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Introduction

Consider the problem of repeated decision making in the presence of
model uncertainty, i.e., online optimization problem.
Partial feedback leads to inherent tradeoff between exploration and
exploitation.

Figure: Online decision algorithm
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Introduction

Thompson sampling, posterior sampling, or probability matching is a
simple algorithm to solve online optimization with partial feedback.

We will establish performance guarantees in the form of regret bounds
for TS based on an information-theoretic analysis.
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Problem Formulation

The decision–maker sequentially chooses actions (At)t∈N from the
action set A and observes the corresponding outcomes (Yt,At)t∈N.

Let Yt ≡ (Yt,a)a∈A be the vector of all outcomes at time t ∈ N which
follows the “true outcome distribution” p∗. Here p∗ itself is randomly
drawn from the family of distributions P.

We assume that, conditioned on p∗, (Yt)t∈N is an iid sequence
distributed according to p∗.

A fixed and known reward function maps each outcome y ∈ Y to
some reward R(y)

The true optimal action A∗ ∈ arg max
a∈A

E [R(Yt,a)|p∗] = E [R(Yt,a)|p∗a]

is also a random variable.
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Regret and Randomized policies

Our objective is to minimize the Bayesian regret

E [Regret(T )] = E

[
E

[
T∑
t=1

[R(Yt,A∗)−R(Yt,At)] |p∗
]]

, (1)

the expectation is taken over the randomness in the actions At and
the outcomes Yt, and over the prior distribution over p∗.

Actions are chosen based on the history of past observations and
possibly some external source of randomness (Ut)t∈N. (Ut)t∈N is
white and independent of outcomes {Yt,a}t∈N,a∈A, and p∗.

The filtration (Ft)t∈N is the sigma–algebra generated by(
A1, Y1,A1 , ..., At−1, Yt−1,At−1

)
. Given the history, At is random only

through its dependence on Ut.

Randomized policy π: An action is chosen at time t by randomizing
according to πt(·) = P(At ∈ ·|Ft).
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Further Asumptions

Assumption 1

sup
y∈Y

R(y)− inf
y∈Y

R(y) ≤ 1.

Assumption 2

A is finite.
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Basic Measures and Relations in Information Theory

Let P (X) = P(X ∈ ·) denote the distribution function of random
variable X. Similarly, define P (X|Y ) = P(X ∈ ·|Y ) and
P (X|Y = y) = P(X ∈ ·|Y = y).

Suppose X is supported on a finite set X . The Shannon entropy of
X is defined as

H(X) = −
∑
x∈X

P(X = x) logP(X = x).

The first fact establishes uniform bounds on the entropy of a
probability distribution.

Fact 1

0 ≤ H(X) ≤ log(|X |).
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Basic Measures and Relations in Information Theory

The entropy of X conditional on a random variable Y = y is

H(X|Y = y) = −
∑
x∈X

P (X = x|Y = y) logP(X = x|Y = y)

The conditional entropy of X given Y is,

H(X|Y ) = EY

[
−
∑
x∈X

P (X = x|Y ) logP(X = x|Y )

]
,

For two probability measures P and Q, if P is absolutely continuous
with respect to Q, the Kullback–Leibler divergence between them is

D(P ||Q) =

∫
log

(
dP

dQ

)
dP (2)
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Basic Measures and Relations in Information Theory

Fact 2

(Gibbs’ inequality) For any probability distributions P and Q such that P
is absolutely continuous with respect to Q, D (P ||Q) ≥ 0 with equality if
and only if P = Q P–almost everywhere.

The mutual information between X and Y

I(X;Y ) = D (P (X,Y ) ||P (X)P (Y )) (3)

the next fact states that the mutual information between X and Y is
the expected reduction in the entropy due to observing Y

Fact 3

(Entropy reduction form of mutual information)

I (X;Y ) = H(X)−H(X|Y )

Hao Liang (CUHK-Shenzhen) Thompson Sampling May 5, 2019 10 / 34



Basic Measures and Relations in Information Theory

The mutual information between X and Y , conditional on a third
random variable Z is

I(X;Y |Z) = H(X|Z)−H(X|Y,Z),

it can also be expressed as

I(X;Y |Z) = EZ [D (P ((X,Y )|Z) ||P (X|Z)P (X|Z))] .

Fact 4

If Z is jointly independent of X and Y , then I(X;Y |Z) = I(X;Y ).
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Basic Measures and Relations in Information Theory

The mutual information between a random variable X and a
collection of random variables (Z1, ..., ZT ) can be expressed elegantly
using the following “chain rule.”

Fact 5

(Chain Rule of Mutual Information)

I(X; (Z1, ...ZT )) = I (X;Z1) + I (X;Z2|Z1) + ...+ I (X;ZT |Z1, ..., ZT ) .

Fact 6

(KL divergence form of mutual information)

I (X;Y ) = EX [D (P (Y |X) || P (Y ))]

=
∑
x∈X

P(X = x)D (P (Y |X = x) ||P (Y ))
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Notation Under Posterior Distributions

Let
Pt(·) = P(·|Ft) = P(·|A1, Y1,A1 , ..., At−1, Yt−1,At−1)

and Et [·] = E[·|Ft].
Define

Ht(X) = −
∑
x∈X

Pt(X = x) logPt(X = x)

Ht(X|Y ) = Et

[
−
∑
x∈X

Pt(X = x|Y ) logPt(X = x|Y )

]
It(X;Y ) = Ht(X)−Ht(X|Y ).

By taking their expectation, we recover the standard definition of
conditional entropy and conditional mutual information:

E[Ht(X)] = H(X|A1, Y1,A1 , ..., At−1, Yt−1,At−1)

E[It(X;Y )] = I
(
X;Y |A1, Y1,A1 , ..., At−1, Yt−1,At−1

)
.
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Thompson Sampling

The Thompson sampling algorithm simply samples actions according
to the posterior probability they are optimal.

Actions are chosen randomly at time t according to the sampling
distribution πTS

t = P(A∗ = ·|Ft).

Consider the case where P = {pθ}θ∈Θ is some parametric family of
distributions, and p∗ corresponds to a random index θ∗ ∈ Θ in the
sense that p∗ = pθ∗ almost surely.

Practical implementations of TS use two simple steps:

An index θ̂t ∼ P (θ∗ ∈ ·|Ft) is sampled from the posterior distribution
of the true index θ∗.
Selects the action At ∈ arg max

a∈A
E
[
R(Yt,a)|θ∗ = θ̂t

]
that would be

optimal if the sampled parameter were actually the true parameter.
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Example of TS: Beta-Bernouli Bandit

Action a ∈ A is yields either a a success (Ya = 1) or a failure
(Ya = 0), and the outcomes are rewards, i.e., R(y) = y.

Suppose action a produces a success with probability θ∗a, therefore for
each a ∈ A, E

y∼p∗a
[R(y)] = θ∗a and A∗ ∈ arg max

a∈A
θ∗a.

Since beta distribution is the conjugate prior of Bernouli distribution,
we take independent priors over each θ∗a to be beta-distributed with
α = (α1, ..., α|A|) and β = (β1, ..., β|A|).

For each action a, the prior probability density function of θ∗a is

p(θ∗a) =
Γ(αa + βa)

Γ(αa)Γ(βa)
(θ∗a)

αa−1(1− θ∗a)βa−1,
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Example of TS: Beta-Bernouli Bandit

Due to conjugacy properties, each action’s posterior distribution is
also beta with parameters that can be updated according to a simple
rule:

(αa, βa)←

{
(αa, βa) if At 6= a

(αa, βa) + (Rt, 1−Rt) if At = a.

Algorithm 1 Beta-Bernouli Thompson Sampling

1: Sample Model:
θ̂t ∼ Beta(αt, βt)

2: Select Action:
At ∈ arg maxa∈A θ̂t,a
Apply At and observe Rt

3: Update Statistics:
(αAt , βAt)← (αAt , βAt) + (Rt, 1−Rt)

4: Increment t and Goto Step 1
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The Information Ratio

The expected information gain is defined as the expected reduction in
the entropy of the posterior distribution of A∗, i.e., It (A∗; (At, Yt,At))

We relate the expected regret of Thompson sampling to its expected
information gain by information ratio,

Γt :=
Et [R(Yt,A∗)−R(Yt,At)]

2

It (A∗; (At, Yt,At))

The information ratio provides a natural measure of each problem’s
information structure, i.e., the relations between actions and rewards.

The expected regret is bounded in terms of the inforation ratio and
information gain.
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A General Regret Bound

We provide a general upper bound on the expected regret of
Thompson sampling that depends on the time horizon T , H(A∗), and
any worst–case upper bound on the information ratio Γt.

Proposition 1

For any T ∈ N, if Γt ≤ Γ almost surely for each t ∈ {1, .., T},

E
[
Regret(T, πTS)

]
≤
√

ΓH(A∗)T .

We will provide bounds on Γt for some classes of online optimization
problems.
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A General Regret Bound

Proof.

Recall that Et[·] = E[·|Ft] and we use It to denote mutual information
evaluated under the base measure Pt. Then,

E
[
Regret(T, πTS)

] (a)
= E

T∑
t=1

Et [R(Yt,A∗)−R(Yt,At)]

= E
T∑
t=1

√
ΓtIt (A∗; (At, Yt,At))

≤
√

Γ

(
E

T∑
t=1

√
It (A∗; (At, Yt,At))

)
(b)

≤

√√√√ΓTE
T∑
t=1

It (A∗; (At, Yt,At)),
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A General Regret Bound

Proof.

For the remainder of this proof, let Zt = (At, Yt,At). Then,

E [It (A∗;Zt)] = I (A∗;Zt|Z1, ..., Zt−1) ,

and therefore

E
T∑
t=1

It (A∗;Zt) =

T∑
t=1

I (A∗;Zt|Z1, ..., Zt−1)
(c)
= I (A∗ ; Z1, ...ZT )

= H(A∗)−H(A∗|Z1, ...ZT )

(d)

≤ H(A∗).
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Bounding the Information Ratio

By Proposition 1, we can get explicit regret bounds by establishing
bounds on the information ratio.

The information ratio captures the influence of sampling some actions
on making inferences about different actions, which depends on the
class of problems.

Worst case: bounded by the number of actions; actions could provide
no information about others.
Best case: bounded by a numerical constant; full information, sampling
one action perfectly reveals the rewards for any other action.
Linear bandit case: bounded by the dimension of action space;
sampling actions could provide some information about others.
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An Alternative Representation of the Information Ratio

To simplify notation, from now on we will omit the subscript t from
Et,Pt, Pt, At, Yt, Ht, and It.

The following proposition expresses the information ratio of
Thompson sampling in a form that facilitates further analysis.

Proposition 2

I (A∗; (A, YA)) =
∑
a∈A

P(A = a)I(A∗;Ya)

=
∑

a,a∗∈A
P(A∗ = a)P(A∗ = a∗) [D (P (Ya|A∗ = a∗) ||P (Ya))] .

and

E [R(YA∗)−R(YA)] =
∑
a∈A

P(A∗ = a) (E [R(Ya)|A∗ = a]− E[R(Ya)].
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An Alternative Representation of the Information Ratio

The numerator captures how much knowing that the selected action
is optimal influences the expected reward observed.
The denominator measures how much, on average, knowing which
action is optimal changes the observations at the selected action.

Proof.

The action A is selected based on past observations and independent
random noise. Therefore, conditioned on the history, A is jointly
independent of A∗ and the outcome vector Y ≡ (Ya)a∈A.

E [R(YA∗)−R(YA)]

=
∑
a∈A

P(A∗ = a)E [R(Ya)|A∗ = a]−
∑
a∈A

P(A = a)E[R(Ya)|A = a]

=
∑
a∈A

P(A∗ = a) (E [R(Ya)|A∗ = a]− E[R(Ya)]) ,
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An Alternative Representation of the Information Ratio

Proof.

I(A∗; (A, YA))

(a)
= I(A∗;A) + I(A∗;YA|A)

(b)
= I(A∗;YA|A)

=
∑
a∈A

P(A = a)I(A∗;YA|A = a)

(c)
=

∑
a∈A

P(A = a)I(A∗;Ya)

(d)
=

∑
a∈A

P(A = a)

(∑
a∗∈A

P(A∗ = a∗)D (P (Ya|A∗ = a∗) ||P (Ya))

)
=

∑
a,a∗∈A

P(A∗ = a)P(A∗ = a∗) [D (P (Ya|A∗ = a∗) ||P (Ya))] .
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Preliminaries

Here we state two basic facts that are used in bounding the
information ratio.

The first fact lower bounds the Kullback–Leibler divergence between
two bounded random variables in terms of the difference between
their means.

Fact 7

For any distributions P and Q such that that P is absolutely continuous
with respect to Q, any random variable X : Ω→ X and any g : X → R
such that sup g − inf g ≤ 1,

EP [g(X)]− EQ [g(X)] ≤
√

1

2
D (P ||Q),

where EP and EQ denote the expectation operators under P and Q.

Hao Liang (CUHK-Shenzhen) Thompson Sampling May 5, 2019 25 / 34



Preliminaries

Because of Assumption 1, this fact shows

E [R(Ya)|A∗ = a∗]− E [R(Ya)] ≤
√

1

2
D (P (Ya|A∗ = a∗) || P (Ya)).

For any rank r matrix M ∈ Rn×n with singular values σ1, ..., σr, let

‖M‖∗ :=

r∑
i=1

σi, ‖M‖F :=
√∑m

k=1

∑n
j=1M

2
i,j =

√∑r
i=1 σ

2
i ,

denote respectively the Nuclear norm and Frobenius norm of M .

Fact 8

For any matrix M ∈ Rk×k,

Trace (M) ≤
√

Rank(M)‖M‖F.
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Worst Case Bound

The next proposition provides a bound on the information ratio that
holds whenever rewards are bounded, and this scaling cannot be
improved in general.

Proposition 3

For any t ∈ N, Γt ≤ |A|/2 almost surely.

Combining Proposition 3 with Proposition 1 shows that

E
[
Regret(T, πTS)

]
≤
√

1
2 |A|H(A∗)T .
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Worst Case Bound

Proof.

E [R(YA∗)−R(YA)]
2

(a)
=

(∑
a∈A

P(A∗ = a) (E [R(Ya)|A∗ = a]− E[R(Ya)])

)2

(b)

≤ |A|
∑
a∈A

P(A∗ = a)2 (E [R(Ya)|A∗ = a]− E[R(Ya)])
2

≤ |A|
∑

a,a∗∈A
P(A∗ = a)P(A∗ = a∗) (E [R(Ya)|A∗ = a∗]− E[R(Ya)])

2

(c)

≤ |A|
2

∑
a,a∗∈A

P(A∗ = a)P(A∗ = a∗)D (P (Ya|A∗ = a∗) || P (Ya))

(d)
=

|A|I(A∗; (A, Y ))

2
.
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Full Information

Problems with full information is an extreme case of our formulation.
The outcome Yt,a is perfectly revealed by observing Yt,ã for any
ã 6= a, in other words, what is learned does not depend on the
selected action.

Proposition 4

Suppose for each t ∈ N there is a random variable Zt : Ω→ Z such that
for each a ∈ A, Yt,a = (a, Zt). Then for all t ∈ N, Γt ≤ 1/2 almost surely.

Combining this result with Proposition 1 shows

E
[
Regret(T, πTS)

]
≤
√

1
2H(A∗)T .
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Full Information

Proof.

E [R(YA∗)−R(YA)]

(a)
=

∑
a∈A

P(A∗ = a) (E [R(Ya)|A∗ = a]− E[R(Ya)])

(b)

≤
∑
a∈A

P(A∗ = a)

√
1

2
D (P (Ya|A∗ = a) ||P (Ya))

(c)

≤
√

1

2

∑
a∈A

P(A∗ = a)D (P (Ya|A∗ = a) ||P (Ya))

(d)
=

√
1

2

∑
a,a∗∈A

P(A∗ = a)P(A∗ = a∗)D (P (Ya|A∗ = a∗) ||P (Ya))

(e)
=

√
I(A∗; (A, Y ))

2
.

Hao Liang (CUHK-Shenzhen) Thompson Sampling May 5, 2019 30 / 34



Linear Optimization Under Bandit Feedback

In this setting, each action is associated with a finite dimensional
feature vector, and the mean reward generated by an action is the
inner product between its known feature vector and some unknown
parameter vector.

Proposition 5

If A ⊂ Rd and for each p ∈ P there exists θp ∈ Rd such that for all a ∈ A

E
y∼pa

[R(y)] = aT θp,

then for all t ∈ N, Γt ≤ d/2 almost surely.

This result shows that

E
[
Regret(T, πTS)

]
≤
√

1
2H(A∗)dT ≤

√
1
2 log(|A|)dT for linear

bandit problems.
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Linear Optimization Under Bandit Feedback

Proof.

Write A = {a1, ..., aK} and let αi = P(A∗ = ai). Define M ∈ RK×K by

Mi,j =
√
αiαj (E[R(Yai

)|A∗ = aj ]− E[R(Yai
)]) ,

for all i, j ∈ {1, ..,K}. Then, by Proposition 2,

E [R(YA∗)−R(YA)] =

K∑
i=1

αi (E[R(Yai
)|A∗ = ai]− E[R(Yai

)]) = Trace(M).

Similarly, by Proposition 2,

I(A∗; (A, YA)) =
∑
i,j

αiαjD (P (Yai |A∗ = aj) ||P (Yai))

(a)

≥ 2
∑
i,j

αiαj (E[R(Yai)|A∗ = aj ]− E[R(Yai)])
2

= 2‖M‖2F,
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Linear Optimization Under Bandit Feedback

Proof.
This shows, by Fact 8, that

E [R(YA∗)−R(YA)]
2

I(A∗; (A, YA))
≤ Trace(M)2

2‖M‖2F
≤ Rank(M)

2
.

We now show Rank(M) ≤ d. Define

µ = E [θp∗ ] µj = E [θp∗ |A∗ = aj ] .

We have Mi,j =
√
αiαj((µ

j − µ)Tai) and therefore

M =


√
α1a

T
1

...

...√
αKa

T
K

 [ √α1(µ1 − µ) · · · · · · √αK(µK − µ)
]
.
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