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Performance measure

*» In Reinforcement Learning (RL), generally, we may be interested in
® the performance of the agent during the learning phases.

® the performance of the final learned policy.
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Performance measure

> In the first setting, there are mainly two performance measure: Regret and PAC-MDP.

» High probability regret [Azar et al., 2017a]: There exists a function
F(S,A,H,T,log(1/0)) such that

Pr(i(V* -V™)>F(S,AH, T,log(l/é))) <4

t=1

» PAC-MDP [Dann and Brunskill, 2015]: There exists a polynomial function
Poly(S, A, H,1/e,log(1/9)) such that

Pr(N. > Poly(S, A, H,1/e,1og(1/0))) < 6,
where No = Y72, I(V* = V™ >¢€).
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Performance measure

* In this talk, we focus on the second setting (free-exploration).

» Best policy identification (BPI): An algorithm is (e,d)-PAC for BPI if there exists a
Poly(S, A, H,1/e,log(1/5)), after T > Poly(S, A, H,1/e,log(1/5)) episodes, it returns a
policy 7 satisfies that

Pr(V*-V7 >¢) <.

» Reward-free exploration (RFE): An algorithm is (e, d)-PAC for RFE if there exists a

Poly(S, A, H,1/e,log(1/5)), after T > Poly(S, A, H,1/¢e,log(1/5)) episodes, it returns a

policy 7 satisfies that

Pr(for any reward function r, V*(r) - Vi) > €) <6.

Tian Xu (Nanjing University) Pure Exploration for Reinforcement Learning December 8, 2021 5 /52



Permance measure

* (¢,0)-PAC-MDP v.s. (¢,0)-PAC for BPI

> (€,0)-PAC-MDP upper bounds the number of time steps in which an algorithm makes ¢
mistakes.

> (€,6)-PAC for BPI upper bounds the number of time steps before the algorithm outputs
an e sub-optimal policy.
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Performance measure
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> (€,6)-PAC-MDP is stronger than (e, §)-PAC for BPI.

> An algorithm which is (e, 6)-PAC for BPI needs a stopping rule to determine when to
output the policy.
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Background

> The reward-free reinforcement learning can be split into two phases:

® An exploration phase: The agent interacts with the environment without reward signal and

learns an empirical transition model p.

® A planning phase: The agent receives a reward function and learns a policy in the

constructed model p.
» Why reward-free reinforcement learning?
® |n some applications, we hope to learn good policies for a wide range of reward functions.

® We want to explore more efficiently in some environments where the reward signal is sparse

(unknown).
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Markov Decision Process

» Consider a finite episodic Markov Decision Process (S,A, H, {ph}he[H] ,{rh}hE[H]).
® S and A are the state and action space, respectively.

® ru(s,a) €[0,1] is deterministic reward received after taking the action a in state s at step h.

pr(s'|s,a) specifies the transition probability of s’ conditioned on s and a at step h.

H is the horizon length.

® The initial state sy is fixed.
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Markov Decision Process

» A deterministic policy is a collection of functions 7, : S - A for all he [H].

» The value function and Q-value function of :

H
Vir(s) = E[ > e (swryan) | sy = s]

h'=h

H
Qh(s,a) = E[ Z T (Shrsan) | sp=s,an = a]

h'=h
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Markov Decision Process

The expectation operator regarding p: pf(s,a) = Ey pjs,a) [f (57)]

v

» The composition with the policy 7: (7g) (s) 2 wg(s) 2 g (s,7(s)).

> The variance operator regarding p: Var,(f)(s,a) = Ey.p()s,0)[(f(5") -pf(s,a))?]

v

The Bellman and Bellman optimality equations:
Vi (s) =mn Q5 (s), with Q5 (s,a) = rr(s,a) +prVii(s,a)

Vh*(s) = mng;(s,a), with Q;L(S7a/) = rh(87a’) +phV}:+1(S7a’)
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Preliminaries

> Let (si,aj,sh,;) be the state, the action, and the next state observed at step h of
episode 1.

> Let nj,(s,a) = Y01 I{(s},a},) = (s,a)} be the number of times the state-action pair

(s,a) was visited in step h in the first ¢ episodes.

> Let n! (s,a) = E[n} (s,a)] = £L_; pl (s,a) be the pseudo-counts, where p! (s, a) is the
probability of visiting (s,a) at h when executing .
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Preliminaries

» The empirical transitions:

ni (s,a,s’ 1
P (5] s,a) = M if n} (s,a) >0 and P}, (5" | s,a) = — otherwise .
n} (s,a) S

> Let V,f”(s) and Q\Z’”(s,a) be the value and Q-value function with respect to the

transition model p¢.
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Concentration Events

o {V“N’Vhe [H],¥(5,) € 8 x A KL B 5.0).pn(- | 5,)) < W}

ny, (s, a)

1
gt = {t NV e [H],¥(s.0) € S x Asn} (5,0) > S (5.0) - 57 (5) |, and

o {VteN,Vhe [H],V(s,a) €S x A: (B}, = pr) Vi1 (s,0)| <

* (nt (s,a),0 *(nt (s,a),0
min (H,\J 2varph (Vf;l) (S’a)ﬁ(nth((sa))) - 3HW)}
r\S h3™

> Forall 6¢(0,1), Pr(Ené&MnéE*) >1-4.
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Outline

Best Policy ldentification

Tian Xu (Nanjing University) Pure Exploration for Reinforcement Learning December 8, 2021 15 / 52



From Regret to BPI

» The main difficulty for converting a regret-minimization method to BPI lies in
high-probability prediction of an e-optimal policy.

» For UCB-VI [Azar et al., 2017b], with probability at least 1 —¢’,
SV (51) = Vi (s1) < /H*SAlog (1/6)T.
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From Regret to BPI

> If we choose 7 uniformly sampled from (ﬂ't)te[T], by Markov's inequality, we have

T t
Pr(Vy (s1) Vit (s1) 2 ) < iE[; BV (1) VT (81)] < (C\/ H;SA log (1/6) + 6’H)

> Let the first term in RHS be g, we have

2H3S A 2H)

T* 2 1°g(§

» The sample complexity scales with 1/6% whereas we expect log(1/9).
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From Regret to BPI

» The additional dependence on 6% comes from the randomness of 7. If we can
deterministically output a policy # with V{"(s1) = = >r, V7™ (s1), this issue is solved.

» Note that V;" = Y12, E(s,a)~py [7(s,@)], we construct 7 such that
pi(s,a) = Pu(s,a) = 1 Sty pj(5,0).

Th(als) = Zbi:%((l;b) if Loeapn(s,b) >0, and
1/A otherwise.
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From Regret to BPI

» For 7, with probability at least 1 - ¢’, we have

H3SA
T

~ T t
Vi () -V (1) = 5 2V () VT (o) </ A 0 11

» Choosing 6’ =6 and T = H3SAlog(1/5)/e* would lead to an (e, §)-PAC algorithm for BPI

with a minimax optimal sample complexity.

» However, we can not compute p, (s,a) without the knowledge of transition probability.
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BPI-UCBVI

v

BPI-UCBVI is a model-based UCB method.

v

In the iteration ¢ + 1, it estimates an empirical transition model * and computes Q% (s, a)
based on j'. In each t, Q% (s,a) is a UCB of Q; (s, a) for all (s,a,h).

v

The sampling policy 7'*! is the greedy policy with respect to Qt (s, a).
h

» For the stopping rule, BPI-UCBVI establishes an upper bound of V;* (s1) — VfrH1 (s1)
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Upper Confidence Bound

QZ(s,a) £ min (H, ri(s,a) +1’9¢h1~/}f+1(5,a) + b';b(s,a))

B*(nZ(S,a),CS) Qﬂ(n}a(s,a),é) 1., o .
TG MGt (el o)

bl (s,a) = 3\J Varz»;’tl (‘N/}fu) (s,a)
74(s) 2 max Ol (s.0)

VIEIH(S) =0

» where V! is the lower confidence bound (LCB) of V.
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Lower Confidence Bound

0l (s.a) 2 min(H, ra(5,0) + LV (5,0) - bg(s,a))

B* (n} (s,a),6) LB(nk(s,0),8) 1, -, t
Taew M Gt Ve Y) ()

bl (s,a) = 3\} Varf,ih (f/htﬂ) (s,a)

Vi (s) = max @4, (s,0)

VIEIJrl(s) =0
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Upper Confidence Bound

We have that for all t, all h € [H], and all (s,a),

Q5 (s.a) < Qj(s,a) <Qj(s,a)  and
Vii(s) < Vi (5) < Vi (s)
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Proof Sketch

> The proof is based on backward induction.
» For h = H + 1, this result is true. Assume the inequalities hold for A’ > h.
» We will show that Q(s,a) - Q}(s,a) > 0.

Qh(sva) - QZ(Saa) Zﬁl (‘N/ht+1 - VF:+1) (S’a) + (ﬁz _ph) Vh:—l (Sva) + bZ(Saa)
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Proof Sketch

* t * t
|(l’52 —ph) V{+1(8,a)| < \J 2 Var,, (Vh*+1) (s,a)M +3HM

nj, (s, a) nk (s, a)
Vary, (Vi) (s,a) < 4Varg (Vi) (s,0) + 4HP;, (Vi = Vi) (s,0) + 4H2w
" n} (s, a)
|(4 - )V* (s a)| < 3\ | Varp (Vt )(s a)m 14H2M
P bn) Tt 1 P AR 2R nf (s,a) n,(s,a)

1 ~
+ Eﬁz (Vlerl - Y}erl) (s,a) = bZ(Saa)
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Stopping Rule

> We need to build an UCB on the policy value gap V{* (s1) — Vfrm (s1).

B (nh(5,0).0) |, B (nh(5,0).0)

nj,(s,a) ny,(s,a)

G! (s,a) = min H,G\J Varp: (‘7};1) (s,a)

3
#1455 )7iGa )

G (5) = Gho (5, M5 (5))
Gt.1(s,0) 20

Tian Xu (Nanjing University) Pure Exploration for Reinforcement Learning December 8, 2021 26 / 52



Stopping Rule

For allt, Vi* (s1) — Vfrt+1 (s1) <THGYL (1)
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BPI-UCBVI

For § € (0,1), e € (0,1/S2], BPI-UCBVI is (¢,6)-PAC for BPI. Moreover, w.p. 1 -4,

H3SA
<

T< (log(3SAH/S) +1)Cq +1,

e2

where C; = 5904¢%6 log (e3°(log(3SAH/5) + S)HSSA/E)Q.

> The rate of BPI-UCBVI is of order O (H>SAlog(1/5)/e2) when € is small enough and
matches the lower bounds of  (H®SAlog(1/6)/e?) by [Domingues et al., 2020] up tp
poly-log terms.
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Proof Sketch

If BPI-UCBVI stops at time 7, then we have
VI (s1) = Vi (s1) 2 Vi (s1) = 771G (1) 2 Vi (1) — €.

v

v

For all t < 7, by the stopping rule, we have ¢ < m™1G?% (s1). Then we have

Te< Eisg 1T GY (s1)

v

For all ¢ < 7, we upper bound 7i*1G? (s1) and build a formula regarding 7.

v

Solving the established formula results in the upper bound of 7.
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Proof Sketch

» Upper bound on G (s,a):

B (nh(5,0).0) |, B (nh(5,0).0)

nj,(s,a) nj,(s,a)

G (s,a) < G\J Varg: (V}fﬂ) (s,a)

3
t(14 2 ) PGl s )

t+1

> Replace B}, V!, | with py, V™

Gh(s,a) < 12\) Var,, (V;51) (s, a) (WW A 1) + 8412 (WSM A 1)

nl (s,a) ny (s, a)

13
# (14 )i Gl
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Proof Sketch

» Unfold the above equation and replace the counts by the pseudo-counts.

H
G (s1) <126 Y 3 i (s,a) 4 | Vary, (VL) (s, a) (

h=1s,a

Ié; (ﬁﬁl(s,a),d))

nl(s,a)v1

H
+336e*H? 3" > pi 1 (s,a) (

h=1s,a

B n@(s,aw))

nl(s,a)v1

» The law of total variance:

h=1 h=1s,a

H 2 H
H?>E, l(z h (Shyan) = Vi (31)) l =Y 2. Pa(s,a) Vary, (Vi) (s,a)
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Proof Sketch

» We build the upper bound of 7" 1GY (1)

B* (7l (s,a),d)

nl(s,a)v1

13 772 t+1 (ﬁZ(S,a)ﬁ)
+336e " H hz:lsz;zp s, )7@1(8&)\/1

H
t+1Gt (5 )<24€13H Z Z t+1( s, )
h=1s,a

» Builds the formula regarding 7 via 7¢ < Y75 i G (s1):

eT <48e"3\/TH3SAB* (1 - 1,0) log(T + 1) + 13443 H3SAB(7 - 1,6) log( + 1)
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> Solving the formula results in the sample complexity.

H3SA

T<
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Outline

Reward-free Exploration
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Reward-free Exploration (RFE)

> One approach to RFE relies on known cumulative-regret minimization methods.

® RF-RL-Explore [Jin et al., 2020] runs EULER algorithm for each (s,h) with a reward

function encouraging the visit of state s at step h.

» Another methods [Kaufmann et al., 2020, Ménard et al., 2020] build the upper bound of
the estimation error |Q7 (s, a;7) — Q7 (s,a;7)| of any policy and any reward function, and
the agent acts greedily with respect to the upper bounds to minimize the estimation error.

Vi (s1;7) - Vf*’T (s1;7) < 2mgx|Q7f(s7a;r) - Q’f(s,a;r)|
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Statistical Goal

An algorithm is (e, d)-PAC for reward-free exploration if

]P’( for any reward function r, V;* (s1;7) — fo: (s1571) < 5) >1-9,
where 7 is the optimal policy in the empirical MDP with p and 7.

» The number of episodes required to achieve (¢, d)-PAC.
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Summary of RFE Algorithms

Algorithms

Upper bound (non-stationary setting)

Lower bound (stationa

RF-RL-Explore[Jin et al., 2020]

d
H7S Alog (6) HS2A1 g( )

34 (10g (5) +5)

RF-UCRL [Kaufmann et al.

. 2020]

Ju

RF-Express [Ménard et al., 2020]

”A(log(g) S)
34 (1og (5) +5)

» RF-Express are sub-optimal only by a factor of H.

> Note that lower bound is proved in the stationary setting and RF-Express may be
minimax-optimal in the non-stationary setting.
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Reward-free Exploration

Algorithm: Reward-free Exploration algorithm
:fort=1,2,--- do

2:  Interact with environment without reward via sampling policy ¢ and obtain a

[y

reward-free episode z' = (s, al,sh,ab, ..., sk, aly).
3 Update the dataset D; = Dy_1 U {2z}
4. Stop or continue according to a stopping time 7
5: end for
6: Output: The empirical transition model p built on D, .

> Two key parts: sampling policy and stopping rule.
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The Upper Bound

> We build the upper bound of the estimation error and the sampling policy is greedy with
respect to the upper bound.

» After episode ¢, we define the estimation error éﬁl’”(s,a;r) 2

AT}:;TF(Saa;T) - QZ(SNET)'-

» The functions W} (s,a) are defined inductively:

Wi, (s,a) 20V (s,a) eSx A

nt (s,a),0 1
W} (s,a) = min H,15H2W+(1+H);ﬁl(s'|s,a)n}§}xw}i+l (s',a")

bonus term

where 3(n,d) =log(3SAH/d) + Slog(8e(n +1)).
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The Upper Bound

With probability at least 1 -, for any episode t, policy w, and reward function r,

éﬁ’” (81,71 (81);7) < 3ey fmax W} (s1,a) +max W} (s1,a)
acA acA

» The sampling rule: the policy 7/*! is the greedy policy with respect to W/ :
VseS,Vhe[H], wit(s)=argmaxWj(s,a).
acA

» The stopping rule: 7 = inf {t e N:3e\/mtH W (s1) + 7t WH (s1) < 8/2} .
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The Upper Bound

t(s,a
» W}(s,a) = min H,15H2M+(1+%) Yo Py (8| s,a) maxy Wi, (s',a)

nfl(s,a)
| S —
bonus term

» The bonus term scale with % rather than ﬁ suggesting that RL-Express is more

exploratory.
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The Upper Bound

» Fixing a policy m, let P™ be the probability distribution of a trajectory in the true MDP

and PY™ be the counterpart in the empirical MDP pt. KL (ﬁt’“,P”) =
7 ,T B(n},(s,a),6
D1 S B (5, )KL (B Cls, ), pa(ls,a)) < Ly BBy (5,0) U252,

AT ny, (s,a),0
> W (1) = 1BH S (14 )" 8,857 (5,0) 2k 0)

—~ trLppt
» max, KL (Pt,W,PT() < st H%(él)

> Therefore, RF-Express can be interpreted as an algorithm minimizing an upper-confidence
bound on max, KL (P’*’HP“).
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Proof Sketch

» Error decomposition:
’é’;’z’ﬁ(s7 a;r) < |Q\2”(5, a;r) - Qn(s,a; 7“)| < |(ﬁfl —ph) Vi1 (s, a; r)| + ), |‘7,f+7; - Vh711| (s,a;71)
= |(Ph = pr) Vilka (5,05 7)| + Pl a @7 (s, 057)
» By Bernstein inequality,
(7~ ) Vi (s )] < \ 2V, (Vi) (i) 200D 2 D))

nt (s,a) n! (s,a)

. ot Bt (5,0),5
Vi - U8 (s, a) + am2 2mnte0):0)

ny, (s,a)

> Varph, (VYI:TJrl) (Sva:'r) < 4V&rﬁh (V};ﬂi) ('97a;r)+4Hﬁ§L

> 2" (s,a;7) <

3\/Varﬁz(\7}ff{)(s,a;r) (H2B(nft(s,a),5) A 1) . 15H2 ,B(nfl(s,a),ﬁ)

H? nt (s,a) n?! (s,a)

+ (1 + %)ﬁzwh+1’é‘;{:1(37 a; ’I“)
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Proof Sketch

> 7_(_1/ét1,7r (81;7”) < 7T1Y1t’7r (81;7") + 7T1W1t’7r (81)

YJ’W(S,G;T) . 3\/Var,~,ht(Vhél)(s,a;7-) (H25( ¢ (s,a), 5) ) (1 + %)ﬁiﬂ-hﬂ h+1(8 a;r)

h(s a)

T N n; (s,a),d At T
W;i (s,a) = 15H2% (1+%)ph7rh+1W}tL’+1(s,a)

» Law of total variance:

SIS b (s, 0) Vary, (Vin,) (5,0) = Ex [(SHLyra (sn,an) = VF (51)) ] < B2,

>wa’“(sl;ms3e\/zs,azﬁlﬁ§;“<s,a)(w 1) 3ey/mI 7 (s0)

> 7T1é§’7r (51;7") < 36\/71’1W1t’7r (81) +7T1W1t’7r (81).
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The Sample Complexity

For § € (0,1),e € (0,1], RF-Express is (¢,6)-PAC for reward-free exploration, Moreover,
RF-Express stops after T episodes where, with probability at least 1 - ¢,

H3SA

T< (log(3SAH/6) +S)C1 +1

and where C; = 5587¢° log( 18(log(3SAH/6) + S)H3SA/5)2.

> The sample complexity of RF-Express matches the lower bound of 2 (H2S%A/e?)
[Jin et al., 2020] up to a factor of H.

» Up to a factor H, the result also matches the lower bound of (HQSAlog(l/(S)/»sQ)
[Dann and Brunskill, 2015] which is informative in the regime where € is fixed and ¢ tends
to 0.
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Proof Sketch

» Upper bound on W:

nt(s,a),6 1
Wi(s,a) < 15H2W + (1 + E) Y5 (s" | s,a) max Wy (', a")
h\% s’ a
B (nj,(s,a),0 1y, . 1
- 15H2W + (1 + E) (pfI —ph)ﬂﬁllW,ﬁJrl(s,a) + (1 + H)p;m,t;rlleLH (s,a)
n\S,

» By Bernstein inequality,
B(nt (s,a),0 B(n;,(s,a),0
(51~ ) WA W (5. 0) < \ 2 Vamy, (AP, ) (5, 0) 2 2 g D00 )

h(s a)

> With Var, (ri Wi, ) (s,a) < Hppmpi i Wi, (s, a), we have

ny, (s,a),0
Wi(s, a)<21H2(% 1) (1+ &) prrit Wi, (s,a)

> Unfolding the above inequality obtains that

+1Wl (81) < 2163H2 Zh 1 25 athrl(sva) (% " 1)
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Proof Sketch

» Define the pseudo-counts: 7} (s,a) = ¥i_, p! (s,a) and we can replace the counts with

pseudo-counts: 71 W (s1) <84e*H2 YL, ¥, . P (s, )%

» Fort <T <7, e<3e/mt* W} (s1) + i W] (s1) due to the stopping rule.

» Take summation over 0 <t <T and apply Cauchy-Schwarz inequality, we have
(T+1)e <3e\/(T+1) TLomt WL (1) + S 7t W (s1)

» YL m W (s1) < 3363 H3S Alog(T +2)8(T, 8)

> Thus we obtain the inequality on 7:
e < 55¢3\/TH3S Alog(7 +1)B(7 - 1,0) + 336> H3S Alog(7 + 1) B( - 1,0).

» Solving the above inequality obtains the final result: 7 < HzfA (log(3SAH/§) +S)Cy + 1.
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Thank you!

Feel free to contact me for more discussions!

xut@lamda.nju.edu.cn
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