High-Dimensional Sparse Linear Bandits

Lizhang Miao

"Hao B, Lattimore T, Wang M. High-Dimensional Sparse Linear Bandits."

March 5, 2021

Problem Setting

- ightharpoonup Compact action set $\mathcal{A} \in \mathbb{R}^d$
- ▶ Choose an action $A_t \in \mathcal{A}$, recieve a reward $Y_t = \langle A_t, \theta \rangle + \eta_t$. For all $x \in \mathcal{A}$, $\|x\|_{\infty} \leq 1$
- ▶ The parameter θ is assumed to be sparse, $\|\theta\|_0 \le s$
- ▶ Regret $R_{\theta}(n) = \mathbb{E}\left[\sum_{t=1}^{n} \langle x^*, \theta \rangle \sum_{t=1}^{n} Y_t\right]$
- Let $\mathcal{P}(A)$ be the space of probability measures over A with the Borel σ -algebra and define

$$C_{\mathsf{min}}(\mathcal{A}) = \max_{\mu \in \mathcal{P}(\mathcal{A})} \sigma_{\mathsf{min}} \left(\mathbb{E}_{\mathcal{A} \sim \mu}[\mathcal{A}\mathcal{A}^{\mathsf{T}}] \right)$$

Results

Upper Bound	Regret	Assumptions	Regime
Abbasi-Yadkori et al. [2012]	$\mathcal{O}(\sqrt{sdn})$	none	rich
Sivakumar et al. [2020]	$\mathcal{O}(\sqrt{sdn})$	adver. + Gaussian noise	rich
Bastani and Bayati [2020]	$\mathcal{O}(au K s^2(\log(n))^2)$	compatibility condition	rich
Wang et al. [2018]	$\mathcal{O}(au K s^3 \log(n))$	compatibility condition	rich
Kim and Paik [2019]	$\mathcal{O}(\tau s \sqrt{n})$	compatibility condition	rich
Lattimore et al. [2015]	$\mathcal{O}(s\sqrt{n})$	action set is hypercube	rich
This paper (Thm. 4.2)	$\mathcal{O}(C_{\min}^{-2/3} s^{2/3} n^{2/3})$	action set spans \mathbb{R}^d	poor
This paper (Thm. 5.2)	$\mathcal{O}(C_{\min}^{-1/2}\sqrt{sn})$	action set spans \mathbb{R}^d + mini. signal	rich
Lower Bound			
Multi-task bandits ¹	$\Omega(\sqrt{sdn})$	N.A.	rich
This paper (Thm. 3.3)	$\Omega(C_{\min}^{-1/3} s^{1/3} n^{2/3})$	N.A.	poor

Theorem 3.3. Consider the sparse linear bandits described in Eq. (2.1). Then for any policy π there exists an action set \mathcal{A} with $C_{\min}(\mathcal{A}) > 0$ and s-sparse parameter $\theta \in \mathbb{R}^d$ such that

$$R_{\theta}(n) \ge \frac{\exp(-4)}{4} \min\left(C_{\min}^{-\frac{1}{3}}(\mathcal{A})s^{\frac{1}{3}}n^{\frac{2}{3}}, \sqrt{dn}\right).$$
 (3.1)

Theorem 3.3 holds for any data regime and suggests an intriguing transition between $n^{2/3}$ and $n^{1/2}$ regret, depending on the relation between the horizon and the dimension. When $d>n^{1/3}s^{2/3}$ the bound is $\Omega(n^{2/3})$, which is independent of the dimension. On the other hand, when $d \leq n^{1/3}s^{2/3}$, we recover the standard $\Omega(\sqrt{sdn})$ dimension-dependent lower bound up to a \sqrt{s} -factor. In Section 4, we prove that the $\Omega(n^{2/3})$ minimax lower bound is tight by presenting a nearly matching upper bound in the data-poor regime.

Step 1: construct a hard instance. We first construct a low regret action set S and an informative action set H as follows:

$$S = \left\{ x \in \mathbb{R}^d \middle| x_j \in \{-1, 0, 1\} \text{ for } j \in [d-1], ||x||_1 = s - 1, x_d = 0 \right\},$$

$$\mathcal{H} = \left\{ x \in \mathbb{R}^d \middle| x_j \in \{-\kappa, \kappa\} \text{ for } j \in [d-1], x_d = 1 \right\},$$
(3.2)

where $0 < \kappa \le 1$ is a constant. The action set is the union $\mathcal{A} = \mathcal{S} \cup \mathcal{H}$ and let

$$\theta = (\underbrace{\varepsilon, \dots, \varepsilon}_{s-1}, 0, \dots, 0, -1),$$

where $\varepsilon > 0$ is a small constant to be tuned later. Because $\theta_d = -1$, actions in $\mathcal H$ are associated with a large regret. On the other hand, actions in $\mathcal H$ are also highly informative, which hints towards an interesting tradeoff between regret and information. Note that $\mathcal H$ is nearly the whole binary hypercube, while actions in $\mathcal S$ are (s-1)-sparse. The optimal action is in the action set $\mathcal A$:

$$x^* = \underset{x \in \mathcal{A}}{\operatorname{argmax}} \langle x, \theta \rangle = \left(\underbrace{1, \dots, 1}_{s-1}, 0, \dots, 0\right) \in \mathcal{A}.$$
(3.3)

Step 2: construct an alternative bandit

$$S' = \left\{ x \in \mathbb{R}^d \middle| x_j \in \{-1, 0, 1\} \text{ for } j \in \{s, s + 1, \dots, d - 1\}, \right.$$
$$x_j = 0 \text{ for } j = \{1, \dots, s - 1, d\}, \|x\|_1 = s - 1 \right\}.$$

Then, we denote $\tilde{x} = \arg\min_{x \in \mathcal{S}'} \mathbb{E}_{\theta}[\sum_{t=1}^{n} \langle A_t, x \rangle]$. Construct the alternative bandit as

$$\tilde{\theta} = \theta + 2\epsilon \tilde{x}.$$

Define an event

$$\mathcal{D} = \left\{ \sum_{t=1}^{n} \mathbb{1}(A_t \in \mathcal{S}) \sum_{j=1}^{s-1} A_{tj} \le \frac{n(s-1)}{2} \right\}.$$

Claim 3.5. Regret lower bounds with respect to event \mathcal{D} :

$$R_{\theta}(n) \geq \frac{n(s-1)\varepsilon}{2} \mathbb{P}_{\theta}(\mathcal{D}) \qquad \text{and} \qquad R_{\widetilde{\theta}}(n) \geq \frac{n(s-1)\varepsilon}{2} \mathbb{P}_{\widetilde{\theta}}(\mathcal{D}^c) \,.$$

By the Bretagnolle–Huber inequality (Lemma C.1 in the appendix),

$$R_{\theta}(n) + R_{\widetilde{\theta}}(n) \ge \frac{n(s-1)\varepsilon}{2} \Big(\mathbb{P}_{\theta}(\mathcal{D}) + \mathbb{P}_{\widetilde{\theta}}(\mathcal{D}^c) \Big) \ge \frac{n(s-1)\varepsilon}{4} \exp\Big(- \mathrm{KL}\big(\mathbb{P}_{\theta}, \mathbb{P}_{\widetilde{\theta}}\big) \Big),$$

where $KL(\mathbb{P}_{\theta}, \mathbb{P}_{\tilde{\theta}})$ is the KL divergence between probability measures \mathbb{P}_{θ} and $\mathbb{P}_{\tilde{\theta}}$.

$$R_{\theta}(n) = \mathbb{E}_{\theta} \left[\sum_{t=1}^{n} \langle x^*, \theta \rangle \right] - \mathbb{E}_{\theta} \left[\sum_{t=1}^{n} \langle A_t, \theta \rangle \right]$$
$$= \mathbb{E}_{\theta} \left[n(s-1)\varepsilon - \sum_{t=1}^{n} \mathbb{1}(A_t \in \mathcal{H}) \langle A_t, \theta \rangle - \sum_{t=1}^{n} \mathbb{1}(A_t \in \mathcal{S}) \langle A_t, \theta \rangle \right],$$

$$\sum_{t=1} \mathbb{1}(A_t \in \mathcal{H}) \langle A_t, \theta \rangle \le T_n(\mathcal{H}) (\kappa(s-1)\varepsilon - 1) \le 0,$$

where $T_n(\mathcal{H}) = \sum_{t=1}^n \mathbb{1}(A_t \in \mathcal{H})$. Since $\langle A_t, \theta \rangle = \sum_{j=1}^s A_{tj} \varepsilon$ for $A_t \in \mathcal{S}$, then it holds that

$$R_{\theta}(n) \geq \mathbb{E}_{\theta} \left[n(s-1)\varepsilon - \sum_{t=1}^{n} \mathbb{1}(A_{t} \in \mathcal{S}) \sum_{j=1}^{s-1} A_{tj}\varepsilon \right]$$

$$\geq \mathbb{E}_{\theta} \left[\left(n(s-1)\varepsilon - \sum_{t=1}^{n} \mathbb{1}(A_{t} \in \mathcal{S}) \sum_{j=1}^{s-1} A_{tj}\varepsilon \right) \mathbb{1}(\mathcal{D}) \right]$$

$$\geq \left(n(s-1)\varepsilon - \frac{n(s-1)\varepsilon}{2} \right) \mathbb{P}_{\theta}(\mathcal{D})$$

$$= \frac{n(s-1)\varepsilon}{2} \mathbb{P}_{\theta}(\mathcal{D}).$$
(B.2)

(B.1)

Claim 3.6. Define $T_n(\mathcal{H}) = \sum_{t=1}^n \mathbb{1}(A_t \in \mathcal{H})$. The KL divergence between \mathbb{P}_{θ} and $\mathbb{P}_{\tilde{\theta}}$ is upper bounded by

$$\operatorname{KL}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\widetilde{\theta}}\right) \le 2\varepsilon^{2} \left(\frac{n(s-1)^{2}}{d} + \kappa^{2}(s-1)\mathbb{E}_{\theta}[T_{n}(\mathcal{H})]\right). \tag{3.7}$$

Then

$$T_n(\mathcal{H}) < 1/(\kappa^2(s-1)\varepsilon^2)$$
, it is easy to see

$$R_{\theta}(n) + R_{\widetilde{\theta}}(n) \ge \frac{n(s-1)\varepsilon}{4} \exp\left(-\frac{2n\varepsilon^2(s-1)^2}{d}\right) \exp(-2).$$
 (3.8)

On the other hand, when $T_n(\mathcal{H}) > 1/(\kappa^2 \varepsilon^2 (s-1))$, we have

$$R_{\theta}(n) \ge \mathbb{E}_{\theta}[T_n(\mathcal{H})] \min_{x \in \mathcal{H}} \Delta_x \ge \frac{1}{\kappa^2 \varepsilon^2 (s-1)} + \frac{1-\kappa}{\kappa^2 \varepsilon},$$
 (3.9)

Step 4: conclusion. Combining the above two cases together, we have

$$R_{\theta}(n) + R_{\tilde{\theta}}(n) \ge \min\left(\left(\frac{ns\varepsilon}{4}\right)\exp\left(-\frac{2\varepsilon^2s^2n}{d}\right)\exp(-2), \frac{1}{\kappa^2\varepsilon^2s} + \frac{1-\kappa}{\kappa^2\varepsilon}\right),$$
 (3.10)

where we replaced s-1 by s in the final result for notational simplicity. Consider a sampling distribution μ that uniformly samples actions from \mathcal{H} . A simple calculation shows that $C_{\min}(\mathcal{A}) \geq C_{\min}(\mathcal{H}) \geq \kappa^2 > 0$. This is due to

$$\sigma_{\min}\left(\sum_{x \in \mathcal{H}} \mu(x) x x^{\top}\right) = \sigma_{\min}\left(\mathbb{E}_{X \sim \mu}[X X^{\top}]\right) = \kappa^{2},$$

where each coordinate of the random vector $X \in \mathbb{R}^d$ is sampled independently uniformly from $\{-1,1\}$. In the data poor regime when $d \geq n^{1/3}s^{2/3}$, we choose $\varepsilon = \kappa^{-2/3}s^{-2/3}n^{-1/3}$ such that

$$\max(R_{\theta}(n), R_{\widetilde{\theta}}(n)) \ge R_{\theta}(n) + R_{\widetilde{\theta}}(n)$$

$$\ge \frac{\exp(-4)}{4} \kappa^{-\frac{2}{3}} s^{\frac{1}{3}} n^{\frac{2}{3}} \ge \frac{\exp(-4)}{4} C_{\min}^{-\frac{1}{3}} (\mathcal{A}) s^{\frac{1}{3}} n^{\frac{2}{3}} .$$

Finally, in the data rich regime when $d < n^{1/3}s^{2/3}$ we choose $\varepsilon = \sqrt{d/(ns^2)}$ such that the exponential term is a constant, and then

$$\max(R_{\theta}(n), R_{\widetilde{\theta}}(n)) \ge R_{\theta}(n) + R_{\widetilde{\theta}}(n) \ge \frac{\exp(-4)}{4} \sqrt{dn}$$
.

Algorithm 1 Explore the sparsity then commit (ESTC)

- 1: **Input:** time horizon n, action set A, exploration length n_1 , regularization parameter λ_1 ;
- 2: Solve the optimization problem in Eq. (4.1) and denote the solution as $\widehat{\mu}$.
- 3: **for** $t = 1, \dots, n_1$ **do**
- 4: Independently pull arm A_t according to $\widehat{\mu}$ and receive a reward: $Y_t = \langle A_t, \theta \rangle + \eta_t$.
- 5: end for
- 6: Calculate the Lasso estimator [Tibshirani, 1996]:

$$\widehat{\theta}_{n_1} = \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \left(\frac{1}{n_1} \sum_{t=1}^{n_1} \left(Y_t - \langle A_t, \theta \rangle \right)^2 + \lambda_1 \|\theta\|_1 \right). \tag{4.2}$$

- 7: **for** $t = n_1 + 1$ to n **do**
- 8: Take greedy actions $A_t = \operatorname{argmin}_{x \in \mathcal{A}} \langle \widehat{\theta}_{n_1}, x \rangle$.
- 9: end for

Theorem 4.2. Consider the sparse linear bandits described in Eq. (2.1) and assume the action set \mathcal{A} spans \mathbb{R}^d . Suppose R_{\max} is an upper bound of maximum expected reward such that $\max_{x \in \mathcal{A}} \langle x, \theta \rangle \leq R_{\max}$. In Algorithm 1, we choose

$$n_1 = n^{2/3} (s^2 \log(2d))^{1/3} R_{\text{max}}^{-2/3} (2/C_{\text{min}}^2(\mathcal{A}))^{1/3},$$
 (4.3)

and $\lambda_1 = 4\sqrt{\log(d)/n_1}$. Then the following regret upper bound holds,

$$R_{\theta}(n) \le (2\log(2d)R_{\max})^{\frac{1}{3}}C_{\min}^{-\frac{2}{3}}(\mathcal{A})s^{\frac{2}{3}}n^{\frac{2}{3}} + 3nR_{\max}\exp(-c_1n_1).$$
 (4.4)

Step 1: regret decomposition. Suppose R_{\max} is an upper bound of maximum expected reward such that $\max_{x \in \mathcal{A}} \langle x, \theta \rangle \leq R_{\max}$. We decompose the regret of ESTC as follows:

$$R_{\theta}(n) = \mathbb{E}_{\theta} \left[\sum_{t=1}^{n} \left\langle \theta, x^* - A_t \right\rangle \right]$$

$$= \mathbb{E}_{\theta} \left[\sum_{t=1}^{n_1} \left\langle \theta, x^* - A_t \right\rangle + \sum_{t=n_1+1}^{n} \left\langle \theta, x^* - A_t \right\rangle \right]$$

$$\leq \mathbb{E}_{\theta} \left[2n_1 R_{\max} + \sum_{t=n_1+1}^{n} \left\langle \theta - \widehat{\theta}_{n_1}, x^* - A_t \right\rangle + \sum_{t=n_1+1}^{n} \left\langle \widehat{\theta}_{n_1}, x^* - A_t \right\rangle \right].$$

$$R_{\theta}(n) \leq \mathbb{E}_{\theta} \left[2n_1 R_{\max} + \sum_{t=n_1+1}^{n} \left\langle \theta - \widehat{\theta}_{n_1}, x^* - A_t \right\rangle \right]$$

$$\leq \mathbb{E}_{\theta} \left[2n_1 R_{\max} + \sum_{t=n_1+1}^{n} \left\| \theta - \widehat{\theta}_{n_1} \right\|_1 \left\| x^* - A_t \right\|_{\infty} \right].$$

Step 2: sparse learning

$$\|\widehat{\theta}_{n_1} - \theta^*\|_1 \le \frac{2}{C_{\min}} \sqrt{\frac{2s^2(\log(2d) + \log(n_1))}{n_1}}.$$

with probability at least $1 - \exp(-n_1)$.

Step 3: optimize the length of exploration. Define an event ${\cal E}$ as follows:

$$\mathcal{E} = \Big\{ \phi(\widehat{\Sigma}, s, 3) \ge \frac{C_{\min}^{1/2}}{2}, \|\widehat{\theta}_{n_1} - \theta^*\|_1 \le \frac{2}{C_{\min}} \sqrt{\frac{2s^2(\log(2d) + \log(n_1))}{n_1}} \Big\}.$$

We know that $\mathbb{P}(\mathcal{E}) \ge 1 - 3\exp(-c_1n_1)$. Note that $||x^* - A_t||_{\infty} \le 2$. According to Eq. (B.15), we have

$$R_{\theta}(n) \leq \mathbb{E}_{\theta} \left[\left(2n_{1}R_{\max} + \sum_{t=n_{1}+1}^{n} \left\| \theta - \widehat{\theta}_{n_{1}} \right\|_{1} \left\| x^{*} - A_{t} \right\|_{\infty} \right) \mathbb{1}(\mathcal{E}) \right] + nR_{\max} \mathbb{P}(\mathcal{E}^{c})$$

$$\leq n_{1}R_{\max} + (n - n_{1}) \frac{4}{C_{\min}} \sqrt{\frac{2s^{2} (\log(2d) + \log(n_{1}))}{n_{1}}} 2 + 3nR_{\max} \exp(-c_{1}n_{1})$$

with probability at least $1 - \delta$. By choosing $n_1 = n^{2/3} (s^2 \log(2d))^{1/3} R_{\text{max}}^{-2/3} (2/C_{\text{min}}^2)^{1/3}$, we have

$$R_n \le (sn)^{2/3} (\log(2d))^{1/3} R_{\max}^{1/3} (\frac{2}{C_{\min}^2})^{1/3} + 3nR_{\max} \exp(-c_1 n_1).$$

We end the proof.

Improved Algorithm

Algorithm 2 Restricted phase elimination

- 1: **Input:** time horizon n, action set A, exploration length n_2 , regularization parameter λ_2 ;
- 2: Solve the optimization problem Eq. (4.1) and denote the solution as $\widehat{\mu}$.
- 3: **for** $t = 1, \dots, n_2$ **do**
- 4: Independently pull arm A_t according to $\widehat{\mu}$ and receive a reward: $Y_t = \langle A_t, \theta \rangle + \eta_t$.
- 5: end for
- 6: Calculate the Lasso estimator $\widehat{\theta}_{n_2}$ as in Eq. (4.2) with λ_2 .
- 7: Identify the support: $\widehat{S} = \text{supp}(\widehat{\theta}_{n_2})$.
- 8: **for** $t = n_2 + 1$ to n **do**
- 9: Invoke phased elimination algorithm for linear bandits on \hat{S} .
- 10: **end for**

experiments

