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Motivation: a Long-Standing Goal of AI...

Figure 1: Deep Blue
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Motivation: a Long-Standing Goal of AI...

Figure 2: AlphaGo

3



Motivation: a Long-Standing Goal of AI...

Figure 3: Libratus 4



Motivation: a Long-Standing Goal of AI...

Figure 4: StarCraft II: A New Challenge for Reinforcement Learning.
DeepMind AlphaStar Jan. 2019; Tencent AI Lab TStarBots Sep. 2018
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...with Potential Applications in Real-World Environments

� Security

� Negotiation

� Diplomatic and Military Strategy

� Financial Market

� E-Commerce

� Distributed Cooperated and Competitive Robotics

� Game AI

� � � � � � �
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Normal Form Games

The Game

� Set of players N = f1; � � � ;ng
� Action sets Ai , joint action set A = A1 � � � � �An

� Joint action a 2 A, player i ’s action ai , all other players’ a�i

� Utility (payoff/reward) function u : A ! R
n ,

� Player i ’s utility ui : A ! R

Mixed strategies

� Joint strategy � 2 D(A) is distribution over A, such that

�(a) =
nY

i=1

�i (ai )

� Utility of a strategy for player i (expected utility):

ui (�) =
X
ai

X
a�i

�i (ai )��i (a�i )ui (ai ; a�i )
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Normal Form Games

The Game

� Best response:

��i 2 BR (��i ) iff 8�i 2 D(Ai );ui (�
�
i ; ��i ) � ui (�i ; ��i )

� Nash equilibrium: � is a Nash equilibrium iff 8i ; �i 2 BR(��i )

� Every finite game has a Nash equilibrium! [Nash, 1950]
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Finite Two-Player Zero-Sum Games

The Game

� Set of players N = f1; 2g = fi ; j g
� Action sets Ai , joint action set A = A1 �A2

� Joint action a 2 A, player i ’s action ai , all other players’ aj

� Utility (payoff/reward) function u : A ! R
n , player i ’s utility

ui : A ! R

8a 2 A; u1(a) = �u2(a)

Mixed strategies

� Nash equilibrium [Minimax theorem (von Neumann, 1928)]

(��1 ; �
�
2) = argmax

�1
min
�2

u1 (�1; �2)

= argmin
�1

max
�2

u2 (�1; �2)

� Value of the game
V = max�1 min�2 u1 (�1; �2) = min�2 max�1 u1(�1; �2) 11



Rock-Paper-Scissors The Game

Action set A1 = A2 ={(R)ock, (P)aper, (S)cissor}

R P S
R 0; 0 �1; 1 1;�1
P 1;�1 0; 0 �1; 1
S �1; 1 1;�1 0; 0
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Rock-Paper-Scissors The Solution

Action set A1 = A2 ={(R)ock, (P)aper, (S)cissor}

R P S
R 0; 0 �1; 1 1;�1
P 1;�1 0; 0 �1; 1
S �1; 1 1;�1 0; 0

� if (��1 ; ��2) is a Nash equilibrium, then

��1 = BR (��2) = argmax
�1

u1 (�1; �
�
2)

= argmax
�1

X
a12A1

�1 (a1)u1 (a1; �
�
2)

) 8a1 2 A; u1 = u1 (a1; �
�
2)
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Rock-Paper-Scissors The Solution (sketch)

R P S
R 0; 0 �1; 1 1;�1
P 1;�1 0; 0 �1; 1
S �1; 1 1;�1 0; 0

� Let �2 = (�2(R); �2(P); �2(S)) the strategy of player column,

u1 = u1 (R; �2) = 0�2(R)� 1�2(P) + 1�2(S)

u1 = u1 (P ; �2) = 1�2(R) + 0�2(P)� 1�2(S)

u1 = u1 (S ; �2) = �1�2(R) + 1�2(P) + 0�2(S)

1 = �2(R) + �2(P) + �2(S)

� Solving for all variables gives ��2 = (1=3; 1=3; 1=3) and u1 = 0
� Repeating for player row gives ��1 = (1=3; 1=3; 1=3) and u2 = 0

� (��1 ; �
�
2) is a Nash equilibrium and the value of the game is V = 0
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A Single-Player Perspective

Sequential game

� For t = 1; : : : ;n
� Player 1 chooses �1;t

� Player 2 chooses �2;t

� Players play actions a1;t � �1;t and a2;t � �2;t

� Players receive payoffs u1 (a1;t ; a2;t ) and u2 (a1;t ; a2;t )

Solution : Nash equilibrium

(��1 ; �
�
2) = argmax

�1
min
�2

u1 (�1; �2)
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A Single-Player Perspective

Sequential game ) Single-player game

� For t = 1; : : : ;n
� Player 1 chooses �1;t

� Player 2 chooses �2;t

� Players play actions a1;t � �1;t and a2;t � �2;t

� Players receive payoffs u1 (a1;t ; a2;t ) and u2 (a1;t ; a2;t )

Solution: Nash equilibrium ) Maximize the (average) utility

(��1 ; �
�
2) = argmax�1 min�2 u1 (�1; �2)

�
a�1;1; : : : ; a

�
1;n
�
= arg max

(a1;1;:::;a1;n )

1
n

nX
t=1

u1 (a1;t ; a2;t )

= arg max
(a1;1;:::;a1;n )

1
n

nX
t=1

u1;t (a1;t )

16



The (Multi-Armed Bandit) Problem

A learning problem

� For t = 1; : : : ;n
� Player 1 chooses �1;t

� Player 1 plays action a1;t � �1;t

� Player 1 receives payoff u1;t (a1;t )

Remarks

� No information about a2;t and utility u2

� Utility function u1;t is only observed for a1;t (i.e., bandit
feedback u1;t (a1;t ))

17



The (Multi-Armed Bandit) Problem

� Regret in hindisight w.r.t. any fixed action a1

Rn (a1) =
1
n

nX
t=1

u1;t (a1)� 1
n

nX
t=1

u1;t (a1;t )

� Objective: find actions (a1;1; : : : ; a1;n) that maximize average
utility � minimize the regret w.r.t. the best action a1 in
hindsight

Utility:
1
n

nX
t=1

u1;t (a1;t )

Regret: Rn = max
a1

1
n

nX
t=1

u1;t (a1)� 1
n

nX
t=1

u1;t (a1;t )

18



Regret Minimization and Nash Equilibrium

Theorem
A learning algorithm is Hannan’s consistent if

lim sup
n!1

Rn = 0 a :s :

Given a two-player zero-sum game with value V , if players choose
strategies �1;t and �2;t using a Hannan’s consistent algorithm, then

lim
n!1

1
n

nX
t=1

u1 (a1;t ; a2;t ) = V

Furthermore, let empirical frequency strategies be

b�1;n (a1) =
1
n

X
t=1

I fa1;t = a1g and b�2;n (a2) =
1
n

X
t=1

I fa2;t = a2g

then the joint empirical strategy

b�1;n � b�2;n
n!1�! f(��1 ; ��2)gNash
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Regret Minimization and Nash Equilibria [proof]

� Hannan’s consistency

lim sup
n!1

Rn � 0 () lim sup
n!1

 
max

a1

1
n

nX
t=1

u1;t (a1)� 1
n

nX
t=1

u1;t (a1;t )

!
� 0

� linearity of utility function

max
�1

1
n

nX
t=1

u1;t (�1) = max
�1

1
n

nX
t=1

X
a12A1

�1 (a1)u1;t (a1) = max
a1

1
n

nX
t=1

u1;t (a1)

� definition u1;t (�1) = u1 (�1; a2;t ))

1
n

nX
t=1

u1;t (�1) =
1
n

nX
t=1

X
a22A2

I fa2;t = a2gu1 (�1; a2) =
X

z22A2

u1 (�1; a2)
1
n

nX
t=1

I fa2;t = a2g| {z }b�2;n (a2)

� one-side of the result

max
�1

1
n

nX
t=1

u1;t (�1) = max
�1

1
n

nX
t=1

u1 (�1; b�2;n) � max
�1

min
�2

1
n

nX
t=1

u1 (�1; �2) = V
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� one-side of the result

lim inf
n!1

1
n

nX
t=1

u1;t (a1;t ; a2;t ) � max
�1

min
�2

1
n

nX
t=1

u1 (�1; �2) = V

� If player 2 also plays Hannan consistent strategies, then we get

max
�2

1
n

nX
t=1

u2;t (�2) � max
�2

min
�1

1
n

nX
t=1

u2 (�1; �2) = V

lim sup
n!1

1
n

nX
t=1

u1;t (a1;t ; a2;t ) � min
�2

max
�1

1
n

nX
t=1

u1 (�1; �2) = V

�

lim
n!1

1
n

nX
t=1

u1;t (a1;t ; a2;t ) = V a :s :
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Regret Minimization and Nash Equilibria

Remark
The joint empirical strategy converges to the set of correlated
equilibrium almost surly as n !1.

In particular, for any (finite) two-person zero-sum game, for each
player, the empirical distribution of play converges to the set of
optimal mixed actions.

b�1;n � b�2;n
n!1�! f(��1 ; ��2)gNash a :s :

Note that approaching to a set does not imply convergence to
particular point.
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Regret Minimization and Nash Equilibria

Corollary
If

Rn � �

then the joint empirical strategy is �-Nash (more precisely,
correlated �-equilibrium), i.e.,

u1 (b�1;n � b�2;n) � V � �

23



Hannan’s Consistent Algorithms

A learning problem

� For t = 1; : : : ;n
� Player 1 chooses �1;t

� Player 1 plays action a1;t � �1;t

� Player 1 receives payoff u1;t (a1;t )

Objective

� Regret

Rn = max
a1

1
n

nX
t=1

u1;t (a1)� 1
n

nX
t=1

u1;t (a1;t )

� Hannan’s consistent algorithm

lim sup
n!1

Rn � 0 a :s :
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Learning the Nash Equilibrium

Version 1 : fictitious play full information (aka follow-the-leader)

� For t = 1; : : : ;n
� Compute greedy action

a�t = argmax
a2A1

t�1X
s=1

u1;t (a)

� Player chooses �1;t = � (a�t )
� Player plays action a1;t � �1;t

� Player receives payoff u1;t (a1;t )

Remarks

� This strategy is easily exploitable Rn = O(1)

� E.g. Opponents set u1;t (a = a1;t ) = �1 and u1;t (a 6= a1;t ) = 1

25



Learning the Nash Equilibrium

Version 1 : fictitious play full information (aka follow-the-leader)

� For t = 1; : : : ;n
� Compute greedy action

a�t = argmax
a2A1

t�1X
s=1

u1;t (a)

� Player chooses �1;t = � (a�t )
� Player plays action a1;t � �1;t

� Player receives payoff u1;t (a1;t )

Remarks

� This strategy is easily exploitable Rn = O(1)

� Self play does not converge in general [Recall Hannan’s
consistency]
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Learning the Nash Equilibrium

Version 2: [Randomization]

exponentially weighted forcaster (EWF)

� Initialize weights w0(a) = 1 for all a 2 A1

� For t = 1; : : : ;n
� Player chooses

�1;t (a) =
wt�1(a)P

b2A1
wt�1(b)

[prop. to weights ]

� Player plays action a1;t � �1;t

� Player receives payoff u1;t (a1;t ) and u1;t (a) for all a [full info]
� Update weights u1;t (a1;t )

wt (a) = wt�1(a) exp (�tu1;t (a)) [exponentiated utility]

27
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Learning the Nash Equilibrium

Theorem
If EWF is run over n steps with �t = �, then with probability 1� �

Rn = max
a1

1
n

nX
t=1

u1;t (a1)� 1
n

nX
t=1

u1;t (a1;t ) � log (A1)

n�
+
�

8
+

r
1

2n
log

1
�

Setting � =
p

8 log (A1) =n we obtain

Rn �
r

log (A1)

2n
+

r
1

2n
log(1=�)

Remarks

� lim supn!1Rn � 0 ) Hannan’s consistency

� Rate of convergence O(1=
p

n)

� In self-play EWF converges to the Nash equilibrium
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Learning the Nash Equilibrium

Version 2: [Randomization] exponentially weighted forcaster (EWF)

� Initialize weights w0(a) = 0 for all a 2 A1

� For t = 1; : : : ;n
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Learning the Nash Equilibrium

Problem :

� Player plays action a1;t � �1;t

� Player receives payoff u1;t (a1;t )

� Update weights u1;t (a1;t )

wt (a) = wt�1(a) exp (�tu1;t (a)) [exponentiated utility]

Solution :

� Importance sampling

eu1;t (a) =

(
u1;t (a1;t )
�1;t (a1;t )

if a = a1;t

0 otherwise

� Unbiased estimator

8a 2 A1 Ea��1;t [eu1;t (a)] = �1;t (a)
u1;t (a)
�1;t

+(1� �1;t (a))�0 = u1;t (a)
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Learning the Nash Equilibrium

Version 3: EWF for Exploration-Exploitation (EXP3)

� Initialize weights w0(a) = 0 for all a 2 A1

� For t = 1; : : : ;n
� Player chooses

�1;t (a) =
wt�1(a)P

b2A1
wt�1(b)

[prop: to weights ]

� Player plays action a1;t � �1;t

� Player receives payoff u1;t (a1;t )

� Compute pseudo-payoffs

eu1;t (a) =

(
u1;t(a1;t)
�1;t(a1;t)

if a = a1;t

0 otherwise

� Update weights u1;t (a1;t )

wt (a) = wt�1(a) exp (�teu1;t (a))
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Learning the Nash Equilibrium

Theorem

If EXP3 is run over n steps with �t =
p

2 log (A1) = (nA1), then its
psuedo-regret is bounded as

Rn = max
a1

1
n

nX
t=1

E [u1;t (a1)]� 1
n

nX
t=1

E [u1;t (a1;t )] �
r

2A1 log (A1)

n

Remarks

� lim supn!1Rn � 0 ) Hannan’s consistency?

� Rate of convergence O(1=
p

n)

� Regret larger by a factor
p

A1 (observing 1 vs A1 payoffs)
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p

A1 (observing 1 vs A1 payoffs)
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Rock-Paper-Scissors– The Simulation

Action set A1 = A2 = f(R)ock, (P)aper, (S)cissorg

R P S
R 0, 0 -1, 1 5, -5
P 1, -1 0, 0 -1, 1
S -1, 1 1, -1 0, 0

� Equilibrium ��1 = (1=7; 11=21; 1=3)

� Value of the game V = 4=21(� 0:1904)
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Learning the Nash Equilibrium

Problem :

� Importance sampling is unbiased

eu1;t (a) =

(
u1;t (a1;t )
�1;t (a1;t )

if a = a1;t

0 otherwise
; Ea��1;t [eu1;t (a)] = u1;t (a)

� Variance
Va��1;t [eu1;t (a)]

�1;t (a)!0�! 1

Solution :

� Bias both pseudo-payoff

eu1;t (a) =
u1;t (a1;t ) I fa = a1;tg+ �t

�1;t (a1;t )

� Mix strategy with uniform exploration (now bounded below)

�1;t (a) = (1� 
t )
w1;t (a)P

b 2 A1w1;t (b)
+


t

A1
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Learning the Nash Equilibrium

Version 3: EWF for Exploration-Exploitation w.h.p. (EXP3.P)

� Initialize weights w0(a) = 0 for all a 2 A1

� For t = 1; : : : ;n
� Player chooses

�1;t (a) = (1� 
t )
w1;t (a)P

b 2 A1w1;t (b)
+


t

A1

� Player plays action a1;t � �1;t

� Player receives payoff u1;t (a1;t )

� Compute pseudo-payoffs

eu1;t (a) =
u1;t (a1;t ) I fa = a1;tg+ �t

�1;t (a1;t )

� Update weights u1;t (a1;t )

wt (a) = wt�1(a) exp (�teu1;t (a))
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Learning the Nash Equilibrium

Lemma
For �t � 1, let

eu1;t (a) =
u1;t (a1;t ) I fa = a1;tg+ �t

�1;t (a1;t )

Then, w.p. at least 1� �,

nX
t=1

ui ;t (a) �
nX

t=1

~ui ;t (a) +
log ��1

�t
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Learning the Nash Equilibrium

Theorem

If EXP3 is run over n steps with �t � �t =
p

2 log (A1) = (nA1),

t =

p
A1 log (A1) =n , then with probability 1� � its regret is

bounded as

Rn = max
a1

1
n

nX
t=1

u1;t (a1)� 1
n

nX
t=1

u1;t (a1;t ) � 6

r
A1 log (A1=�)

n

Remarks

� limn!1Rn � 0 ) Hannan’s consistency!

� EXP3.P in self-play converges to Nash equilibrium
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Summary

+ EXP3.P minimizes regret in adversarial environments
+ EXP3.P converges to Nash equilibria in self-play
+ No need to know

� Utility function (i.e., the rules of the game)

� Actions performed by the adversary

� Some of this can be extended to learn correlated equilibria
� Exponential may be tricky to manage
� Convergence is only in the empirical frequency
� Convergence is relatively slow
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Imperfect Information Extensive Form Games

The game

� Set of players N = f1; : : : ;ng and c chance player (e.g., deck)

� Set of possible sequences of actions H ;Z � H set of terminal
histories

� Player function P : H ! N [ fcg
� Set of information sets I = fI g (i.e., I is a subset of histories that

are not distinguishable)

� Utility of a terminal history ui : Z ! R

� Strategy �i : I ! D(A) (in all h 2 l such that P(h) = i)
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Extensive Form Games

Histories

� Prob. of reaching history h 2 H following joint strategy �; ��(h)

� Prob. of reaching information set I 2 I following joint strategy
�, ��(I ) =

P
h2I �

�(h)

� Prob. of reaching history h 2 H following joint strategy ��i ,
except player i following actions in h w.p. 1, ��

�i (h)

� Prob. of reaching history h 2 H following player i ’s actions,
except others, ��

i (h)

� Replacement of �(I ) to �(a); �I!a

Solution concept

� Nash equilibrium (��1 ; �
�
2) = argmax�1 min�2 u1 (�1; �2)

� Value of the game V = max�1 min�2 u1 (�1; �2)

� Remark: other concepts exist in this case, NE
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The Regret View

� Regret in hindsight w.r.t. any fixed strategy �1

Rn (�1) =
1
n

nX
t=1

u1 (�1; �2;t )� 1
n

nX
t=1

u1 (�1;t ; �2;t )

� Regret against the best strategy in hindsight

Rn = max
�1

Rn (�1)

� Empirical strategy:

b�1;n(I ; a) =
Pn

t=1 �
�t
i (I )�t (I ; a)Pn

t=1 �
�t
i (l)
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Regret Minimization and Nash Equilibria

Theorem
A learning algorithm is Hannan’s consistent if

lim sup
n!1

Rn � 0 a :s :

Given a two-player zero-sum extensive-form game with value V, if
players choose strategies �1;t and �2;t using a Hannan’s consistent
algorithm, then

lim
n!1

1
n

nX
t=1

u1 (�1;t ; �2;t ) = V

Furthermore, the joint empirical strategy

b�1;n � b�2;n
n!1�! f(��1 ; ��2)gNash
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Regret Matching Algorithm

� Back to Rock-Paper-Scissors

� Let a1 = rock and a2 = paper

� Then the counterfactual regret

r (a1 ! rock) = u1 (rock ; a2;t )� u1 (a1;t ; a2;t ) = �1� (�1) = 0

r (a1 ! paper ) = u1 ( paper, ; a2;t )�u1 (a1;t ; a2;t ) = 0�(�1) = 1

r (a1 ! scissors ) = u1 (scissors; a2;t )�u1 (a1;t ; a2;t ) = 1�(�1) = 2

� Regret matching idea

�(a) =
r (a1 ! a)P

b2A1
r (a1 ! b)
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Sequential Problem

A learning problem

� For t = 1; : : : ;n
� Player 1 chooses �1;t

� Player 1 executes actions prescribed by �1;t through a full game
� Player 1 receives payoff u1;t
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Counterfactual Regret

� Counterfactual value of a history

vi (�; h) =
X

z2Z ;h�z

��

�i (h)�
�(h ; z )ui (z )

� Counterfactual regret of not taking a in h

r�

i (h ; a) = vi (�I!a ; h)� vi (�; h); I � h

� Counterfactual regret of not taking a in an information set I

r�

i (I ; a) =
X
h2I

r�

i (h ; a)

� Cumulative counterfactual regret

Ri ;t (I ; a) =
tX

s=1

r�t
i (I ; a)
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Learning the Nash Equilibrium

Version 1: Counterfactual Regret Minimization (CFR)

� For t = 1; : : : ;n
� Player 1 chooses strategy

�1;t (l ; a) =

8<:
R+1;t (l;a)P

b2A1
R+1;t (I ;b)

if
P

b2A1
R+

1;t (l ; b) > 0

1
A1

otherwise

� Player 1 executes actions prescribed by �1;t through a full game
� Player 1 receives payoff u1;t

� Player 1 computes instantaneous regret r�t
i over information sets

observed over the game

R+ = maxf0;Rg

47



Learning the Nash Equilibrium

Theorem
If CFR is run over n steps, then the regret is bounded as

Rn = max
�1

1
n

nX
t=1

u1 (�1; �2;t )� 1
n

nX
t=1

u1 (�1;t ; �2;t ) � jIi j
r

A1

n

Remarks

� limn!1Rn � 0 ) Hannan’s consistency

� Rate of convergence O(1=
p

n)

� Player 1 receives payoff u1;t

� Linear dependence on the number of information sets

� In self-play EWF converges to the Nash equilibrium
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Learning the Nash Equilibrium

Version 2: Counterfactual Regret Minimization+ (CFR+)

� For t = 1; : : : ;n
� At t even player 1 chooses strategy

�1;t (l ; a) =

( Q1;t (l;a)P
b2A1

Q1;t (I ;b)
if
P

b2A1
Q1;t (l ; b) > 0

1
A1

otherwise

� At t odd player 1 chooses strategy �1;t = �1;t�1

� Player 1 executes actions prescribed by �1;t through a full game
� Player 1 receives payoff u1;t

� Player 1 computes instantaneous regret r�t
i over information sets

observed over the game

� Return b�1;n =

nX
t=1

2t
n2 + n

�1;t

Q1;t =
�
Q1;t�1 + r�t�1

i

�+
instead of R+

1;t =

 
t�1X
s=1

r�s
i

!+
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Learning the Nash Equilibrium

If CFR+ is run over n steps, then the regret is bounded as

Rn = max
�1

1
n

nX
t=1

u1 (�1; �2;t )� 1
n

nX
t=1

u1 (�1;t ; �2;t ) � jIi j
r

A1

n

Remarks

� Same performance as CFR

� Empirically is more reactive

� Empirically b�1;t tends to converge
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CFR in Large Problems: Heads-up Limit Texas Hold’em

The problem

� Four rounds of cards, four rounds of betting, discrete bets

� About 1018 states, 3:2� 1014 information sets

Abstraction: cluster together similar histories

� Symmetries (reducing to 1013 information sets)

� Clustering

� Buckets based on (roll-out) hand strength
� Hierarchical buckets (e.g., second hand is indexed by the first

bucket as well)
� About 1:65� 1012 states, 5:73� 107 information sets

Engineering:

� Rounding: �(a) = 0:0 if smaller than threshold, fixed-point arithmetic

� Dynamic compression regret and strategy (from 262 TiB to 10.9 TiB)

� Distribute recursive computation of regret and strategy over rounds
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CFR in Large Problems: Heads-up Limit Texas Hold’em
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