An Information-Theoretic Analysis of Thompson Sampling

Hao Liang

The Chinese University of Hongkong, Shenzhen

May 5, 2019

Outline

(1) Introduction
(2) Problem Formulation
(3) Basic Measures and Relations in Information Theory

4 Thompson Sampling
(5) The Information Ratio and a General Regret Bound
(6) Bounding the Information Ratio

Introduction

- Consider the problem of repeated decision making in the presence of model uncertainty, i.e., online optimization problem.
- Partial feedback leads to inherent tradeoff between exploration and exploitation.

Figure: Online decision algorithm

Introduction

- Thompson sampling, posterior sampling, or probability matching is a simple algorithm to solve online optimization with partial feedback.
- We will establish performance guarantees in the form of regret bounds for TS based on an information-theoretic analysis.

Problem Formulation

- The decision-maker sequentially chooses actions $\left(A_{t}\right)_{t \in \mathbb{N}}$ from the action set \mathcal{A} and observes the corresponding outcomes $\left(Y_{t, A_{t}}\right)_{t \in \mathbb{N}}$.
- Let $Y_{t} \equiv\left(Y_{t, a}\right)_{a \in \mathcal{A}}$ be the vector of all outcomes at time $t \in \mathbb{N}$ which follows the "true outcome distribution" p^{*}. Here p^{*} itself is randomly drawn from the family of distributions \mathcal{P}.
- We assume that, conditioned on $p^{*},\left(Y_{t}\right)_{t \in \mathbb{N}}$ is an iid sequence distributed according to p^{*}.
- A fixed and known reward function maps each outcome $y \in \mathcal{Y}$ to some reward $R(y)$
- The true optimal action $A^{*} \in \underset{a \in \mathcal{A}}{\arg \max } \mathbb{E}\left[R\left(Y_{t, a}\right) \mid p^{*}\right]=\mathbb{E}\left[R\left(Y_{t, a}\right) \mid p_{a}^{*}\right]$ is also a random variable.

Regret and Randomized policies

- Our objective is to minimize the Bayesian regret

$$
\begin{equation*}
\mathbb{E}[\operatorname{Regret}(T)]=\mathbb{E}\left[\mathbb{E}\left[\sum_{t=1}^{T}\left[R\left(Y_{t, A^{*}}\right)-R\left(Y_{t, A_{t}}\right)\right] \mid p^{*}\right]\right] \tag{1}
\end{equation*}
$$

the expectation is taken over the randomness in the actions A_{t} and the outcomes Y_{t}, and over the prior distribution over p^{*}.

- Actions are chosen based on the history of past observations and possibly some external source of randomness $\left(U_{t}\right)_{t \in \mathbb{N}} .\left(U_{t}\right)_{t \in \mathbb{N}}$ is white and independent of outcomes $\left\{Y_{t, a}\right\}_{t \in \mathbb{N}, a \in \mathcal{A}}$, and p^{*}.
- The filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{N}}$ is the sigma-algebra generated by $\left(A_{1}, Y_{1, A_{1}}, \ldots, A_{t-1}, Y_{t-1, A_{t-1}}\right)$. Given the history, A_{t} is random only through its dependence on U_{t}.
- Randomized policy π : An action is chosen at time t by randomizing according to $\pi_{t}(\cdot)=\mathbb{P}\left(A_{t} \in \cdot \mid \mathcal{F}_{t}\right)$.

Further Asumptions

Assumption 1

$$
\sup _{\bar{y} \in \mathcal{Y}} R(\bar{y})-\inf _{\underline{y} \in \mathcal{Y}} R(\underline{y}) \leq 1 .
$$

Assumption 2

\mathcal{A} is finite.

Basic Measures and Relations in Information Theory

- Let $P(X)=\mathbb{P}(X \in \cdot)$ denote the distribution function of random variable X. Similarly, define $P(X \mid Y)=\mathbb{P}(X \in \cdot \mid Y)$ and $P(X \mid Y=y)=\mathbb{P}(X \in \cdot \mid Y=y)$.
- Suppose X is supported on a finite set \mathcal{X}. The Shannon entropy of X is defined as

$$
H(X)=-\sum_{x \in \mathcal{X}} \mathbb{P}(X=x) \log \mathbb{P}(X=x)
$$

- The first fact establishes uniform bounds on the entropy of a probability distribution.

Fact 1

$0 \leq H(X) \leq \log (|\mathcal{X}|)$.

Basic Measures and Relations in Information Theory

- The entropy of X conditional on a random variable $Y=y$ is

$$
H(X \mid Y=y)=-\sum_{x \in \mathcal{X}} \mathbb{P}(X=x \mid Y=y) \log \mathbb{P}(X=x \mid Y=y)
$$

- The conditional entropy of X given Y is,

$$
H(X \mid Y)=\mathbb{E}_{Y}\left[-\sum_{x \in \mathcal{X}} \mathbb{P}(X=x \mid Y) \log \mathbb{P}(X=x \mid Y)\right]
$$

- For two probability measures P and Q, if P is absolutely continuous with respect to Q, the Kullback-Leibler divergence between them is

$$
\begin{equation*}
D(P \| Q)=\int \log \left(\frac{d P}{d Q}\right) d P \tag{2}
\end{equation*}
$$

Basic Measures and Relations in Information Theory

Fact 2

(Gibbs' inequality) For any probability distributions P and Q such that P is absolutely continuous with respect to $Q, D(P \| Q) \geq 0$ with equality if and only if $P=Q P$-almost everywhere.

- The mutual information between X and Y

$$
\begin{equation*}
I(X ; Y)=D(P(X, Y) \| P(X) P(Y)) \tag{3}
\end{equation*}
$$

the next fact states that the mutual information between X and Y is the expected reduction in the entropy due to observing Y

Fact 3

(Entropy reduction form of mutual information)

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Basic Measures and Relations in Information Theory

- The mutual information between X and Y, conditional on a third random variable Z is

$$
I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)
$$

it can also be expressed as

$$
I(X ; Y \mid Z)=\mathbb{E}_{Z}[D(P((X, Y) \mid Z) \| P(X \mid Z) P(X \mid Z))]
$$

Fact 4

If Z is jointly independent of X and Y, then $I(X ; Y \mid Z)=I(X ; Y)$.

Basic Measures and Relations in Information Theory

- The mutual information between a random variable X and a collection of random variables $\left(Z_{1}, \ldots, Z_{T}\right)$ can be expressed elegantly using the following "chain rule."

Fact 5

(Chain Rule of Mutual Information)

$$
I\left(X ;\left(Z_{1}, \ldots Z_{T}\right)\right)=I\left(X ; Z_{1}\right)+I\left(X ; Z_{2} \mid Z_{1}\right)+\ldots+I\left(X ; Z_{T} \mid Z_{1}, \ldots, Z_{T}\right)
$$

Fact 6

(KL divergence form of mutual information)

$$
\begin{aligned}
I(X ; Y) & =\mathbb{E}_{X}[D(P(Y \mid X) \| P(Y))] \\
& =\sum_{x \in \mathcal{X}} \mathbb{P}(X=x) D(P(Y \mid X=x) \| P(Y))
\end{aligned}
$$

Notation Under Posterior Distributions

- Let

$$
\mathbb{P}_{t}(\cdot)=\mathbb{P}\left(\cdot \mid \mathcal{F}_{t}\right)=\mathbb{P}\left(\cdot \mid A_{1}, Y_{1, A_{1}}, \ldots, A_{t-1}, Y_{t-1, A_{t-1}}\right)
$$

and $\mathbb{E}_{t}[\cdot]=\mathbb{E}\left[\cdot \mid \mathcal{F}_{t}\right]$.

- Define

$$
\begin{aligned}
H_{t}(X) & =-\sum_{x \in \mathcal{X}} \mathbb{P}_{t}(X=x) \log \mathbb{P}_{t}(X=x) \\
H_{t}(X \mid Y) & =\mathbb{E}_{t}\left[-\sum_{x \in \mathcal{X}} \mathbb{P}_{t}(X=x \mid Y) \log \mathbb{P}_{t}(X=x \mid Y)\right] \\
I_{t}(X ; Y) & =H_{t}(X)-H_{t}(X \mid Y)
\end{aligned}
$$

- By taking their expectation, we recover the standard definition of conditional entropy and conditional mutual information:

$$
\begin{aligned}
\mathbb{E}\left[H_{t}(X)\right] & =H\left(X \mid A_{1}, Y_{1, A_{1}}, \ldots, A_{t-1}, Y_{t-1, A_{t-1}}\right) \\
\mathbb{E}\left[I_{t}(X ; Y)\right] & =I\left(X ; Y \mid A_{1}, Y_{1, A_{1}}, \ldots, A_{t-1}, Y_{t-1, A_{t-1}}\right) .
\end{aligned}
$$

Thompson Sampling

- The Thompson sampling algorithm simply samples actions according to the posterior probability they are optimal.
- Actions are chosen randomly at time t according to the sampling distribution $\pi_{t}^{\mathrm{TS}}=\mathbb{P}\left(A^{*}=\cdot \mid \mathcal{F}_{t}\right)$.
- Consider the case where $\mathcal{P}=\left\{p_{\theta}\right\}_{\theta \in \Theta}$ is some parametric family of distributions, and p^{*} corresponds to a random index $\theta^{*} \in \Theta$ in the sense that $p^{*}=p_{\theta^{*}}$ almost surely.
- Practical implementations of TS use two simple steps:
- An index $\hat{\theta}_{t} \sim \mathbb{P}\left(\theta^{*} \in \cdot \mid \mathcal{F}_{t}\right)$ is sampled from the posterior distribution of the true index θ^{*}.
- Selects the action $A_{t} \in \underset{a \in \mathcal{A}}{\arg \max } \mathbb{E}\left[R\left(Y_{t, a}\right) \mid \theta^{*}=\hat{\theta}_{t}\right]$ that would be optimal if the sampled parameter were actually the true parameter.

Example of TS: Beta-Bernouli Bandit

- Action $a \in \mathcal{A}$ is yields either a a success $\left(Y_{a}=1\right)$ or a failure $\left(Y_{a}=0\right)$, and the outcomes are rewards, i.e., $R(y)=y$.
- Suppose action a produces a success with probability θ_{a}^{*}, therefore for each $a \in \mathcal{A}, \underset{y \sim p_{a}^{*}}{\mathbb{E}}[R(y)]=\theta_{a}^{*}$ and $A^{*} \in \underset{a \in \mathcal{A}}{\arg \max } \theta_{a}^{*}$.
- Since beta distribution is the conjugate prior of Bernouli distribution, we take independent priors over each θ_{a}^{*} to be beta-distributed with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{|\mathcal{A}|}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{|\mathcal{A}|}\right)$.
- For each action a, the prior probability density function of θ_{a}^{*} is

$$
p\left(\theta_{a}^{*}\right)=\frac{\Gamma\left(\alpha_{a}+\beta_{a}\right)}{\Gamma\left(\alpha_{a}\right) \Gamma\left(\beta_{a}\right)}\left(\theta_{a}^{*}\right)^{\alpha_{a}-1}\left(1-\theta_{a}^{*}\right)^{\beta_{a}-1}
$$

Example of TS: Beta-Bernouli Bandit

- Due to conjugacy properties, each action's posterior distribution is also beta with parameters that can be updated according to a simple rule:

$$
\left(\alpha_{a}, \beta_{a}\right) \leftarrow \begin{cases}\left(\alpha_{a}, \beta_{a}\right) & \text { if } A_{t} \neq a \\ \left(\alpha_{a}, \beta_{a}\right)+\left(R_{t}, 1-R_{t}\right) & \text { if } A_{t}=a\end{cases}
$$

Algorithm 1 Beta-Bernouli Thompson Sampling

1: Sample Model:
$\hat{\theta}_{t} \sim \operatorname{Beta}\left(\alpha_{t}, \beta_{t}\right)$
2: Select Action:
$A_{t} \in \arg \max _{a \in \mathcal{A}} \hat{\theta}_{t, a}$
Apply A_{t} and observe R_{t}
3: Update Statistics:
$\left(\alpha_{A_{t}}, \beta_{A_{t}}\right) \leftarrow\left(\alpha_{A_{t}}, \beta_{A_{t}}\right)+\left(R_{t}, 1-R_{t}\right)$
4: Increment t and Goto Step 1

The Information Ratio

- The expected information gain is defined as the expected reduction in the entropy of the posterior distribution of A^{*}, i.e., $I_{t}\left(A^{*} ;\left(A_{t}, Y_{t, A_{t}}\right)\right)$
- We relate the expected regret of Thompson sampling to its expected information gain by information ratio,

$$
\Gamma_{t}:=\frac{\mathbb{E}_{t}\left[R\left(Y_{t, A^{*}}\right)-R\left(Y_{t, A_{t}}\right)\right]^{2}}{I_{t}\left(A^{*} ;\left(A_{t}, Y_{t, A_{t}}\right)\right)}
$$

- The information ratio provides a natural measure of each problem's information structure, i.e., the relations between actions and rewards.
- The expected regret is bounded in terms of the inforation ratio and information gain.

A General Regret Bound

- We provide a general upper bound on the expected regret of Thompson sampling that depends on the time horizon $T, H\left(A^{*}\right)$, and any worst-case upper bound on the information ratio Γ_{t}.

Proposition 1

For any $T \in \mathbb{N}$, if $\Gamma_{t} \leq \bar{\Gamma}$ almost surely for each $t \in\{1, . ., T\}$,

$$
\mathbb{E}\left[\operatorname{Regret}\left(T, \pi^{\mathrm{TS}}\right)\right] \leq \sqrt{\bar{\Gamma} H\left(A^{*}\right) T}
$$

- We will provide bounds on Γ_{t} for some classes of online optimization problems.

A General Regret Bound

Proof.

Recall that $\mathbb{E}_{t}[\cdot]=\mathbb{E}\left[\cdot \mid \mathcal{F}_{t}\right]$ and we use I_{t} to denote mutual information evaluated under the base measure \mathbb{P}_{t}. Then,

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{Regret}\left(T, \pi^{\mathrm{TS}}\right)\right] & \stackrel{(a)}{=} \mathbb{E} \sum_{t=1}^{T} \mathbb{E}_{t}\left[R\left(Y_{t, A^{*}}\right)-R\left(Y_{t, A_{t}}\right)\right] \\
& =\mathbb{E} \sum_{t=1}^{T} \sqrt{\Gamma_{t} I_{t}\left(A^{*} ;\left(A_{t}, Y_{t, A_{t}}\right)\right)} \\
& \leq \sqrt{\bar{\Gamma}}\left(\mathbb{E} \sum_{t=1}^{T} \sqrt{I_{t}\left(A^{*} ;\left(A_{t}, Y_{t, A_{t}}\right)\right)}\right) \\
& \stackrel{(b)}{\leq} \sqrt{\bar{\Gamma} T \mathbb{E} \sum_{t=1}^{T} I_{t}\left(A^{*} ;\left(A_{t}, Y_{t, A_{t}}\right)\right)}
\end{aligned}
$$

A General Regret Bound

Proof.

For the remainder of this proof, let $Z_{t}=\left(A_{t}, Y_{t, A_{t}}\right)$. Then,

$$
\mathbb{E}\left[I_{t}\left(A^{*} ; Z_{t}\right)\right]=I\left(A^{*} ; Z_{t} \mid Z_{1}, \ldots, Z_{t-1}\right),
$$

and therefore

$$
\begin{aligned}
\mathbb{E} \sum_{t=1}^{T} I_{t}\left(A^{*} ; Z_{t}\right) & =\sum_{t=1}^{T} I\left(A^{*} ; Z_{t} \mid Z_{1}, \ldots, Z_{t-1}\right) \stackrel{(c)}{=} I\left(A^{*} ; Z_{1}, \ldots Z_{T}\right) \\
& =H\left(A^{*}\right)-H\left(A^{*} \mid Z_{1}, \ldots Z_{T}\right) \\
& \left(\underset{\sim}{(d)} H\left(A^{*}\right)\right.
\end{aligned}
$$

Bounding the Information Ratio

- By Proposition 1, we can get explicit regret bounds by establishing bounds on the information ratio.
- The information ratio captures the influence of sampling some actions on making inferences about different actions, which depends on the class of problems.
- Worst case: bounded by the number of actions; actions could provide no information about others.
- Best case: bounded by a numerical constant; full information, sampling one action perfectly reveals the rewards for any other action.
- Linear bandit case: bounded by the dimension of action space; sampling actions could provide some information about others.

An Alternative Representation of the Information Ratio

- To simplify notation, from now on we will omit the subscript t from $\mathbb{E}_{t}, \mathbb{P}_{t}, P_{t}, A_{t}, Y_{t}, H_{t}$, and I_{t}.
- The following proposition expresses the information ratio of Thompson sampling in a form that facilitates further analysis.

Proposition 2

$$
\begin{aligned}
I\left(A^{*} ;\left(A, Y_{A}\right)\right) & =\sum_{a \in \mathcal{A}} \mathbb{P}(A=a) I\left(A^{*} ; Y_{a}\right) \\
& =\sum_{a, a^{*} \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right) \mathbb{P}\left(A^{*}=a^{*}\right)\left[D\left(P\left(Y_{a} \mid A^{*}=a^{*}\right) \| P\left(Y_{a}\right)\right)\right]
\end{aligned}
$$

and

$$
\mathbb{E}\left[R\left(Y_{A^{*}}\right)-R\left(Y_{A}\right)\right]=\sum_{a \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right)\left(\mathbb{E}\left[R\left(Y_{a}\right) \mid A^{*}=a\right]-\mathbb{E}\left[R\left(Y_{a}\right)\right]\right.
$$

An Alternative Representation of the Information Ratio

- The numerator captures how much knowing that the selected action is optimal influences the expected reward observed.
- The denominator measures how much, on average, knowing which action is optimal changes the observations at the selected action.

Proof.

The action A is selected based on past observations and independent random noise. Therefore, conditioned on the history, A is jointly independent of A^{*} and the outcome vector $Y \equiv\left(Y_{a}\right)_{a \in \mathcal{A}}$.

$$
\begin{aligned}
& \mathbb{E}\left[R\left(Y_{A^{*}}\right)-R\left(Y_{A}\right)\right] \\
= & \sum_{a \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right) \mathbb{E}\left[R\left(Y_{a}\right) \mid A^{*}=a\right]-\sum_{a \in \mathcal{A}} \mathbb{P}(A=a) \mathbb{E}\left[R\left(Y_{a}\right) \mid A=a\right] \\
= & \sum_{a \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right)\left(\mathbb{E}\left[R\left(Y_{a}\right) \mid A^{*}=a\right]-\mathbb{E}\left[R\left(Y_{a}\right)\right]\right),
\end{aligned}
$$

An Alternative Representation of the Information Ratio

Proof.

$$
\begin{array}{ll}
& I\left(A^{*} ;\left(A, Y_{A}\right)\right) \\
\stackrel{(a)}{=} & I\left(A^{*} ; A\right)+I\left(A^{*} ; Y_{A} \mid A\right) \\
\stackrel{(b)}{=} & I\left(A^{*} ; Y_{A} \mid A\right) \\
= & \sum_{a \in \mathcal{A}} \mathbb{P}(A=a) I\left(A^{*} ; Y_{A} \mid A=a\right) \\
\stackrel{(c)}{=} \sum_{a \in \mathcal{A}} \mathbb{P}(A=a) I\left(A^{*} ; Y_{a}\right) \\
\stackrel{(d)}{=} \sum_{a \in \mathcal{A}} \mathbb{P}(A=a)\left(\sum_{a^{*} \in \mathcal{A}} \mathbb{P}\left(A^{*}=a^{*}\right) D\left(P\left(Y_{a} \mid A^{*}=a^{*}\right) \| P\left(Y_{a}\right)\right)\right) \\
= & \sum_{a, a^{*} \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right) \mathbb{P}\left(A^{*}=a^{*}\right)\left[D\left(P\left(Y_{a} \mid A^{*}=a^{*}\right) \| P\left(Y_{a}\right)\right)\right] .
\end{array}
$$

Preliminaries

- Here we state two basic facts that are used in bounding the information ratio.
- The first fact lower bounds the Kullback-Leibler divergence between two bounded random variables in terms of the difference between their means.

Fact 7

For any distributions P and Q such that that P is absolutely continuous with respect to Q, any random variable $X: \Omega \rightarrow \mathcal{X}$ and any $g: \mathcal{X} \rightarrow \mathbb{R}$ such that $\sup g-\inf g \leq 1$,

$$
\mathbb{E}_{P}[g(X)]-\mathbb{E}_{Q}[g(X)] \leq \sqrt{\frac{1}{2} D(P \| Q)}
$$

where \mathbb{E}_{P} and \mathbb{E}_{Q} denote the expectation operators under P and Q.

Preliminaries

- Because of Assumption 1, this fact shows

$$
\mathbb{E}\left[R\left(Y_{a}\right) \mid A^{*}=a^{*}\right]-\mathbb{E}\left[R\left(Y_{a}\right)\right] \leq \sqrt{\frac{1}{2} D\left(P\left(Y_{a} \mid A^{*}=a^{*}\right) \| P\left(Y_{a}\right)\right)}
$$

- For any rank r matrix $M \in \mathbb{R}^{n \times n}$ with singular values $\sigma_{1}, \ldots, \sigma_{r}$, let

$$
\|M\|_{*}:=\sum_{i=1}^{r} \sigma_{i}, \quad\|M\|_{F}:=\sqrt{\sum_{k=1}^{m} \sum_{j=1}^{n} M_{i, j}^{2}}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}
$$

denote respectively the Nuclear norm and Frobenius norm of M.

Fact 8

For any matrix $M \in \mathbb{R}^{k \times k}$,

$$
\operatorname{Trace}(M) \leq \sqrt{\operatorname{Rank}(M)}\|M\|_{\mathrm{F}}
$$

Worst Case Bound

- The next proposition provides a bound on the information ratio that holds whenever rewards are bounded, and this scaling cannot be improved in general.

Proposition 3

For any $t \in \mathbb{N}, \Gamma_{t} \leq|\mathcal{A}| / 2$ almost surely.

- Combining Proposition 3 with Proposition 1 shows that $\mathbb{E}\left[\operatorname{Regret}\left(T, \pi^{\mathrm{TS}}\right)\right] \leq \sqrt{\frac{1}{2}|\mathcal{A}| H\left(A^{*}\right) T}$.

Worst Case Bound

Proof.

$$
\mathbb{E}\left[R\left(Y_{A^{*}}\right)-R\left(Y_{A}\right)\right]^{2}
$$

$\stackrel{(a)}{=}\left(\sum_{a \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right)\left(\mathbb{E}\left[R\left(Y_{a}\right) \mid A^{*}=a\right]-\mathbb{E}\left[R\left(Y_{a}\right)\right]\right)\right)^{2}$
$\stackrel{(b)}{\leq}|\mathcal{A}| \sum_{a \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right)^{2}\left(\mathbb{E}\left[R\left(Y_{a}\right) \mid A^{*}=a\right]-\mathbb{E}\left[R\left(Y_{a}\right)\right]\right)^{2}$
$\leq|\mathcal{A}| \sum_{a, a^{*} \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right) \mathbb{P}\left(A^{*}=a^{*}\right)\left(\mathbb{E}\left[R\left(Y_{a}\right) \mid A^{*}=a^{*}\right]-\mathbb{E}\left[R\left(Y_{a}\right)\right]\right)^{2}$
$\stackrel{(c)}{\leq} \quad \frac{|\mathcal{A}|}{2} \sum_{a, a^{*} \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right) \mathbb{P}\left(A^{*}=a^{*}\right) D\left(P\left(Y_{a} \mid A^{*}=a^{*}\right) \| P\left(Y_{a}\right)\right)$
$\stackrel{(d)}{=} \frac{|\mathcal{A}| I\left(A^{*} ;(A, Y)\right)}{2}$.

Full Information

- Problems with full information is an extreme case of our formulation. The outcome $Y_{t, a}$ is perfectly revealed by observing $Y_{t, \tilde{a}}$ for any $\tilde{a} \neq a$, in other words, what is learned does not depend on the selected action.

Proposition 4

Suppose for each $t \in \mathbb{N}$ there is a random variable $Z_{t}: \Omega \rightarrow \mathcal{Z}$ such that for each $a \in \mathcal{A}, Y_{t, a}=\left(a, Z_{t}\right)$. Then for all $t \in \mathbb{N}, \Gamma_{t} \leq 1 / 2$ almost surely.

- Combining this result with Proposition 1 shows
$\mathbb{E}\left[\operatorname{Regret}\left(T, \pi^{\mathrm{TS}}\right)\right] \leq \sqrt{\frac{1}{2} H\left(A^{*}\right) T}$.

Full Information

Proof.

$$
\begin{aligned}
& \stackrel{(a)}{(a)} \sum_{a \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right)\left(\mathbb{E}\left[R\left(Y_{a}\right) \mid A^{*}=a\right]-\mathbb{E}\left[R\left(Y_{a}\right)\right]\right) \\
& \stackrel{(b)}{\leq} \sum_{a \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right) \sqrt{\frac{1}{2} D\left(P\left(Y_{a} \mid A^{*}=a\right) \| P\left(Y_{a}\right)\right)} \\
& \stackrel{(c)}{\leq} \sqrt{\frac{1}{2} \sum_{a \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right) D\left(P\left(Y_{a} \mid A^{*}=a\right) \| P\left(Y_{a}\right)\right)} \\
& \stackrel{(d)}{=} \sqrt{\frac{1}{2} \sum_{a, a^{*} \in \mathcal{A}} \mathbb{P}\left(A^{*}=a\right) \mathbb{P}\left(A^{*}=a^{*}\right) D\left(P\left(Y_{a} \mid A^{*}=a^{*}\right) \| P\left(Y_{a}\right)\right)} \\
& \stackrel{(e)}{=} \sqrt{\frac{I\left(A^{*} ;(A, Y)\right)}{2}} .
\end{aligned}
$$

Linear Optimization Under Bandit Feedback

- In this setting, each action is associated with a finite dimensional feature vector, and the mean reward generated by an action is the inner product between its known feature vector and some unknown parameter vector.

Proposition 5

If $\mathcal{A} \subset \mathbb{R}^{d}$ and for each $p \in \mathcal{P}$ there exists $\theta_{p} \in \mathbb{R}^{d}$ such that for all $a \in \mathcal{A}$

$$
\underset{y \sim p_{a}}{\mathbb{E}}[R(y)]=a^{T} \theta_{p},
$$

then for all $t \in \mathbb{N}, \Gamma_{t} \leq d / 2$ almost surely.

- This result shows that $\mathbb{E}\left[\operatorname{Regret}\left(T, \pi^{\mathrm{TS}}\right)\right] \leq \sqrt{\frac{1}{2} H\left(A^{*}\right) d T} \leq \sqrt{\frac{1}{2} \log (|\mathcal{A}|) d T}$ for linear bandit problems.

Linear Optimization Under Bandit Feedback

Proof.

Write $\mathcal{A}=\left\{a_{1}, \ldots, a_{K}\right\}$ and let $\alpha_{i}=\mathbb{P}\left(A^{*}=a_{i}\right)$. Define $M \in \mathbb{R}^{K \times K}$ by

$$
M_{i, j}=\sqrt{\alpha_{i} \alpha_{j}}\left(\mathbb{E}\left[R\left(Y_{a_{i}}\right) \mid A^{*}=a_{j}\right]-\mathbb{E}\left[R\left(Y_{a_{i}}\right)\right]\right),
$$

for all $i, j \in\{1, . ., K\}$. Then, by Proposition 2,

$$
\mathbb{E}\left[R\left(Y_{A^{*}}\right)-R\left(Y_{A}\right)\right]=\sum_{i=1}^{K} \alpha_{i}\left(\mathbb{E}\left[R\left(Y_{a_{i}}\right) \mid A^{*}=a_{i}\right]-\mathbb{E}\left[R\left(Y_{a_{i}}\right)\right]\right)=\operatorname{Trace}(\mathrm{M}) .
$$

Similarly, by Proposition 2,

$$
\begin{aligned}
I\left(A^{*} ;\left(A, Y_{A}\right)\right) & =\sum_{i, j} \alpha_{i} \alpha_{j} D\left(P\left(Y_{a_{i}} \mid A^{*}=a_{j}\right) \| P\left(Y_{a_{i}}\right)\right) \\
& \stackrel{(a)}{\geq} 2 \sum_{i, j} \alpha_{i} \alpha_{j}\left(\mathbb{E}\left[R\left(Y_{a_{i}}\right) \mid A^{*}=a_{j}\right]-\mathbb{E}\left[R\left(Y_{a_{i}}\right)\right]\right)^{2} \\
& =2\|M\|_{\mathrm{F}}^{2},
\end{aligned}
$$

Linear Optimization Under Bandit Feedback

Proof.

This shows, by Fact 8, that

$$
\frac{\mathbb{E}\left[R\left(Y_{A^{*}}\right)-R\left(Y_{A}\right)\right]^{2}}{I\left(A^{*} ;\left(A, Y_{A}\right)\right)} \leq \frac{\operatorname{Trace}(\mathrm{M})^{2}}{2\|M\|_{\mathrm{F}}^{2}} \leq \frac{\operatorname{Rank}(M)}{2}
$$

We now show $\operatorname{Rank}(M) \leq d$. Define

$$
\mu=\mathbb{E}\left[\theta_{p^{*}}\right] \quad \mu^{j}=\mathbb{E}\left[\theta_{p^{*}} \mid A^{*}=a_{j}\right] .
$$

We have $M_{i, j}=\sqrt{\alpha_{i} \alpha_{j}}\left(\left(\mu^{j}-\mu\right)^{T} a_{i}\right)$ and therefore

$$
M=\left[\begin{array}{c}
\sqrt{\alpha_{1}} a_{1}^{T} \\
\vdots \\
\vdots \\
\sqrt{\alpha_{K}} a_{K}^{T}
\end{array}\right]\left[\begin{array}{llll}
\sqrt{\alpha_{1}}\left(\mu^{1}-\mu\right) & \cdots & \cdots & \sqrt{\alpha_{K}}\left(\mu^{K}-\mu\right)
\end{array}\right] .
$$

References

- Russo, Daniel, and Benjamin Van Roy. "An information-theoretic analysis of thompson sampling." The Journal of Machine Learning Research 17.1 (2016): 2442-2471.
- Russo, Daniel J., et al. "A tutorial on thompson sampling." Foundations and Trends in Machine Learning 11.1 (2018): 1-96.

