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Introduction

@ Consider the problem of repeated decision making in the presence of
model uncertainty, i.e., online optimization problem.
@ Partial feedback leads to inherent tradeoff between exploration and

exploitation.
online decision algorithm
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Figure: Online decision algorithm
Hao Liang (CUHK-Shenzhen) Thompson Sampling May 5, 2019 3 /34



Introduction

@ Thompson sampling, posterior sampling, or probability matching is a
simple algorithm to solve online optimization with partial feedback.

@ We will establish performance guarantees in the form of regret bounds
for TS based on an information-theoretic analysis.
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Problem Formulation

@ The decision—maker sequentially chooses actions (A;)en from the

action set A and observes the corresponding outcomes (Y; 4, ), -

o Let Y; = (Yi4)aca be the vector of all outcomes at time ¢t € N which
follows the “true outcome distribution” p*. Here p* itself is randomly
drawn from the family of distributions P.

@ We assume that, conditioned on p*, (Y;)ien is an iid sequence
distributed according to p*.

@ A fixed and known reward function maps each outcome y € ) to
some reward R(y)
@ The true optimal action A* € argmaxE [R(Y;,)|p*] = E [R(Y,a)|p]

acA
is also a random variable.
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Regret and Randomized policies

@ Our objective is to minimize the Bayesian regret

E [Regret(T) (1)

T
Z (Yea+) — R(Yy,a,)] Ip*]

the expectation is taken over the randomness in the actions A; and
the outcomes Y;, and over the prior distribution over p*.

@ Actions are chosen based on the history of past observations and
possibly some external source of randomness (Uy),cy- (Ut)eny is
white and independent of outcomes {Y;Za}teN acar @nd p*.

@ The filtration (F3),cy is the sigma—algebra generated by
(Al,YLAI, ...,At_l,Yt_l,At_l). Given the history, A; is random only
through its dependence on U;.

@ Randomized policy w: An action is chosen at time ¢ by randomizing
according to m(-) = P(A; € | F).
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Further Asumptions

supR(y) — inf R(y) < 1.
geY yey =

A is finite. \
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Basic Measures and Relations in Information Theory

o Let P(X)=P(X € -) denote the distribution function of random
variable X. Similarly, define P(X]Y) =P(X € -|Y) and
PX]Y =y) =P(X €-]Y =y).

@ Suppose X is supported on a finite set X. The Shannon entropy of
X is defined as

Z P(X =z)logP(X = z).

TeX

@ The first fact establishes uniform bounds on the entropy of a
probability distribution.

0 < H(X) < log(|X]).
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Basic Measures and Relations in Information Theory

@ The entropy of X conditional on a random variable Y =y is
H(X|Y =y) ==Y P(X =2V =y)log P(X = z]Y =)
zeX

@ The conditional entropy of X given Y is,

H(X|Y) = ) P(X =2|Y)logP(X = z|Y)

TEX

@ For two probability measures P and @, if P is absolutely continuous
with respect to @, the Kullback—Leibler divergence between them is

D@ = 1o (jg) ap 2)
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Basic Measures and Relations in Information Theory

(Gibbs' inequality) For any probability distributions P and @ such that P
is absolutely continuous with respect to ), D (P||Q) > 0 with equality if
and only if P = () P—almost everywhere.

@ The mutual information between X and Y
I(X;Y)=D(P(X,Y)||P(X)P(Y)) (3)

the next fact states that the mutual information between X and Y is
the expected reduction in the entropy due to observing Y

(Entropy reduction form of mutual information)

I(X;Y)=H(X)— HX|Y)
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Basic Measures and Relations in Information Theory

@ The mutual information between X and Y, conditional on a third
random variable Z is

I(X:Y|2) = H(X|Z) - H(X|Y, 2),
it can also be expressed as

I(X;Y|2) =Ez[D(P((X,Y)|2) || P (X|Z) P (X]Z))].

If Z is jointly independent of X and Y, then I(X;Y|Z) = I(X;Y).
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Basic Measures and Relations in Information Theory

@ The mutual information between a random variable X and a
collection of random variables (Z1, ..., Z7) can be expressed elegantly
using the following “chain rule.”

Fact 5

(Chain Rule of Mutual Information)

I(X;(Zy,..2Z7)=1(X;Z21)+1(X; 25| Z1)+ ...+ I (X; Zp| 214, ..., Z7) .

(KL divergence form of mutual information)

I(X;Y) = Ex[D(P (YIX) IIP(Y))]
= > PIX (PY[X =) || P(Y))

TEX

v
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Notation Under Posterior Distributions

o Let
Pi(-) =P(|F) =P(-| A1, Y1405 o A1, Yie1,4, 1)

and Et [] = E[‘ft]

@ Define
Hy(X) = _ZPt z)log Py(X = z)
TeEX
Hy(X|Y) = Ei|— ) PuX =z|Y)logPy(X = z|Y)
reX

L(X;Y) = Hy(X)— Hy(X]Y).

@ By taking their expectation, we recover the standard definition of
conditional entropy and conditional mutual information:

]E[Ht(X)] = H(X‘A].,YLAD...,At_l,}/t,LAt_l)
E[L(X;Y)] = I(X;Y|A1,Yi4,, s A1, Y14, ,) -
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Thompson Sampling

@ The Thompson sampling algorithm simply samples actions according
to the posterior probability they are optimal.

@ Actions are chosen randomly at time ¢ according to the sampling
distribution 7 = P(A* = -|F).

o Consider the case where P = {pp}gco is some parametric family of
distributions, and p* corresponds to a random index 8* € © in the
sense that p* = pg« almost surely.

@ Practical implementations of TS use two simple steps:

o An index ; ~ P (6* € -|F;) is sampled from the posterior distribution
of the true index 6*. .
e Selects the action A; € argmax[E [R(Yt,a)|9* = 60;| that would be
acA

optimal if the sampled parameter were actually the true parameter.
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Example of TS: Beta-Bernouli Bandit

@ Action a € A is yields either a a success (Y, = 1) or a failure
(Y, = 0), and the outcomes are rewards, i.e., R(y) = v.

@ Suppose action a produces a success with probability 67, therefore for
eachae A, E [R(y)] =0, and A* € argmax 0.
Y~Pq acA
@ Since beta distribution is the conjugate prior of Bernouli distribution,
we take independent priors over each 6 to be beta-distributed with
o = (al, veny a|A|) and B = (,31, ,ﬂ‘A‘)

@ For each action a, the prior probability density function of 7 is
['(aq + Ba)

p(0,) = m(ez)%_l(l — )P,
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Example of TS: Beta-Bernouli Bandit

@ Due to conjugacy properties, each action's posterior distribution is
also beta with parameters that can be updated according to a simple
rule:

(@, Ba) if Ay #a

(aaa Ba) - {(aa,ﬂa) + (Rt7 1— Rt) if At = a.

Algorithm 1 Beta-Bernouli Thompson Sampling

1: Sample Model:
ét ~ Beta(at,ﬁt)
2: Select Action:
A; € argmaxge g ét,a
Apply A; and observe R;
3: Update Statistics:
(aAt7 BAt) A (aAtHBAt) + (Rt7 1- Rt)
4: Increment t and Goto Step 1
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The Information Ratio

@ The expected information gain is defined as the expected reduction in
the entropy of the posterior distribution of A*, i.e., I; (A*; (A, Yy a,))

o We relate the expected regret of Thompson sampling to its expected
information gain by information ratio,

E¢ [R(Yy,av) — R(Yya,))°

| A——
! I (A% (A4, Yia,))

@ The information ratio provides a natural measure of each problem’s
information structure, i.e., the relations between actions and rewards.

@ The expected regret is bounded in terms of the inforation ratio and
information gain.
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A General Regret Bound

@ We provide a general upper bound on the expected regret of
Thompson sampling that depends on the time horizon T', H(A*), and
any worst—case upper bound on the information ratio I';.

Proposition 1

For any T € N, if 'y < T almost surely for each t € {1,..,T},

E [Regret(7, WTS)] < \/TH(AMT.

@ We will provide bounds on I'; for some classes of online optimization
problems.
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A General Regret Bound

Recall that E;[-] = E[-| 7] and we use I; to denote mutual information
evaluated under the base measure P;. Then,

E[Regret(T,wTs)} @ EZEt (Yz,4¢) — R(Y,4,)]

~

JEZ VTl (4% (A1, Y ,))
(EZ VI (4 At,mt))>

FTEZIt * (A, Yi,4,)),

IA

=
NS

4
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A General Regret Bound

For the remainder of this proof, let Z; = (A, Y7 a,). Then,

E [It (A*7 Zt)] =1 (A*) Zt|Z15 ceey Zt—l) )

and therefore

T T
* * (©) *
EY L(A%Z) = > I(A%ZZ,....Z) = I(A*; 24, ... 27)
t=1 t=1
— H(A*) — H(AY|Zy,...Z7)
(d)
< H(A).
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Bounding the Information Ratio

@ By Proposition 1, we can get explicit regret bounds by establishing
bounds on the information ratio.

@ The information ratio captures the influence of sampling some actions
on making inferences about different actions, which depends on the
class of problems.

o Worst case: bounded by the number of actions; actions could provide
no information about others.

o Best case: bounded by a numerical constant; full information, sampling
one action perfectly reveals the rewards for any other action.

e Linear bandit case: bounded by the dimension of action space;
sampling actions could provide some information about others.
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An Alternative Representation of the Information Ratio

@ To simplify notation, from now on we will omit the subscript ¢ from
Et,Pt,Pt,At,Y;g,Ht, and It.

@ The following proposition expresses the information ratio of
Thompson sampling in a form that facilitates further analysis.

I (A% (A,Yq)) Y P(A=a)I(A%;Y,)
acA

S B4 = (A" = o) [D (P(Yal4* = a*) | P(Ya)].
a,a*€A

and

E[R(Ya-) — R(Ya)l = ) P(A" = a) (E[R(Ya)|A" = a] — E[R(Y,)].
acA

v
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An Alternative Representation of the Information Ratio

@ The numerator captures how much knowing that the selected action
is optimal influences the expected reward observed.

@ The denominator measures how much, on average, knowing which
action is optimal changes the observations at the selected action.

Proof

The action A is selected based on past observations and independent
random noise. Therefore, conditioned on the history, A is jointly
independent of A* and the outcome vector Y = (Y,)aca.

E[R(Ya-) — R(Ya)]

= Y P(A*=a)E[R(Y,)|A" =a] - > P(A [R(Y,)|A = d
acA a€A

= ) P(A*=a)(E[R(Ya)|A* = a] - E[R(Y,))),
acA
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An Alternative Representation of the Information Ratio

I(A*;(A,Ya))
@ 1A% A) + I(A% V4| A)
® (A*-YA|A)
= Z ]P’ A* YA|A = a)
acA
9 S B(A=a)I(4"Y,)
acEA
@ Y P(A=a) ( > P(A* = a*)D (P(Y,|A* = a") || P(Ya))>
acA a*€eA
= Y P4 P(A* = a*) [D (P(Y,|A* = a*) || P(Ya))] .
a,a*€A
O

4
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Preliminaries

@ Here we state two basic facts that are used in bounding the
information ratio.

@ The first fact lower bounds the Kullback—Leibler divergence between
two bounded random variables in terms of the difference between
their means.

Fact 7

For any distributions P and () such that that P is absolutely continuous
with respect to (), any random variable X : 2 — X and any g : X — R
such that supg —inf g <1,

Ep[g(X)] — Bolg(X)] < 1/5D (PIQ),

where Ep and Ey denote the expectation operators under P and Q).
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Preliminaries

@ Because of Assumption 1, this fact shows

E[R(Ya)|A" = a’] - E[R(Y,)] < \/;D (P(Yo|A* = a*) || P(Ya)).

e For any rank r matrix M € R™ " with singular values o1, ..., 0y, let

IMILi= Y M=\ Ty MEy = /X o2,
=1

denote respectively the Nuclear norm and Frobenius norm of M.

For any matrix M € RF*k,

Trace (M) < v/Rank(M)||M]||r.
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Worst Case Bound

@ The next proposition provides a bound on the information ratio that
holds whenever rewards are bounded, and this scaling cannot be
improved in general.

Proposition 3

For anyt € N, I'; < |A|/2 almost surely.

@ Combining Proposition 3 with Proposition 1 shows that

E [Regret(T,7'5)] < /4| A|H(A*)T.
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Worst Case Bound

E[R(Ya-) — R(Ya))?

2
@ (Z P(A* = a) (E [R(Ys)|A" = d] - E[R(Yam)

acA

2 3 Pa” = o) (R[R()IA" = d] - BIR())

<4 > P =" <o) BIROL)IA" = ']~ BRI’
2 M s par = op(ar = oD (P4 = ) || P(Y))
@ |A|;<Z*?A,Y>>_
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Full Information

@ Problems with full information is an extreme case of our formulation.
The outcome Y; , is perfectly revealed by observing Y; ; for any
a # a, in other words, what is learned does not depend on the
selected action.

Proposition 4

Suppose for each t € N there is a random variable Z; : Q) — Z such that
for eacha € A, Yy, = (a,Z;). Then for allt € N, I'y < 1/2 almost surely.

@ Combining this result with Proposition 1 shows

E [Regret(T, n5)] < /3 H(A*)T.
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Full Information

E[R(Ya-) — R(Ya)]
2 Y P4 = a) (E[R(Y.)|A" = a] - E[R(Y)])
acA
€ YR =) S0 (PAY = ) P
acA
< LY B4 =)D (P IA* = )| (VL)
a€A
g % > P(A* = a)P(A* = a*)D (P(Ya|A* = a*) || P(Ya))
a,a*€A
© [I(A5(A4,Y))
e
L]
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Linear Optimization Under Bandit Feedback

@ In this setting, each action is associated with a finite dimensional
feature vector, and the mean reward generated by an action is the
inner product between its known feature vector and some unknown
parameter vector.

If A C R? and for each p € P there exists 0, € R? such that for all a € A

E [R(y)] = aTﬁp,
Y~Pa

then for allt € N, T'y < d/2 almost surely.

@ This result shows that
E [Regret(T, 75)] < \/%H(A*)dT < \/% log(|.A])dT for linear
bandit problems.
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Linear Optimization Under Bandit Feedback

Write A = {a1,...,ax} and let a; = P(A* = a;). Define M € REXK by

M; ; = (/a0 (E[R(Ya,)
for all 4,5 € {1, .., K}. Then, by Proposition 2,

A* = aj] = E[R(Yal)]) )

E[R(Yy-) — Zaz Y, )|A* = a;] — E[R(Y,,)]) = Trace(M).

Similarly, by Proposition 2,

I(A% (A, Ya) = ZO@% P(Yq,|A" = a;) || P(Ya,))

23 io; (BIR(Ya,)

= 2M|&,

= ¢;] - E[R(Y,)])*
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Linear Optimization Under Bandit Feedback

Proof . |

This shows, by Fact 8, that

E[R(Ya:) — R(Y4)]? _ Trace(M)* _ Rank(M)
I(A*(A,Ya)  — 2Mg — 2

We now show Rank(M) < d. Define

p=Ef6,] I =E[b,

A* :aj].

We have M; ; = \/a;a;((u? — )" a;) and therefore

Vaiaj
M= [ Vai(u! —p) - o Var@W" —p) ].
Jaway

O

v
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