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Exploration in Online RL

▶ Active knowledge acquisition is a key feature of intelligence.
▶ Exploration is one of the central challenges in reinforcement learning (RL).
▶ Exploration is also a key engine for data efficiency problem when applying RL in real-world

problem.
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Motivating example

Figure: Deep-sea exploration: a simple example where deep exploration is critical.
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Importance of Deep Exploration

▶ myopic: acquire high Q̂L given the data before episode L or explore immediate
information (e.g. action associations).

▶ dithering: random perturbed the action selected by Q̂L-greedy e.g. ϵ-greedy or boltzmann
exploration.

▶ Deep exploration: the agent needs to consider how actions influence downstream learning
opportunities even if expected to no values or immediate information.

▶ Optimistic algorithm serves as one guiding principle for deep exploration

exploration method expected episodes to learn
optimal Θ(N)

myopic ∞
dithering Θ

(
2N
)

optimistic Θ(N)
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Review: Optimism in the Face of Uncertainty

“Select the policy which would obtain the best possible rewards in the best (statistically)
plausible environment.”
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Review: Optimism in the Face of Uncertainty

▶ In episode k, form a uncertainty set Mk of all statistically plausible models from historical
data Hk−1, s.t. M∗ ∈Mk w.h.p

▶ Double maximization:
(πk,Mk) = argmax

π
max
M∈Mk

V (π,M)

such that V (πk,Mk) ≥ V (π∗,M∗) = V ∗ w.h.p.
▶ Generally difficult optimization problem
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Review: Optimism in the Face of Uncertainty

▶ Instead of directly solving double maximization
▶ OFU principle approximates the benefits of exploration by assigning an optimistic bonus to

poorly understood states and actions.
▶ Value based approach: add UCB bonus to reward function and backward update value

function, such that directly ensure,

Vk ≥ V ∗, w.h.p.
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Review: Optimism in the Face of Unceratinty

▶ UCB bonus should be carefully design specialized to particular problem.
▶ The performance of a UCB algorithm depends critically on the choice of UCBs.
▶ For tabular MDP: e.g. (Azar et al. ’17)

b(x, a) = 7HL

√
1

Nk(x, a)

or

b(x, a) =

√
8LVarY∼P̂k(·|x,a) (Vk,h+1(Y ))

Nk(x, a)
+

14HL

3Nk(x, a)

+

√√√√8
∑

y P̂k(y | x, a)
[
min

(
1002H3S2AL2

N ′
k,h+1(y)

,H2
)]

Nk(x, a)
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Review: Optimism in the Face of Uncertainty

▶ LSVI with Exploration Bonus (e.g., Jin et al ’20) for t = H, . . . , 1,

θ̄t =

(
k∑

i=1

ϕtiϕ
⊤
ti

)−1 k∑
i=1

ϕti

[
rti +max

a+

(
ϕ
(
s+t+1, a

+
)⊤

θ̄t+1 +
√

β
∥∥ϕ (s+t+1, a

+
)∥∥

Σ−1
t+1

)]
▶ Globally Optimistic LSVI (Zanette et al ’20)

max
ξ1,...,ξH

max
a+

ϕ
(
s1k, a

+
)⊤

θ̄1

s.t. ‖ξt‖Σt
≤
√
α

for t = H, . . . , 1 θ̄t =
(∑k

i=1 ϕtiϕ
⊤
ti

)−1∑k
i=1 ϕti

[
rti +maxa+ ϕ

(
s+t+1, a

+
)⊤

θ̄t+1

]
+ ξt
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Optimistic (UCB-based) algorithms are hard to scale up

▶ Overwhelmingly, this literature focuses on optimistic algorithms, with most algorithms
explicitly maintaining uncertainty sets that are likely to contain the true MDP or
constructing UCBs.

▶ It has been difficult to adapt UCB-based algorithms to the more complex problems
investigated in the applied RL literature.

– Some progress in linear function approximation.
– No principled solution but some heuristics based on OFU for deep network approximation.
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ϵ-greedy still dominates in applied RL literature

▶ Most applied papers seem to generate exploration through ϵ-greedy or Boltzmann
exploration.

▶ Those simple methods are compatible with practical value function learning algorithms,
which use parametric approximations to value/policy/transition functions to generalize
across high dimensional state spaces.

▶ Unfortunately, such exploration algorithms can fail catastrophically in simple finite state
MDPs (e.g. Deep-sea exploration example).
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▶ Today’s topic inspired by the search for principled exploration algorithms that both
(1) are compatible with practical function learning algorithms and
(2) provide robust performance (provable guarantee), at least when specialized to simple

benchmarks like tabular MDPs.

Background 13 / 56



Deep Exploration via Radomized Value Functions

Figure: Deep-sea exploration: a simple example where deep exploration is critical.
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Radnomized Exploration is Deep Exploration

exploration method expected episodes to learn
optimal Θ(N)

myopic ∞
dithering Θ

(
2N
)

optimistic Θ(N)

randomized Θ(N)
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Bayesian linear regression

▶ Estimate θ ∈ RD with N(θ) prior. (MAP)
▶ Data D = ((xn, yn) : n = 1, . . . , N)

▶ ”Feature vector” xn ∈ RD is a row vector, together is X ∈ RN×D

▶ Target yn is generated from yn = xnθ + wn, where wn
i.i.d∼ N(0, v), together is y ∈ RN .

▶ Conditioned on D, θ is Gaussian with

E[θ | D] = argmin
θ∈RD

(
1

v

N∑
n=1

(yn − xnθ)
2
+

1

λ
‖θ̄ − θ‖2

)
=

(
1

v
X⊤X +

1

λ
I

)−1(
1

v
X⊤y +

1

λ
θ̄

)

and
Cov[θ | D] =

(
1

v
X⊤X +

1

λ
I

)−1
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Randomization via Gaussian noise

▶ One way of generating a random sample θ̃1 with the same condition distribution as θ is
simply sample from θ̃1 ∼ N(E [θ | D] ,Cov[θ | D]).

▶ An alternative construction is given by injecting noise θ̂ ∼ N(θ, λI) and zn
i.i.d∼ N(0, v)

θ̃ ← argmin
θ∈RD

(
1

v

N∑
n=1

(yn + zn − xnθ)
2
+

1

λ
‖θ̂ − θ‖2

)
(1)

=

(
1

v
X⊤X +

1

λ
I

)−1(
1

v
X⊤(y + z) +

1

λ
θ̂

)
(2)

▶ First notice this θ̃ is Gaussian.
▶ We will see why the above θ̃ has the same conditional distribution as θ̃1.
▶ Pointer to Bellman operator of RLSVI (Page 41)
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Randomization via Gaussian noise

▶ Same conditional expectation

E[θ̃ | D] =
(
1

v
X⊤X +

1

λ
I

)−1(
1

v
X⊤(y + E[z | D]) + 1

λ
E[θ̂ | D]

)
= E[θ | D]

▶ Same conditional variance

Cov[θ̃ | D] =
(
1

v
X⊤X +

1

λ
I

)−1(
1

v2
X⊤E

[
zz⊤ | D

]
X +

1

λ2
E
[
θ̂θ̂⊤ | D

])(1

v
X⊤X +

1

λ
I

)−1

=

(
1

v
X⊤X +

1

λ
I

)−1(
1

v
X⊤X +

1

λ
I

)(
1

v
X⊤X +

1

λ
I

)−1

= Cov[θ | D].
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Randomization via Gaussian noise

▶ Randomized least square provides a key understanding to Bayesian linear regression
through a purely computational perspective.

▶ For the linear setting, we see that training a least-squares solution on perturbed versions of
the data D̃ = ((xn, yn + zn), n = 1, . . . , N) is equivalent to conjugate Bayesian posterior.
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Gaussian RLSVI = Thompson Sampling in Linear Bandit
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Implication on scalable approximation for PSRL

▶ We can think of posterior sampling reinforcement learning (PSRL) as
– Sample from a posterior of MDPs, then optimize
– Sample from a posterior over policies, then apply
– Sample from a posterior over Q∗, then argmax

▶ We can generalize across states/actions via
– Parametrized models
– Parameterized policies
– Parameterized value functions

▶ In order to generate approximate posterior samples for Q∗, we can replace the
least-square value iteration to an alternative value iteration that trains on randomly
perturbed versions of the data.
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RL Notations

▶ MDP M = (S,A,R,P, ρ).
▶ S state space, A action space, R reward model, P transition model, and ρ initial state

distribution.
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Value Iteration

Algorithm 1: vi

1
Input: M = (S,A,R,P, ρ) MDP

H ∈ N planning horizon
2 Q∗

H ← 0 ;
3 for h in (0, . . . , H − 1) do
4 Q∗

h+1(s, a)←
∑

s′∈S Ps,a(s
′)
(∫

rRs,a,s′(dr) + maxa′∈A Q∗
h(s

′, a′)
)
∀s, a ∈ S ×A ;

5 end
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Value function learning

▶ Value function family Q = {Qθ : S ×A → R} , e.g. linear function Qθ(s, a) = ϕ(s, a)⊤θ

▶ Observed data D = {(st, at, rt, s′t, t)}
▶ Target parameters θ−

▶ we define the empirical temporal difference (TD) loss

L
(
θ; θ−,D

)
:=
∑
t∈D

rt +max
a′∈A

Qθ− (s′t, a
′)︸ ︷︷ ︸

yt

−Qθ (st, at)


2

▶ and Regularizer
R (θ; θp) :=

v

λ
‖θp − θ‖22
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Least Square Value Iteration

Algorithm 2: learn_lsvi

1

Agent: L(θ= · ; θ−= · ,D= · ) TD error loss function
R(θ= · ; θp= · ) regularization function
buffer memory buffer of observations
prior prior distribution of θ
H ∈ N planning horizon

2 θ̃H ← null, Data D̃ ← buffer.data() ;
3 Prior parameter θ̃p ← prior.mean() ;
4 for h in (0, . . . , H − 1) do
5 θ̃h ← argminθ∈RD

(
L(θ; θ̃h+1, D̃) +R(θ; θ̃p)

)
6 end
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Randomized Least Square Value Iteration

Algorithm 3: learn_rlsvi

1

Agent: L(θ= · ; θ−= · ,D= · ) TD error loss function
R(θ= · ; θp= · ) regularization function
buffer memory buffer of observations
prior prior distribution of parameters
H ∈ N planning horizon

2 θ̃H ← null, Data D̃ ← buffer.sample_perturbed_data() ;
/* [(st, at, rt + zt, s

′
t, t) ,∀t ∈ buffer, zt ∼ N(0, v)] */

3 for h in (0, . . . , H − 1) do
4 Prior parameter θ̃p ← prior.sample() ;
5 θ̃h ← argminθ∈RD

(
L(θ; θ̃h+1, D̃) +R(θ; θ̃p)

)
6 end
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Illustration of how RLSVI achieves deep exploration
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Notations for finite-horizon inhomogeneous MDP

▶ This can be formulated as a special case the paper’s general formulation as follows.
▶ Assume S = S0 ∪ S1 ∪ S2 ∪ · · · ∪ SH−1

▶ The state always advances from some state st ∈ St to st+1 ∈ St+1

▶ The process terminates w.p. 1 in period H.
▶ Assume each set S0, . . . ,SH−1 contains an equal number of elements.
▶ The sequence of observations made during episode ℓ is

Oℓ =
(
sℓ0, a

ℓ
0, r

ℓ
1, s

ℓ
1, a

ℓ
1, . . . , s

ℓ
H−1, a

ℓ
H−1, r

ℓ
H

)
▶ History observations before episode ℓ,

Hℓ−1 = (O1, . . . ,Oℓ−1)
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Notations for finite-horizon inhomogeneous MDP

▶ s ∈ St can be written as a pair s = (t, x) where t ∈ {0, . . . , H − 1} and x ∈ X =

{1, . . . , |S0|} .
▶ Similarly, a policy π : S → A can be viewed as a sequence π = (π0, . . . , πH−1) where

πt : x 7→ π((t, x)).
▶ Transition probabilities as Pt,x,a (x

′) ≡ P(t,x),a ((t+ 1, x′)),
▶ Reward probabilities as Rt,x,a,x′(r) ≡ R(t,x),a,(t+1,x′)(r).
▶ Value V π

M,t(x) ≡ V π
M((t, x)) = EM,π

[∑H
h=t+1 rh | st = (t, x)

]
and Optimal Value

V ∗
M,t(x) := maxπ V

π
M,t(x)

▶ State-action value function Qπ
M,t(x, a) = E

[
rt+1 + V π

M,t+1 (xt+1) | M, xt = x, at = a
]

and similar definition for optimal one.
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Beyasian Regret

▶ Regret of algorithm alg over L episodes on underlying MDP M:

Regret(M, alg, L) =

L∑
ℓ=1

EM,alg

[
V ∗ (sℓ0)− V πℓ (

sℓ0
))]

▶ Bayesian Regret with a prior (representative distribution) over MDPs P(M∈M):

BayesRegret(alg, L) = E[Regret(M, alg, L)]

▶ Frequentist (worst-case) Regret holds for any MDP instance M∈M

WorstRegret(alg, L) = sup
M∈M

Regret(M, alg, L)
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Assumptions for Bayesian Regret Analysis

▶ Outcome of the decision: o = (x′, r)

Assumption 1 (Independent Dirichlet prior for Outcomes).
Rewards take values in {0,1} and so the cardinality of the outcome space is
|X × {0, 1}| = 2|X |. For each, (t, x, a) ∈ {0, . . . , H − 2} × X ×A, the outcome distribution is
drawn from a Dirichlet prior

PO
t,x,a(·) ∼ Dirichlet (α0,t,x,a)

for α0,t,x,a ∈ R2|X |
+ and each PO

t,x,a is drawn independently across (t, x, a). Assume there is
β ≥ 3 such that 1⊤α0,t,x,a = β for all (t, x, a).
Remark: Dirichlet prior is the conjugate prior for multinomial distribution.
Dirichlet-multinomial is a generalization of Beta-bernoulli.
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▶ Assumption in the paper assume β ≥ 3 to avoid extreme distributions (right-down figure).
▶ As more data gathered, 1⊤αℓ,t,x,a →∞, Dirichlet posterior distribution concentrates.
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Empirical and posterior distribution of Outcomes

▶ Dℓ−1(t, x, a) =
{(

rkt+1, x
k
t+1

)
: k < ℓ, xk

t = x, akt = a
}

▶ nℓ(t, x, a) = |Dℓ−1(t, x, a)|
▶ P̂O

ℓ,y (r
′, x′): the empirical distribution over outcomes (r′, x′) in the dataset Dℓ−1(y)

▶ Under Dirichlet prior assumption, the posterior transition probabilities are distributed as

PO
y (·) | Hℓ−1 ∼ Dirichlet (αℓ,y) where αℓ,y = α0,y + nℓ(y)P̂

O
ℓ,y ∈ R2|X |

for any triple y = (t, x, a).
▶ The posterior mean of PO

y as a weighted linear combination of the prior and the empirical
observations:

E
[
PO
y | Hℓ−1

]
=

α0,y + nℓ(y)P̂
O
ℓ,y

β + nℓ(y)
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Bayesian regret bound for RLSVI in tabular setting

▶ Tabular representation: Qθ = θ ∈ R|S|×|A| and Qθ(s, a) = θs,a and ϕ(s, a) = 1(s,a) is a
one-hot vector.

Theorem 1 (Bayesian regret bound for RLSVI).
Consider an RLSVI agent with an infinite buffer, greedy actions and with tabular representation.
Under Independent Dirichlet Prior assumption with β ≥ 3, if this version of RLSV I is applied
with planning horizon H, and parameters v = 3H2, θ̄ = H1 and v/λ = β, then for all L ∈ N,

BayesRegret
(
RLSVIθ̄,v,λ, L

)
≤6H2

√
β|X‖A|L log+(1 + |X‖A|HL) log+

(
1 +

L

|X‖A|

)
(3)

BayesRegret
(
RLSVIθ̄,v,λ, L

)
≤5βH3|X‖|A |

√
log+(1 + |X‖A|HL) log+

(
1 +

L

|X‖A|

)
(4)

+ 2H2
√
6|X‖A|L log(|X‖A|)

where log+(x) = max{1, log(x)}
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Comments on the Bayesian regret bound

1 The parameter β governs the relative strength of prior mean θ̄ in the Q-functions sampled
by RLSVI, typically a constant.

2 When L large, second term dominates.
▶ In both case, this regret bound is Õ

(
H2
√
|X‖A|L

)
where Õ ignores poly-logarithmic

factors.
BayesRegret

(
RLSVIθ̄,v,λ, L

)
= Õ(H

√
H|X‖A|T )
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Comments on the Bayesian regert bound

▶ BayesRegret
(
RLSVIθ̄,v,λ, L

)
= Õ(H

√
H|X‖A|T )

▶ Minimax lower bound (Not apple-to-apple comparison)

inf
alg

sup
M

Regret(M, alg, L) = Ω(H
√
|X‖A|T )

▶ Can we prove the following by Sion’s minimax theorem? (Open question?)

sup
prior(M)

inf
alg

BayesRegret (alg, L) = inf
alg

sup
M

Regret(M, alg, L)
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Stochastic Bellman Operator

▶ Induced value function: For a state-action value function Q ∈ R|X∥A| define the
corresponding value function VQ ∈ R2|X | over outcomes by

VQ (r, x′) := r +max
a∈A

Q (x′, a) ∀(x′, r)

▶ True Bellman Operator. For Q : X ×A → R the true Bellman operator at timestep t

applied to Q is defined by

FM,tQ(x, a) = E
[
rt+1 +max

a′∈A
Q(xt+1, a

′) | M, xt = x, at = a

]
= E [VQ(rt+1, xt+1) | M, xt = x, at = a)]

= V ⊤
Q PO

t,x,a

Remark: True Bellman Operator is also random variable related to Dirichlet.
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Stochastic Bellman Operator

▶ Bellman Operator of RLSVI Equation 1 (Gaussian)

Fℓ,tQ(x, a) := σ2
ℓ (t, x, a)

 θ̄t,x,a
λ

+
1

v

 ∑
(r,x′)∈Dℓ−1(t,x,a)

r +max
a′∈A

Q (x′, a′)

+ wℓ(t, x, a)

where wℓ(t, x, a) | Hℓ−1 ∼ N
(
0, σ2

ℓ (t, x, a)
)

and

σ2
ℓ (t, x, a) =

(
1

λ
+

nℓ(t, x, a)

v

)−1

=
v

nℓ(t, x, a) + v/λ

▶ wℓ(y)/σℓ(y) ∼ N(0, 1) is drawn independently across episodes ℓ and triples y = (t, x, a)

▶ In episode ℓ, RLSVI generates Qℓ,1, . . . , Qℓ,H where Qℓ,H = 0 ∈ R|X∥A| and for all t < H,

Qℓ,t = Fℓ,tQℓ,t+1.
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Stochastic Bellman Operator

▶ Connection between RLSVI Bellman operator and the empirical distribution P̂O
ℓ,y from

y = (t, x, a) ∑
(r,x′)∈Dℓ−1(y)

(
r +max

a′∈A
Q (x′, a′)

)
= nℓ(y)V

T
Q P̂O

ℓ,y

▶ From direct calculation,

Fℓ,tQ(x, a) =
(v/λ)θ̄y + nℓ(y)V

T
Q P̂O

ℓ,y

(v/λ) + nℓ(y)
+ wℓ(y) ∀y = (t, x, a)

▶ Bellman update of RLSVI differs from the empirical Bellman update V T
Q P̂O

ℓ,y in two ways:
1 slight regularization toward the prior mean θ̄,

2 adds independent Gaussian noise to each update.

Theoretical Analysis 42 / 56



Optimism and regret decompositions

▶ Regret decomposition in one episode,

V ∗
M,0(x)− V π

M,0(x) =

(
max
a∈A

Q∗
M,0(x, a)−max

a∈A
Q0(x, a)

)
︸ ︷︷ ︸

pessimism

+

(
max
a∈A

Q0(x, a)− V π
M,0(x)

)
︸ ︷︷ ︸

prediction/planning error

Lemma 1 (Planning Error to On Policy Bellman Error).
Let Q0, Q1, Q2, . . . , QH ∈ R|X∥A| be any sequence with QH = 0 ∈ R|X∥A| and take
π = (π0, π1, . . . , πH−1) to be a policy with πt(x) ∈ argmaxa∈A Qt(x, a) for all x. Then for
any MDP M and initial state x ∈ X ,

Q0 (x, π0(x))− V π
M,0(x) = EM,π

[
H−1∑
t=0

(Qt − FM,tQt+1) (xt, at) | x0 = x

]
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Optimism and regret decompositions

▶ The sequence (Qℓ,0, . . . , Qℓ,H) generated by RLSVI in some episode ℓ. On policy Bellman
error can be simplified further by plugging in Qℓ,t = Fℓ,tQℓ,t+1.

Corollary 2 (Optimistic regret bounds).
For any episode ℓ ∈ N, if

E
[
max
a∈A

Qℓ,0

(
xℓ
0, a
)]
≥ E

[
max
a∈A

Q∗
M,0

(
xℓ
0, a
)]

,

then

E
[
V ∗
M,0

(
xℓ
0

)
− V πℓ

M,0

(
xℓ
0

)]
≤ E

[
H∑
t=0

(Fℓ,tQℓ,t+1 − FM,tQℓ,t+1)
(
xℓ
t, a

ℓ
t

)]
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Stochastic Optimism

▶ Goal: prove the stronger condition under Dirichlet prior assumption with appropriately
chosen parameters λ, v, θ̄

E
[
max
a∈A

Qℓ,0

(
xℓ
0, a
)
| Hℓ−1

]
≥ E

[
max
a∈A

Q∗
M,0

(
xℓ
0, a
)
| Hℓ−1

]
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Stochastic Optimism

Definition 3 (Stochastic optimism).
A random variable X is stochastically optimistic with respect to another random variable Y ,
written X �SO Y, if for all convex increasing functions u : R→ R

E[u(X)] ≥ E[u(Y )] (5)

Example 4 (Stochastic optimism in Gaussian random variables).
If X ∼ N

(
µX , σ2

X

)
and Y ∼ N

(
µY , σ

2
Y

)
then X �SO Y if and only if µX ≥ µY and

σ2
X ≥ σ2

Y .

Remark 1.
Our goal then is to show if RLSVI is applied with appropriate parameters, it generates iterates
that are larger and noisier than the true Q∗.
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Stochastic Optimism

▶ This definition of SO closely mirrors that of ”second order stochastic dominance”, which
is widely used in decision theory (Hadar and Russell, 1969).

▶ A random payout X is second order stochastically dominant with respect to Y if (5) holds
for all concave increasing function u.

▶ This means that any rational risk-averse agent prefers X to Y,

▶ while X �SO Y implies that any rational risk-loving agent prefers X to Y .
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Stochastic Optimism

Lemma 5 (Preservation of optimism under convex operations).
For any two collections (X1, . . . , Xn) and (Y1, . . . , Yn) of independent random variables with
Xi �SO Yi for each i ∈ {1, . . . n} and any convex increasing function f : Rn → R

f (X1, . . . , Xn) �SO f (Y1 . . . , Yn)

▶ If X �SO Y we can conclude X + Z �SO Y + Z

▶ For two pairs of independent random variables (X1, X2) and (Y1, Y2) with X1 �SO Y1

and X2 �SO Y2,

max {X1, X2} �SO max {Y1, Y2}
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Stochastic Optimism

Lemma 6 (Monotonicity).
Fix two random Q functions Q1, Q2 ∈ R|X∥A|. Suppose that conditioned on Hℓ−1, for each
i = 1, 2 the entries of Qi(x, a) are drawn independently across x, a, and drawn independently
of the RLSVI noise terms wℓ(t, x, a). Then

Q1(x, a) |Hℓ−1 �SO Q2(x, a)|Hℓ−1 ∀(x, a) ∈ X ×A

implies

Fℓ,tQ1(x, a) |Hℓ−1 �SO Fℓ,tQ2(x, a)|Hℓ−1 ∀(x, a) ∈ X ×A, t ∈ {0, . . . , H − 1}
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Stochastic Optimism

Lemma 7 (Gaussian vs Dirichlet optimism).
Let Y = PTV for V ∈ Rn fixed and P ∼ Dirichlet(α) with α ∈ Rn

+ and
∑n

i=1 αi ≥ 3. Let
X ∼ N

(
µ, σ2

)
with µ ≥

∑n
i=1 αiVi∑n
i−1 αi

, σ2 ≥ 3 (
∑n

i=1 αi)
−1

Span(V )2, then X �SO Y

Lemma 8 (Stochastically optimistic operators).
Suppose Dirichlet prior assumption holds and RLSV I is applied with parameters (θ̄, v, λ)

satisfying (v/λ) = β. Then for any episode ℓ with history Hℓ−1, time t ∈ {0, . . . , H − 1}, and
pair (x, a) ∈ X ×A

Fℓ,tQ(x, a) |Hℓ−1 �SO FM,tQ(x, a)|Hℓ−1

for any fixed Q ∈ R|X∥A| such that v ≥ 3 Span (VQ)
2 and maxx∈X VQ(x) ≤ mint,x,a θ̄t,x,a
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Corollary 9.
If Dirichlet prior assumption holds and RLSVI is applied with parameters (θ̄, v, λ) satisfying
(v/λ) = β, v ≥ 3H2 and miny θ̄y ≥ H

Qℓ,0(x, a)
∣∣Hℓ−1 �SO Q∗

M,0(x, a)
∣∣Hℓ−1

for any history Hℓ−1 and state-action pair (x, a) ∈ X ×A

▶ (F1,H−10) (x, a) �SO (FM,H−10) (x, a) ∀x, a
▶ Proceeding by induction, suppose for some t ≤ H − 1

(F1,t+1F1,t+2 · · ·F1,H−10) (x, a) �SO (FM,t+1FM,t+2 · · ·FM,H−10) (x, a) ∀x, a

▶ F1,t (F1,t+1F1,t+2 · · ·F1,H−10) (x, a) �SO F1,t (FM,t+1FM,t+2 · · ·FM,H−10) (x, a)

�SO FM,t (FM,t+1FM,t+2 · · ·FM,H−10) (x, a)
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Analysis of on-policy Bellman error

▶ Denote ∆ℓ = V ∗
M,0

(
xℓ
0

)
− V πℓ

M,0

(
xℓ
0

)
, by Corollary 2 and Corollary 9,

E

[
L∑

ℓ=1

∆ℓ

]
≤ E

[
L∑

ℓ=1

H−1∑
t=0

(Fℓ,tQℓ,t+1 − FM,tQℓ,t+1)
(
xℓ
t, a

ℓ
t

)]

= E

[
L∑

ℓ=1

H−1∑
t=0

(
(Fℓ,tQℓ,t+1)

(
xℓ
t, a

ℓ
t

)
− E

[
FM,tQℓ,t+1

(
xℓ
t, a

ℓ
t

)
| Hℓ−1

])]

▶ Recall the definition of two Bellman Operators:

E [FM,tQ(x, a) | Hℓ−1] =
V T
Q α0,y + nℓ(y)V

T
Q P̂O

ℓ,y

β + nℓ(y)
≥
−β ‖VQ‖∞
β + nℓ(y)

+
nℓ(y)V

T
Q P̂O

ℓ,y

β + nℓ(y)

Fℓ,tQ(x, a) =
βθ̄y + nℓ(y)V

T
Q P̂O

ℓ,y

β + nℓ(y)
+ wℓ(y), where y = (t, x, a)
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Analysis of on-policy Bellman error

▶ Qℓ,t+1 and FM,t are independent conditioned on Hℓt

(Fℓ,tQℓ,t+1)
(
xℓ
t, a

ℓ
t

)
−E

[
FM,tQℓ,t+1

(
xℓ
t, a

ℓ
t

)
| Hℓ−1

]
=

β
(
θ̄t,xℓ

t,a
ℓ
t
+
∥∥VQℓ,t+1

∥∥
∞

)
β + nℓ(t, xℓ

t, a
ℓ
t)

+wℓ(t, x
ℓ
t, a

ℓ
t)

E
L∑

ℓ=1

∆ℓ ≤ E

β
‖θ̄‖∞︸ ︷︷ ︸

=H

+ max
ℓ≤L,t<H

∥∥VQℓ,t+1

∥∥
∞︸ ︷︷ ︸

Lemma 10

 ∑
t<H,ℓ≤L

1

β + nℓ

(
t, xℓ

t, a
ℓ
t

)
︸ ︷︷ ︸

Integral inequality

+
∑

ℓ≤L,t≤H

wℓ

(
t, xℓ

t, a
ℓ
t

)
︸ ︷︷ ︸

lemma 10


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Lemma 10 (Proposition 1 and 8 in Russo and Zhou, IEEE Transactions on Information
Theory (Volume: 66, Issue: 1, Jan. 2020) ).
Let (X, J) be jointly distributed random variables where X ∈ Rn follows a multivariate
Gaussian distribution with Xj ∼ N

(
0, σ2

j

)
and J ∈ {1, . . . n} is a random index. Then

E [XJ ] ≤
√
2I(J ;X)E [σ2

J ] ≤
√
2 log(n)E [σ2

J ]

▶ E [wℓ (t, xt, at)] ≤
√
2 log(|A||X |)E

[
σℓ (t, xt, at)

2
]

▶ E
[
maxℓ≤L,t<H

∥∥VQℓ,t+1

∥∥
∞

]
≤ 2H +H2

√
2 log(1 + |X‖A|HL) when

v/λ = β ≥ 3, v = 3H2 and θ̄ = H1.
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Proof of Lemma 10
Fact 11 (Donsker-Varadhan representation, Theorem 4.1 in Stanford Stat311/EE377
Lecture notes, Duchi J.).
Let P and Q be distributions on a common space X . Then

Dkl(P‖Q) = sup
g

{
EP [g(X)]− logEQ

[
eg(X)

]}
where the supremum is taken over measurable functions g : X → R such that EQ

[
eg(X)

]
<∞.

▶ Applying the Fact with P = P (Xj = · | J = j) and Q = P (Xj = ·), since {λXj : λ ∈ R}
is a measurable function class, we have

Dkl (P (Xj = · | J = j) | P (Xj = ·)) ≥ sup
λ

λE [Xj |J = j]− λ2σ2
j /2

where the optimizer is λ = E [Xj |J = j] /σ2
j .
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Proof of Lemma 10
▶ Taking λ to be the optimizer, we have

E [Xj | J = j] ≤ σj

√
2Dkl (P (Xj = · | J = j) | P (Xj = ·)) and then

E [XJ ] =
∑
J=j

P(J = j)E [XJ | J = j]

≤
∑
j

P(J = j)σj

√
2Dkl (P (Xj = · | J = j) | P (Xj = ·))

CS
≤
√∑

j

P(J = j)σ2
j

√
2
∑
j

P(J = j)Dkl (P (Xj = · | J = j) | P (Xj = ·))

DP
≤
√

E [σ2
J ]

√
2
∑
j

P(J = j)Dkl (P (X = · | J = j) | P (X = ·))

=
√
2E [σ2

J ] I(J ;X)
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