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Introduction

▶ Traditional multi-armed bandits aims at finding the optimal arm with maximal mean
reward.

▶ However, risk sensitive objectives are often desirable in some high-stakes settings.
– e.g. health-care, finance and machine control

▶ A popular risk-sensitive measure is the Conditional Value at Risk (CVaR).
▶ Consider MAB with CVaR as objective called CVaR bandit.
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Notations

▶ Consider a stochastic K -armed bandit setting with rewards contained in [0, U ].
▶ Ti(n) the number of times arm i has been pulled up to round n

▶ At the action taken during round t; [m] := {1, 2, ...,m}
▶ Pi the PDF of the distribution of rewards from the i-th arm
▶ (Xi,t)i∈[K],t∈[n] denote a collection of independent random variables, with the pdf of Xit

equal to Pi

▶ Xt = XAt,TAt (t)
is the reward in round t

▶ The empirical distribution function of Xi,t is F̂i,t(x) =
1
t

∑t
s=1 I {Xi,s ≤ x}
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Background

▶ Let X be a bounded random variable with CDF F (x) = P[X ≤ x]

▶ The CVaR at level α of a random variable X is then defined as

CVaRα(X) := sup
ν

{
ν − 1

α
E
[
(ν −X)+

]}
.

▶ Define the inverse CDF as F−1(u) = inf{x : F (x) ≥ u}.
▶ When X has a continuous distribution, CVaRα(X) = EX∼F

[
X | X ≤ F−1(α)

]
▶ Write CVaR as a function of the CDFF,CVaRα(F ).
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Background

▶ For continuous random variable X,

CVaRα(X) = sup
ν

{
ν − 1

α
E
[
(ν −X)+

]}
= sup

ν

{
ν − 1

α

∫ ν

−∞
(ν − x)f(x)dx

}
= F−1(α)− 1

α

∫ F−1(α)

−∞
(F−1(α)− x)f(x)dx

= F−1(α)− F−1(α)

α
F (x)|F

−1(α)
−∞ +

∫ F−1(α)

−∞ xf(x)dx

α

=

∫ F−1(α)

−∞ xf(x)dx∫ F−1(α)

−∞ f(x)dx
= EX∼F

[
X | X ≤ F−1(α)

]
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CVaR-regret

▶ Define the CVaR-regret at time n as

Rα
n := E

[
n∑

t=1

max
i

(CVaRα (Fi))− CVaRα (FAt
)

]

= E

[
n∑

t=1

∆α
At

]

=

K∑
i=1

E[Ti(n)]∆
α
i ,

where the third line mimics the regret decomposition in risk-neutral MAB.
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Motivation of algorithm

▶ CVaR-UCB computes an optimistic estimate of the CVaR of each arm, and then chooses
the arm with the highest UCB in each turn.

▶ This optimistic estimate is based on the concentration of the empirical CDF via the DKW
inequality: With probability at least 1− δ,

||F̂i,t(·)− Fi(·)||∞ ≤
√

1

2t
ln(

2

δ
)

▶ Specifically, the UCB of CVaR is constructed as follows
– computes an optimistic estimate of the CDF via DKW inequality
– the UCB of the CVaR value is set to be the CVaR of that optimistic CDF
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Algorithm
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Comparison with Direct Bonuses on the CVaR

▶ View the CDF as a set of samples.
▶ The optimistic CDF can be found very simply by shifting the lowest-reward samples to the

maximum reward U

Figure: illustration of the method (left) and comparison with direct bonuses on the sample CVaR
(right).
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Comparison with Direct Bonuses on the CVaR

▶ A natural alternative to the proposal (Cassel et al.’18) directly compute the empirical CDF,
extract the empirical CVaR and then add a bonus based on the number of samples.

▶ Procedurally this is equivalent to right-shifting each observed sample.
▶ In contrast, the DKW-based algorithm compute a lower bound on the empirical CDF,

effectively shifting probability mass from the lower-reward tail to the max reward.
▶ The latter approach depends on the shape of the CDF itself while the former one is

agnostic of the CDF structure, and relies only on the number of samples observed.
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CVaR regret upper bound

Theorem 1.
Consider CVaR-UCB on a stochastic K-armed bandit problem with rewards bounded in [0, U ].

For any given horizon n the expected CVaR-regret after this horizon is bounded as

Rα
n ≤

∑
i∈[K]:∆α

i >0

4U2 ln(
√
2n)

α2∆α
i

+ 3
K∑
i=1

∆α
i ; Rα

n ≤ 4U

α

√
nK ln(

√
2n) + 3KU

▶ The bounds differ on their dependence on the number of samples n and risk level α:
– the problem-dependent bound is O

(
U2 logn/α2

)
– the problem-free bound grows as O(U

√
n/α)

▶ For α = 1, recover (in dominant terms) the well known UCB regret results
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Proofs

Lemma 2 (An alternative representation of CVaR).
Let F be a CDF of a bounded non-negative random variable and ν ∈ R be arbitrary. Then
EF [(ν −X)+] =

∫ ν

0
F (y)dy. Hence, one can write the CVaR of X ∼ F with F (0) = 0 as

CVaRα(F ) = sup
ν

{
1

α

∫ ν

0

(α− F (y))dy

}

Proof.
First

EF

[
(ν −X)+

]
=

∫ ν

0

(ν − x)dF (x) = ν

∫ ν

0

dF (x)−
∫ ν

0

xdF (x)

= νF (x)|ν0 − (xF (x)|ν0 −
∫ ν

0

F (x)dx) =

∫ ν

0

F (x)dx
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Proofs

Proof.
Plugging this identity into

ν − 1

α
EF

[
(ν −X)+

]
=

1

α

(
να−

∫ ν

0

F (y)dy

)
=

1

α

∫ ν

0

(α− F (y))dy

Lemma 3 (Bounding difference of CVaR via distance between CDFs).
Let F and G be the CDFs of two non-negative random variables and let νF , νG be a
maximizing value of ν in the definition of CVaRα(F ) and CVaRα(G) respectively. Then:

|CVaRα(F )− CVaRα(G)| ≤ 1

α

∫ max{F−1(α),G−1(α)}

0

|G(y)− F (y)|dy

≤
max

{
F−1(α), G−1(α)

}
α

sup
x

|F (x)−G(x)| ≤ U

α
||F (x)−G(x)||∞Algorithm 13 / 27



Proofs

Proof.
Assume w.l.o.g. that CVaRα(F )− CVaRα(G) ≥ 0. A possible value of νF is F−1(α).

CVaRα(F )− CVaRα(G) ≤ νF − α−1EF

[
(νF −X)

+
]
−
(
νF − α−1EG

[
(νF −X)

+
])

=
1

α

(
EG

[
(νF −X)

+
]
− EF

[
(νF −X)

+
])

=
1

α

(∫ νF

0

G(y)dy −
∫ νF

0

F (y)dy

)
≤ 1

α

∫ νF

0

|G(y)− F (y)|dy ≤ νF
α

sup
y

|F (y)−G(y)|

We can in full analogy upper-bound CVaRα(G)− CVaRα(F ) and arrive at the statement.
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Proofs

Lemma 4 (Optimistic CDF results in optimistic estimate of CVaR).
Let G and F be CDFs of non-negative random variables so that ∀x ≥ 0 : F (x) ≥ G(x). Then
for any α ∈ [0, 1], we have CVaRα(F ) ≤ CVaRα(G).

Lemma 5 (Difference in CVaR).
Let F̂ be the empirical CDF obtained by n, i.i.d samples drawn from F . Let ϵ > 0 and G ={
supx |F (x)− F̂ (x)| ≤ ϵ

}
be the event that the empirical CDF is uniformly ϵ-close to F .

Define F̃ (x) = [F̂ (x)− ϵ1{x ∈ [0, U ]}]+. Then in event G the following inequality holds

∣∣∣CVaRα(F )− CVaRα(F̃ )
∣∣∣ ≤ 2F̃−1(α)ϵ

α
≤ 2Uϵ

α
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Proofs

Proof.
By Lemma 3, the triangle-inequality and the definition of G and F̃

∣∣∣CVaRα(F )− CVaRα(F̃ )
∣∣∣ ≤ F̃−1(α)

α
sup
x

|F (x)− F̃ (x)|

≤ F̃−1(α)

α
sup
x

|F (x)− F̂ (x)|+ F̃−1(α)

α
sup
x

|F̂ (x)− F̃ (x)|

≤ 2F̃−1(α)ϵ

α
.

Lemma 6 (Down-shift is optimistic for CVaR).
In event G the following inequality holds

CVaRα(F ) ≤ CVaRα(F̃ )
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Proof of Theorem 1

▶ The proof closely follows the proof of UCB from [Lattimore’20]
▶ Let cαi denote the CVaR of arm i and F̂i,t denote the empirical CDF of the i th arm

before timestep t

▶ Define c̃αi (t) as c̃αi (t) = CVaRα

(
F̃i,t

)
where F̃i,t is defined as follows,

F̃i,t(x) =

(
F̂i,t −

√
ln(2/δ)

2Ti(t)
1{x ∈ [0, U ]}

)+

ϵi(t) =
U

α

√
2 ln(2/δ)

Ti(t)

Algorithm 17 / 27



Proof of Theorem 1

▶ CVaR regret decomposes as Rα
n =

∑K
i=1 ∆

α
i E [Ti(n)].

▶ Bound E [Ti(n)] for each suboptimal arm i.
▶ Assume arm 1 is the optimal arm
▶ Define the good event Gi as:

Gi =

{
cα1 ≤ min

t∈[n]
c̃α1 (t)

}
∩ {c̃αi (ui) ≤ cα1 } ,

where ui ∈ [n] will be chosen later.
▶ Show by contradiction that if Gi then Ti(n) ≤ ui

▶ E [Ti(n)] = E [Ti(n)I {Gi}] + E [Ti(n)I {Gc
i}] ≤ ui + P (Gc

i )n
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Proof of Theorem 1

▶ Suppose Ti(n) > ui on event Gi, then arm i was played more than ui times over n rounds
▶ There must be a round t ∈ [n] where Ti(t− 1) = ui and At = i.

c̃αi (t− 1) = CVaRα

(
F̂i,t−1 −

√
ln(2/δ)

2Ti(t− 1)

)

= CVaRα

F̂i,ui −

√
ln(2/δ)

2ui

 = c̃αi (ui) < cα1 < c̃α1 (t− 1)

▶ Hence At = argmaxj c̃
α
j (t− 1) ̸= i, which is a contradiction.

▶ It is left to show P (Gc
i ) is low.
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Proof of Theorem 1
▶ Gc

i =
{
cα1 > mint∈[n] c̃

α
1 (t)

}
∪ {c̃αi (ui) > cα1 }

▶ Bound the probability of the first event

P
(
cα1 > min

t∈[n]
c̃α1 (t)

)
= P (∃t ∈ [n] : cα1 > c̃α1 (t))

≤ P

(
∃t ∈ [n] : sup

x

∣∣∣F̂1,t(x)− F1(x)
∣∣∣ >√ ln(2/δ)

2T1(t)

)
≤ nδ

▶ Choose ui such that ∆α
i ≥ ϵi (ui), ti the round at which arm i was chosen the ui-th time

P (c̃αi (ui) > cα1 ) = P (c̃αi (ui)− cαi > ∆α
i ) ≤ P (c̃αi (ui)− cαi > ϵi (ui))

≤ P

(
sup
x

∣∣∣F̂i,ti(x)− Fi(x)
∣∣∣ >√ ln(2/δ)

2ui

)
≤ δ
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Proof of Theorem 1

▶ Substituting the two bound into

E [Ti(n)] ≤ ui + n(n+ 1)δ

▶ Set ui =
⌈
2 ln(2/δ)U2

α2∆α2
i

]
so that ∆α

i ≥ ϵi (ui) and choose δ = 1
n2

E [Ti(n)] ≤

[
2 log

(
2n2
))

U2

α2∆α2

i

⌉
+ 2 ≤ 3 +

4 ln(
√
2n)U2

α2∆α2

i

▶ Substituting this into CVaR-regret decomposition

Rα
n =

k∑
i=1

∆α
i E [Ti(n)] ≤

K∑
i=1

4 ln(
√
2n)U2

α2∆α
i

+ 3

K∑
i=1

∆α
i
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Proof of Theorem 1

Rα
n =

k∑
i=1

∆α
i E [Ti(n)] =

∑
i:∆α

i <∆

∆α
i E [Ti(n)] +

∑
i:∆α

i ≥∆

∆α
i E [Ti(n)]

≤ n∆+
∑

i:∆α
i ≥∆

∆α
i E [Ti(n)]

≤ n∆+
∑

i:∆α
i ≥∆

(
3∆α

i +
4 ln(

√
2n)U2

α2∆α
i

)

≤ n∆+
4K ln(

√
2n)U2

α2∆
+

K∑
i=1

3∆α
i

≤ 4

√
nK ln(

√
2n)

U

α
+ 3

K∑
i=1

∆α
i

≤ 4
U

α

√
nK ln(

√
2n) + 3KU
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Truncated Normal Environments

Figure: Compare CVaR-UCB with four others: 1) an ϵ-greedy algorithm with ϵ = 0:1; 2) the CVaR
best-arm identification algorithm from [Kolla’19]; 3) the U-UCB algorithm from [Cassel’18].; and 4) a
variant of U-UCB called Brown-UCB. Means and 95% confidence intervals shown for fifteen runs, with
δ = 10−4. Y-axis has log scale.
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Comparison against a Tuned ϵ-Greedy Baseline

Figure: The ϵ-greedy algorithm was run with a wide range of starting epsilons and decay constants. It
is important to verify that finding a successful decay schedule for ϵ-greedy is not easy. In the
risk-neutral case, knowledge of the optimality gaps can be leveraged to create an decaying ϵ-greedy
algorithm with logarithmic regret growth.
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Dependence on Number of Arms

Figure: Cumulative CVaR-regret of our algorithm on the One Good Arm environment for different
numbers of arms. Values were collected after 3500 pulls and averaged over 15 runs.
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Proxy regret

▶ Cassel et al. introduced the notion of proxy regret as:

R̄π(n) = CVaRα (Fp⋆)− E [CVaRα (Fπ
n )]

where p⋆ = argmaxp∈∆K−1
CVaRα (Fp) where ∆K−1 is the K − 1 dimensional simplex

▶ Here

Fp =

K∑
i=1

piFi

Fπ
n =

1

n

n∑
t=1

Fπt
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Proxy regret bounds for CvaR-UCB and U-UCB

Proposition 1.
Consider a stochastic K -armed bandit problem with rewards bounded in [0, U ]. For any given
horizon n and risk level α, both CVaR− UCB and U − UCB incur proxy regret with
O
(

logn
n

)
and O

(
1/α2

)
dependency on the horizon and risk level, respectively.

It rules out the possibility that the algorithm’s superior performance is due to the use of a
different objective.
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