }
$$

Given a two-player zero-sum game with value V, if players choose strategies $\sigma_{1, t}$ and $\sigma_{2, t}$ using a Hannan's consistent algorithm, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(a_{1, t}, a_{2, t}\right)=V
$$

Furthermore, let empirical frequency strategies be

$$
\widehat{\sigma}_{1, n}\left(a_{1}\right)=\frac{1}{n} \sum_{t=1} \mathbb{I}\left\{a_{1, t}=a_{1}\right\} \quad \text { and } \quad \widehat{\sigma}_{2, n}\left(a_{2}\right)=\frac{1}{n} \sum_{t=1} \mathbb{I}\left\{a_{2, t}=a_{2}\right\}
$$

then the joint empirical strategy

$$
\widehat{\sigma}_{1, n} \times \widehat{\sigma}_{2, n} \xrightarrow{n \rightarrow \infty}\left\{\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)\right\}_{\mathrm{Nash}}
$$

Regret Minimization and Nash Equilibria [proof]

- Hannan's consistency

$$
\limsup _{n \rightarrow \infty} R_{n} \leq 0 \Longleftrightarrow \limsup _{n \rightarrow \infty}\left(\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right)\right) \leq 0
$$

- linearity of utility function

$$
\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(\sigma_{1}\right)=\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} \sum_{a_{1} \in A_{1}} \sigma_{1}\left(a_{1}\right) u_{1, t}\left(a_{1}\right)=\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)
$$

Regret Minimization and Nash Equilibria [proof]

- Hannan's consistency

$$
\limsup _{n \rightarrow \infty} R_{n} \leq 0 \Longleftrightarrow \limsup _{n \rightarrow \infty}\left(\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right)\right) \leq 0
$$

- linearity of utility function

$$
\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(\sigma_{1}\right)=\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} \sum_{a_{1} \in A_{1}} \sigma_{1}\left(a_{1}\right) u_{1, t}\left(a_{1}\right)=\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)
$$

- definition $u_{1, t}\left(\sigma_{1}\right)=u_{1}\left(\sigma_{1}, a_{2, t}\right) \Rightarrow$

$$
\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(\sigma_{1}\right)=\frac{1}{n} \sum_{t=1}^{n} \sum_{a_{2} \in A_{2}} \mathbb{I}\left\{a_{2, t}=a_{2}\right\} u_{1}\left(\sigma_{1}, a_{2}\right)=\sum_{z_{2} \in A_{2}} u_{1}\left(\sigma_{1}, a_{2}\right) \underbrace{\frac{1}{n} \sum_{t=1}^{n} \mathbb{I}\left\{a_{2, t}=a_{2}\right\}}_{\widehat{\sigma}_{2, n}\left(a_{2}\right)}
$$

Regret Minimization and Nash Equilibria [proof]

- Hannan's consistency

$$
\limsup _{n \rightarrow \infty} R_{n} \leq 0 \Longleftrightarrow \limsup _{n \rightarrow \infty}\left(\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right)\right) \leq 0
$$

- linearity of utility function

$$
\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(\sigma_{1}\right)=\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} \sum_{a_{1} \in A_{1}} \sigma_{1}\left(a_{1}\right) u_{1, t}\left(a_{1}\right)=\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)
$$

- definition $u_{1, t}\left(\sigma_{1}\right)=u_{1}\left(\sigma_{1}, a_{2, t}\right) \Rightarrow$

$$
\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(\sigma_{1}\right)=\frac{1}{n} \sum_{t=1}^{n} \sum_{a_{2} \in A_{2}} \mathbb{I}\left\{a_{2, t}=a_{2}\right\} u_{1}\left(\sigma_{1}, a_{2}\right)=\sum_{z_{2} \in A_{2}} u_{1}\left(\sigma_{1}, a_{2}\right) \underbrace{\frac{1}{n} \sum_{t=1}^{n} \mathbb{I}\left\{a_{2, t}=a_{2}\right\}}_{\widehat{\sigma}_{2, n}\left(a_{2}\right)}
$$

- one-side of the result

$$
\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(\sigma_{1}\right)=\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1}, \widehat{\sigma}_{2, n}\right) \geq \max _{\sigma_{1}} \min _{\sigma_{2}} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1}, \sigma_{2}\right)=V
$$

- one-side of the result

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}, a_{2, t}\right) \geq \max _{\sigma_{1}} \min _{\sigma_{2}} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1}, \sigma_{2}\right)=V
$$

- one-side of the result

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}, a_{2, t}\right) \geq \max _{\sigma_{1}} \min _{\sigma_{2}} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1}, \sigma_{2}\right)=V
$$

- If player 2 also plays Hannan consistent strategies, then we get

$$
\begin{gathered}
\max _{\sigma_{2}} \frac{1}{n} \sum_{t=1}^{n} u_{2, t}\left(\sigma_{2}\right) \geq \max _{\sigma_{2}} \min _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{2}\left(\sigma_{1}, \sigma_{2}\right)=V \\
\lim \sup \\
\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}, a_{2, t}\right) \leq \min _{\sigma_{2}} \max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1}, \sigma_{2}\right)=V
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}, a_{2, t}\right)=V \quad \text { a.s. }
$$

Regret Minimization and Nash Equilibria

Remark

The joint empirical strategy converges to the set of correlated equilibrium almost surly as $n \rightarrow \infty$.

In particular, for any (finite) two-person zero-sum game, for each player, the empirical distribution of play converges to the set of optimal mixed actions.

$$
\widehat{\sigma}_{1, n} \times \widehat{\sigma}_{2, n} \xrightarrow{n \rightarrow \infty}\left\{\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)\right\}_{\text {Nash }} \quad \text { a.s. }
$$

Note that approaching to a set does not imply convergence to particular point.

Regret Minimization and Nash Equilibria

Corollary

If

$$
R_{n} \leq \epsilon
$$

then the joint empirical strategy is ϵ-Nash (more precisely, correlated ϵ-equilibrium), i.e.,

$$
u_{1}\left(\widehat{\sigma}_{1, n} \times \widehat{\sigma}_{2, n}\right) \geq V-\epsilon
$$

Hannan's Consistent Algorithms

A learning problem

- For $t=1, \ldots, n$
- Player 1 chooses $\sigma_{1, t}$
- Player 1 plays action $a_{1, t} \sim \sigma_{1, t}$
- Player 1 receives payoff $u_{1, t}\left(a_{1, t}\right)$

Objective

- Regret

$$
R_{n}=\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right)
$$

- Hannan's consistent algorithm

$$
\limsup _{n \rightarrow \infty} R_{n} \leq 0 \quad \text { a.s. }
$$

Learning the Nash Equilibrium

Version 1: fictitious play full information (aka follow-the-leader)

- For $t=1, \ldots, n$
- Compute greedy action

$$
a_{t}^{*}=\arg \max _{a \in A_{1}} \sum_{s=1}^{t-1} u_{1, t}(a)
$$

- Player chooses $\sigma_{1, t}=\delta\left(a_{t}^{*}\right)$
- Player plays action $a_{1, t} \sim \sigma_{1, t}$
- Player receives payoff $u_{1, t}\left(a_{1, t}\right)$

Remarks

- This strategy is easily exploitable $R_{n}=O(1)$
- E.g. Opponents set $u_{1, t}\left(a=a_{1, t}\right)=-1$ and $u_{1, t}\left(a \neq a_{1, t}\right)=1$

Learning the Nash Equilibrium

Version 1: fictitious play full information (aka follow-the-leader)

- For $t=1, \ldots, n$
- Compute greedy action

$$
a_{t}^{*}=\arg \max _{a \in A_{1}} \sum_{s=1}^{t-1} u_{1, t}(a)
$$

- Player chooses $\sigma_{1, t}=\delta\left(a_{t}^{*}\right)$
- Player plays action $a_{1, t} \sim \sigma_{1, t}$
- Player receives payoff $u_{1, t}\left(a_{1, t}\right)$

Remarks

- This strategy is easily exploitable $R_{n}=O(1)$
- Self play does not converge in general [Recall Hannan's consistency]

Learning the Nash Equilibrium

Version 2: [Randomization]

Learning the Nash Equilibrium

Version 2: [Randomization] exponentially weighted forcaster (EWF)

- Initialize weights $w_{0}(a)=1$ for all $a \in A_{1}$
- For $t=1, \ldots, n$
- Player chooses

$$
\sigma_{1, t}(a)=\frac{w_{t-1}(a)}{\sum_{b \in A_{1}} w_{t-1}(b)} \quad[\text { prop. to weights }]
$$

- Player plays action $a_{1, t} \sim \sigma_{1, t}$
- Player receives payoff $u_{1, t}\left(a_{1, t}\right)$ and $u_{1, t}(a)$ for all a [full info]
- Update weights $u_{1, t}\left(a_{1, t}\right)$

$$
w_{t}(a)=w_{t-1}(a) \exp \left(\eta_{t} u_{1, t}(a)\right) \quad[\text { exponentiated utility }]
$$

Learning the Nash Equilibrium

Theorem

If EWF is run over n steps with $\eta_{t}=\eta$, then with probability $1-\delta$
$R_{n}=\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right) \leq \frac{\log \left(A_{1}\right)}{n \eta}+\frac{\eta}{8}+\sqrt{\frac{1}{2 n} \log \frac{1}{\delta}}$
Setting $\eta=\sqrt{8 \log \left(A_{1}\right) / n}$ we obtain

$$
R_{n} \leq \sqrt{\frac{\log \left(A_{1}\right)}{2 n}}+\sqrt{\frac{1}{2 n} \log (1 / \delta)}
$$

Remarks

- $\lim \sup _{n \rightarrow \infty} R_{n} \leq 0 \quad \Rightarrow$ Hannan's consistency
- Rate of convergence $O(1 / \sqrt{n})$
- In self-play EWF converges to the Nash equilibrium

Learning the Nash Equilibrium

Version 2: [Randomization] exponentially weighted forcaster (EWF)

- Initialize weights $w_{0}(a)=0$ for all $a \in A_{1}$
- For $t=1, \ldots, n$
- Player chooses

$$
\sigma_{1, t}(a)=\frac{w_{t-1}(a)}{\sum_{b \in A_{1}} W_{t-1}(b)} \quad[\text { prop. to weights }]
$$

- Player plays action $a_{1, t} \sim \sigma_{1, t}$
- Player receives payoff $u_{1, t}\left(a_{1, t}\right)$ and $u_{1, t}(a)$ for all a [full infe]
- Update weights $u_{1, t}\left(a_{1, t}\right)$

$$
w_{t}(a)=w_{t-1}(a) \exp \left(\eta_{t} u_{1, t}(a)\right) \quad[\text { exponentiated utility }]
$$

Learning the Nash Equilibrium

Problem:

- Player plays action $a_{1, t} \sim \sigma_{1, t}$
- Player receives payoff $u_{1, t}\left(a_{1, t}\right)$
- Update weights $u_{1, t}\left(a_{1, t}\right)$

$$
w_{t}(a)=w_{t-1}(a) \exp \left(\eta_{t} u_{1, t}(a)\right) \quad[\text { exponentiated utility }]
$$

Learning the Nash Equilibrium

Problem:

- Player plays action $a_{1, t} \sim \sigma_{1, t}$
- Player receives payoff $u_{1, t}\left(a_{1, t}\right)$
- Update weights $u_{1, t}\left(a_{1, t}\right)$

$$
w_{t}(a)=w_{t-1}(a) \exp \left(\eta_{t} u_{1, t}(a)\right) \quad[\text { exponentiated utility }]
$$

Solution:

- Importance sampling

$$
\widetilde{u}_{1, t}(a)= \begin{cases}\frac{u_{1, t}\left(a_{1, t}\right)}{\sigma_{1, t}\left(a_{1, t}\right)} & \text { if } a=a_{1, t} \\ 0 & \text { otherwise }\end{cases}
$$

- Unbiased estimator
$\forall a \in A_{1} \quad \mathbb{E}_{a \sim \sigma_{1, t}}\left[\widetilde{u}_{1, t}(a)\right]=\sigma_{1, t}(a) \frac{u_{1, t}(a)}{\sigma_{1, t}}+\left(1-\sigma_{1, t}(a)\right) \times 0=u_{1, t}(a)$

Learning the Nash Equilibrium

Version 3: EWF for Exploration-Exploitation (EXP3)

- Initialize weights $w_{0}(a)=0$ for all $a \in A_{1}$
- For $t=1, \ldots, n$
- Player chooses

$$
\sigma_{1, t}(a)=\frac{w_{t-1}(a)}{\sum_{b \in A_{1}} w_{t-1}(b)} \quad[\text { prop. to weights }]
$$

- Player plays action $a_{1, t} \sim \sigma_{1, t}$
- Player receives payoff $u_{1, t}\left(a_{1, t}\right)$
- Compute pseudo-payoffs

$$
\tilde{u}_{1, t}(a)= \begin{cases}\frac{u_{1, t}\left(a_{1, t}\right)}{\sigma_{1, t}\left(a_{1, t}\right)} & \text { if } a=a_{1, t} \\ 0 & \text { otherwise }\end{cases}
$$

- Update weights $u_{1, t}\left(a_{1, t}\right)$

$$
w_{t}(a)=w_{t-1}(a) \exp \left(\eta_{t} \widetilde{u}_{1, t}(a)\right)
$$

Learning the Nash Equilibrium

Theorem

If EXP3 is run over n steps with $\eta_{t}=\sqrt{2 \log \left(A_{1}\right) /\left(n A_{1}\right)}$, then its psuedo-regret is bounded as

$$
\bar{R}_{n}=\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[u_{1, t}\left(a_{1}\right)\right]-\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[u_{1, t}\left(a_{1, t}\right)\right] \leq \sqrt{\frac{2 A_{1} \log \left(A_{1}\right)}{n}}
$$

Learning the Nash Equilibrium

Theorem

If EXP3 is run over n steps with $\eta_{t}=\sqrt{2 \log \left(A_{1}\right) /\left(n A_{1}\right)}$, then its psuedo-regret is bounded as

$$
\bar{R}_{n}=\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[u_{1, t}\left(a_{1}\right)\right]-\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[u_{1, t}\left(a_{1, t}\right)\right] \leq \sqrt{\frac{2 A_{1} \log \left(A_{1}\right)}{n}}
$$

Remarks

- limsup $\operatorname{sum}_{n \rightarrow \infty} \bar{R}_{n} \leq 0 \quad \Rightarrow$ Hannan's consistency?
- Rate of convergence $O(1 / \sqrt{n})$
- Regret larger by a factor $\sqrt{A_{1}}$ (observing 1 vs A_{1} payoffs)

Rock-Paper-Scissors- The Simulation

Action set $A_{1}=A_{2}=\{(\mathrm{R})$ ock, (P) aper, (S) cissor $\}$

	R	P	S
R	0,0	$-1,1$	$5,-5$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

- Equilibrium $\sigma_{1}^{*}=(1 / 7,11 / 21,1 / 3)$
- Value of the game $V=4 / 21(\approx 0.1904)$

Learning the Nash Equilibrium

Problem:

- Importance sampling is unbiased

$$
\tilde{u}_{1, t}(a)=\left\{\begin{array}{ll}
\frac{u_{1, t}\left(a_{1, t}\right)}{\sigma_{1, t}\left(a_{1, t}\right)} & \text { if } a=a_{1, t} \\
0 & \text { otherwise }
\end{array} ; \quad \mathbb{E}_{a \sim \sigma_{1, t}}\left[\tilde{u}_{1, t}(a)\right]=u_{1, t}(a)\right.
$$

- Variance

$$
\mathbb{V}_{a \sim \sigma_{1, t}}\left[\tilde{u}_{1, t}(a)\right] \xrightarrow{\sigma_{1, t}(a) \rightarrow 0} \infty
$$

Learning the Nash Equilibrium

Problem:

- Importance sampling is unbiased

$$
\tilde{u}_{1, t}(a)=\left\{\begin{array}{ll}
\frac{u_{1, t}\left(a_{1, t}\right)}{\sigma_{1, t}\left(a_{1, t}\right)} & \text { if } a=a_{1, t} \\
0 & \text { otherwise }
\end{array} ; \quad \mathbb{E}_{a \sim \sigma_{1, t}}\left[\tilde{u}_{1, t}(a)\right]=u_{1, t}(a)\right.
$$

- Variance

$$
\mathbb{V}_{a \sim \sigma_{1, t}}\left[\widetilde{u}_{1, t}(a)\right] \xrightarrow{\sigma_{1, t}(a) \rightarrow 0} \infty
$$

Solution:

- Bias both pseudo-payoff

$$
\tilde{u}_{1, t}(a)=\frac{u_{1, t}\left(a_{1, t}\right) \mathbb{I}\left\{a=a_{1, t}\right\}+\beta_{t}}{\sigma_{1, t}\left(a_{1, t}\right)}
$$

- Mix strategy with uniform exploration (now bounded below)

$$
\sigma_{1, t}(a)=\left(1-\gamma_{t}\right) \frac{w_{1, t}(a)}{\sum b \in A_{1} w_{1, t}(b)}+\frac{\gamma_{t}}{A_{1}}
$$

Learning the Nash Equilibrium

Version 3: EWF for Exploration-Exploitation w.h.p. (EXP3.P)

- Initialize weights $w_{0}(a)=0$ for all $a \in A_{1}$
- For $t=1, \ldots, n$
- Player chooses

$$
\sigma_{1, t}(a)=\left(1-\gamma_{t}\right) \frac{w_{1, t}(a)}{\sum b \in A_{1} w_{1, t}(b)}+\frac{\gamma_{t}}{A_{1}}
$$

- Player plays action $a_{1, t} \sim \sigma_{1, t}$
- Player receives payoff $u_{1, t}\left(a_{1, t}\right)$
- Compute pseudo-payoffs

$$
\widetilde{u}_{1, t}(a)=\frac{u_{1, t}\left(a_{1, t}\right) \mathbb{I}\left\{a=a_{1, t}\right\}+\beta_{t}}{\sigma_{1, t}\left(a_{1, t}\right)}
$$

- Update weights $u_{1, t}\left(a_{1, t}\right)$

$$
w_{t}(a)=w_{t-1}(a) \exp \left(\eta_{t} \tilde{u}_{1, t}(a)\right)
$$

Learning the Nash Equilibrium

Lemma

For $\beta_{t} \leq 1$, let

$$
\tilde{u}_{1, t}(a)=\frac{u_{1, t}\left(a_{1, t}\right) \mathbb{I}\left\{a=a_{1, t}\right\}+\beta_{t}}{\sigma_{1, t}\left(a_{1, t}\right)}
$$

Then, w.p. at least $1-\delta$,

$$
\sum_{t=1}^{n} u_{i, t}(a) \leq \sum_{t=1}^{n} \tilde{u}_{i, t}(a)+\frac{\log \delta^{-1}}{\beta_{t}}
$$

Learning the Nash Equilibrium

Theorem

If EXP3 is run over n steps with $\beta_{t} \approx \eta_{t}=\sqrt{2 \log \left(A_{1}\right) /\left(n A_{1}\right)}$, $\gamma_{t}=\sqrt{A_{1} \log \left(A_{1}\right) / n}$, then with probability $1-\delta$ its regret is bounded as

$$
R_{n}=\max _{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1, t}\left(a_{1, t}\right) \leq 6 \sqrt{\frac{A_{1} \log \left(A_{1} / \delta\right)}{n}}
$$

Remarks

- $\lim _{n \rightarrow \infty} R_{n} \leq 0 \quad \Rightarrow$ Hannan's consistency!
- EXP3.P in self-play converges to Nash equilibrium

Summary

+ EXP3.P minimizes regret in adversarial environments
+ EXP3.P converges to Nash equilibria in self-play
+ No need to know
- Utility function (i.e., the rules of the game)
- Actions performed by the adversary
\approx Some of this can be extended to learn correlated equilibria
- Exponential may be tricky to manage
- Convergence is only in the empirical frequency
- Convergence is relatively slow

Table of Contents

Learning in Two-Player Zero-Sum Games

Regret Minimization and Nash Equilibrium

The Exp3 Algorithms

From Normal Form to Extensive Form Imperfect Information Games
Regret Minimization and Nash Equilibria
Counterfactual Regret Minimization

Imperfect Information Extensive Form Games

The game

- Set of players $N=\{1, \ldots, n\}$ and c chance player (e.g., deck)
- Set of possible sequences of actions $H, Z \subseteq H$ set of terminal histories
- Player function $P: H \rightarrow N \cup\{c\}$
- Set of information sets $\mathcal{I}=\{I\}$ (i.e., I is a subset of histories that are not distinguishable)
- Utility of a terminal history $u_{i}: Z \rightarrow \mathbb{R}$
- Strategy $\sigma_{i}: \mathcal{I} \rightarrow \mathcal{D}(A)$ (in all $h \in l$ such that $\left.P(h)=i\right)$

Extensive Form Games

Histories

- Prob. of reaching history $h \in H$ following joint strategy $\sigma, \pi^{\sigma}(h)$
- Prob. of reaching information set $I \in \mathcal{I}$ following joint strategy $\sigma, \pi^{\sigma}(I)=\sum_{h \in I} \pi^{\sigma}(h)$
- Prob. of reaching history $h \in H$ following joint strategy σ_{-i}, except player i following actions in h w.p. $1, \pi_{-i}^{\sigma}(h)$
- Prob. of reaching history $h \in H$ following player i 's actions, except others, $\pi_{i}^{\sigma}(h)$
- Replacement of $\sigma(I)$ to $\delta(a), \sigma_{I \rightarrow a}$

Solution concept

- Nash equilibrium $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)=\arg \max _{\sigma_{1}} \min _{\sigma_{2}} u_{1}\left(\sigma_{1}, \sigma_{2}\right)$
- Value of the game $V=\max _{\sigma_{1}} \min _{\sigma_{2}} u_{1}\left(\sigma_{1}, \sigma_{2}\right)$
- Remark: other concepts exist in this case, NE

The Regret View

- Regret in hindsight w.r.t. any fixed strategy σ_{1}

$$
R_{n}\left(\sigma_{1}\right)=\frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1}, \sigma_{2, t}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1, t}, \sigma_{2, t}\right)
$$

- Regret against the best strategy in hindsight

$$
R_{n}=\max _{\sigma_{1}} R_{n}\left(\sigma_{1}\right)
$$

- Empirical strategy:

$$
\widehat{\sigma}_{1, n}(I, a)=\frac{\sum_{t=1}^{n} \pi_{i}^{\sigma_{t}}(I) \sigma_{t}(I, a)}{\sum_{t=1}^{n} \pi_{i}^{\sigma_{t}}(l)}
$$

Regret Minimization and Nash Equilibria

Theorem

A learning algorithm is Hannan's consistent if

$$
\limsup _{n \rightarrow \infty} R_{n} \leq 0 \quad \text { a.s. }
$$

Given a two-player zero-sum extensive-form game with value V , if players choose strategies $\sigma_{1, t}$ and $\sigma_{2, t}$ using a Hannan's consistent algorithm, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1, t}, \sigma_{2, t}\right)=V
$$

Furthermore, the joint empirical strategy

$$
\widehat{\sigma}_{1, n} \times \widehat{\sigma}_{2, n} \xrightarrow{n \rightarrow \infty}\left\{\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)\right\}_{\text {Nash }}
$$

Regret Matching Algorithm

- Back to Rock-Paper-Scissors
- Let $a_{1}=$ rock and $a_{2}=$ paper
- Then the counterfactual regret

$$
\begin{aligned}
& r\left(a_{1} \rightarrow \text { rock }\right)=u_{1}\left(\text { rock, } a_{2, t}\right)-u_{1}\left(a_{1, t}, a_{2, t}\right)=-1-(-1)=0 \\
& r\left(a_{1} \rightarrow \text { paper }\right)=u_{1}\left(\text { paper, }, a_{2, t}\right)-u_{1}\left(a_{1, t}, a_{2, t}\right)=0-(-1)=1 \\
& r\left(a_{1} \rightarrow \text { scissors }\right)=u_{1}\left(\text { scissors, } a_{2, t}\right)-u_{1}\left(a_{1, t}, a_{2, t}\right)=1-(-1)=2
\end{aligned}
$$

- Regret matching idea

$$
\sigma(a)=\frac{r\left(a_{1} \rightarrow a\right)}{\sum_{b \in A_{1}} r\left(a_{1} \rightarrow b\right)}
$$

Sequential Problem

A learning problem

- For $t=1, \ldots, n$
- Player 1 chooses $\sigma_{1, t}$
- Player 1 executes actions prescribed by $\sigma_{1, t}$ through a full game
- Player 1 receives payoff $u_{1, t}$

Counterfactual Regret

- Counterfactual value of a history

$$
v_{i}(\sigma, h)=\sum_{z \in Z, h \subseteq z} \pi_{-i}^{\sigma}(h) \pi^{\sigma}(h, z) u_{i}(z)
$$

- Counterfactual regret of not taking a in h

$$
r_{i}^{\sigma}(h, a)=v_{i}\left(\sigma_{I \rightarrow a}, h\right)-v_{i}(\sigma, h), \quad I \supset h
$$

- Counterfactual regret of not taking a in an information set I

$$
r_{i}^{\sigma}(I, a)=\sum_{h \in I} r_{i}^{\sigma}(h, a)
$$

- Cumulative counterfactual regret

$$
R_{i, t}(I, a)=\sum_{s=1}^{t} r_{i}^{\sigma_{t}}(I, a)
$$

Learning the Nash Equilibrium

Version 1: Counterfactual Regret Minimization (CFR)

- For $t=1, \ldots, n$
- Player 1 chooses strategy

$$
\sigma_{1, t}(l, a)= \begin{cases}\frac{R_{1, t}^{+}(l, a)}{\sum_{b \in A_{1}} R_{1, t}^{+}(I, b)} & \text { if } \sum_{b \in A_{1}} R_{1, t}^{+}(l, b)>0 \\ \frac{1}{A_{1}} & \text { otherwise }\end{cases}
$$

- Player 1 executes actions prescribed by $\sigma_{1, t}$ through a full game
- Player 1 receives payoff $u_{1, t}$
- Player 1 computes instantaneous regret $r_{i}^{\sigma t}$ over information sets observed over the game

$$
R^{+}=\max \{0, R\}
$$

Learning the Nash Equilibrium

Theorem

If CFR is run over n steps, then the regret is bounded as

$$
R_{n}=\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1}, \sigma_{2, t}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1, t}, \sigma_{2, t}\right) \leq\left|\mathcal{I}_{i}\right| \sqrt{\frac{A_{1}}{n}}
$$

Remarks

- $\lim _{n \rightarrow \infty} R_{n} \leq 0 \quad \Rightarrow$ Hannan's consistency
- Rate of convergence $O(1 / \sqrt{n})$
- Player 1 receives payoff $u_{1, t}$
- Linear dependence on the number of information sets
- In self-play EWF converges to the Nash equilibrium

Learning the Nash Equilibrium

Version 2: Counterfactual Regret Minimization+ (CFR+)

- For $t=1, \ldots, n$
- At t even player 1 chooses strategy

$$
\sigma_{1, t}(l, a)= \begin{cases}\frac{Q_{1, t}(l, a)}{\sum_{b \in A_{1}} Q_{1, t}(I, b)} & \text { if } \sum_{b \in A_{1}} Q_{1, t}(l, b)>0 \\ \frac{1}{A_{1}} & \text { otherwise }\end{cases}
$$

- At t odd player 1 chooses strategy $\sigma_{1, t}=\sigma_{1, t-1}$
- Player 1 executes actions prescribed by $\sigma_{1, t}$ through a full game
- Player 1 receives payoff $u_{1, t}$
- Player 1 computes instantaneous regret $r_{i}^{\sigma_{t}}$ over information sets observed over the game
- Return

$$
\begin{gathered}
\widehat{\sigma}_{1, n}=\sum_{t=1}^{n} \frac{2 t}{n^{2}+n} \sigma_{1, t} \\
Q_{1, t}=\left(Q_{1, t-1}+r_{i}^{\sigma_{t-1}}\right)^{+} \text {instead of } R_{1, t}^{+}=\left(\sum_{s=1}^{t-1} r_{i}^{\sigma_{s}}\right)^{+}
\end{gathered}
$$

Learning the Nash Equilibrium

If CFR+ is run over n steps, then the regret is bounded as

$$
R_{n}=\max _{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1}, \sigma_{2, t}\right)-\frac{1}{n} \sum_{t=1}^{n} u_{1}\left(\sigma_{1, t}, \sigma_{2, t}\right) \leq\left|\mathcal{I}_{i}\right| \sqrt{\frac{A_{1}}{n}}
$$

Remarks

- Same performance as CFR
- Empirically is more reactive
- Empirically $\widehat{\sigma}_{1, t}$ tends to converge

CFR in Large Problems: Heads-up Limit Texas Hold'em

The problem

- Four rounds of cards, four rounds of betting, discrete bets
- About 10^{18} states, 3.2×10^{14} information sets

Abstraction: cluster together similar histories

- Symmetries (reducing to 10^{13} information sets)
- Clustering
- Buckets based on (roll-out) hand strength
- Hierarchical buckets (e.g., second hand is indexed by the first bucket as well)
- About 1.65×10^{12} states, 5.73×10^{7} information sets

Engineering:

- Rounding: $\sigma(a)=0.0$ if smaller than threshold, fixed-point arithmetic
- Dynamic compression regret and strategy (from 262 TiB to 10.9 TiB)
- Distribute recursive computation of regret and strategy over rounds

CFR in Large Problems: Heads-up Limit Texas Hold'em

