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Problem Setting

v

Compact action set A € R

v

Choose an action A; € A, recieve a reward Y: = (A, 0) + ;. For all x € A,
[x]loe <1

The parameter 6 is assumed to be sparse, [|f]jo <'s
Regret Ry(n) = E 3201 (x",0) — 321, V4]

Let P(A) be the space of probability measures over A with the Borel o-algebra and
define

v

v

v

(A) = max 7 ( Al ])
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Results

Upper Bound Regret Assumptions Regime
Abbasi-Yadkori et al. [2012] O(+/sdn) none rich
Sivakumar et al. [2020] O(v/sdn) adver. + Gaussian noise rich
Bastani and Bayati [2020] O(TKs%(log(n))?) compatibility condition rich
Wang et al. [2018] O(tKs®log(n)) compatibility condition rich
Kim and Paik [2019] O(1sy/n) compatibility condition rich
Lattimore et al. [2015] O(s4/n) action set is hypercube rich
This paper (Thm. 4.2) (’)(C;fn/ 352/32/3) action set spans R% poor
This paper (Thm. 5.2) (’)(C;nln/ 2 \/sn) action set spans R + mini. signal rich
Lower Bound

Multi-task bandits' Q(V/sdn) N.A. rich
This paper (Thm. 3.3) Q(C L% s1/3n2/3) N.A. poor




Lower Bound

Theorem 3.3. Consider the sparse linear bandits described in Eq. (2.1). Then for any policy 7 there
exists an action set A with C,in (A) > 0 and s-sparse parameter 6 € R< such that
—4 1L 12

Ro(n) > e}(I)El—)min (C’mi‘:’l(A)s3n3,vdn). (3.1)
Theorem 3.3 holds for any data regime and suggests an intriguing transition between n%/% and n'/?
regret, depending on the relation between the horizon and the dimension. When d > n'/3s2/3 the
bound is Q(n?/?), which is independent of the dimension. On the other hand, when d < n'/3s/3,
we recover the standard Q(+v/sdn) dimension-dependent lower bound up to a /s-factor. In Section 4,

we prove that the Q(n?/) minimax lower bound is tight by presenting a nearly matching upper
bound in the data-poor regime.
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Lower Bound

Step 1: construct a hard instance. We first construct a low regret action set S and an informative
action set H as follows:

S— {I eRY|z; € {=1,0,1} forj € [d— 1], ||z|l = s — 1,24 :o},
(3.2)

H= {meRd xzj € {—r,r}forjeld—1],z4 :1},

where 0 < k < 11is a constant. The action set is the union A = S U H and let
0= (5,...,5,0,...,0,—1),
N——
s—1

where € > 0 is a small constant to be tuned later. Because #; = —1, actions in H are associated with

a large regret. On the other hand, actions in H are also highly informative, which hints towards an
interesting tradeoff between regret and information. Note that # is nearly the whole binary hypercube,
while actions in § are (s — 1)-sparse. The optimal action is in the action set .A:
I*zargmax(z,@):(l,-u,1,0,...,0)6.,4. (3.3)
N——

z€A
s—1
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LLower Bound
Step 2: construct an alternative bandit

S’:{xeRd

xzj € {-1,0,1}forj e {s,s+1,...,d—1},

foMMj:{anst@JMh:st}

Then, we denote X = arg minyes' Eg[>_;_;(A¢, x)]. Construct the alternative bandit as
0 =0+ 2¢x.
Define an event

n s—1

P={Y 14 e 4, < M

t=1 =1
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Lower Bound

Claim 3.5. Regret lower bounds with respect to event D:

Ro(n) > M

n(s—1)e

Po(D) and  Ry(n) > 5

P;(D°).

By the Bretagnolle-Huber inequality (Lemma C.1 in the appendix),

n(s

Ro(n) + Rz(n) > nls =1 Po(D) +P4(D°) ) > Mexp — KL(Py,Py) ),
2 4

where KL (Py, Pg) is the KL divergence between probability measures Py and Pg.
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Lower Bound

B> 0] -E [Z A4.6)]

t=1
=E, [n(s —1)e— Z]l(At € H)(An0) — > 1(A € 8){A.0)],
t=1 t=1
ﬁ:n A0 € H)(A1,0) < Tu(H)(x(s — 1) — 1) <, B.1)

where T,,(H) = > 1, 1(A; € H). Since (A, 0) = E;Zl Ayje for Ay € S, then it holds that
n s—1
Ro(n) > Eq [n(s —1e—> L(4 €9) ZA[jg]
=1 j=1

> E, [(n(s 1) ; 1(4, € 8) ; Atjg) n(D)] ©2)
> (n(s —1)e — n(s ; 1)€>IP9(D)
n(s—1)e

= "R (D).
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Lower Bound

Claim 3.6. Define T,,(H) = >_;_, 1(A; € H). The KL divergence between Py and Pj is upper
bounded by

KL(]P)Q]PQN) S 252 <L;l)2 + I€2(S — 1)E9[Tn(H)]> . (37)

Then

T (H) < 1/(k%(s — 1)£?), it is easy to see
_ 20¢ _1)2
Ro(n) 4+ Rz(n) > w exp (—W) exp(—2). (3.8)
On the other hand, when T}, (H) > 1/(k2e2(s — 1)), we have
N 1 1-k
T Kk2e2(s—1) K2

Ro(n) > By [T (H)] min A, ; 3.9)
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Lower Bound

Step 4: conclusion. Combining the above two cases together, we have

2.2 .
Rg(n) + Rz(n) > min ((%) exp (— 25; n) exp(—2), L + ! h) , (3.10)

K2e2s K2e

where we replaced s — 1 by s in the final result for notational simplicity. Consider a sampling
distribution p that uniformly samples actions from H. A simple calculation shows that Cypi, (A) >
Chin(H) > k2 > 0. This is due to

Omin (Z /l(T).TTT> = Omin (EXNM[XXTl> = ’{2 )

zeH

where each coordinate of the random vector X € R? is sampled independently uniformly from
{—1,1}. In the data poor regime when d > n'/3s/3, we choose ¢ = x~2/352/3n=1/3 quch that

max(Ry(n), Rz(n)) > Ry(n) + Ry(n)
— 2 1 2 — 1 12
> M/{_isﬁni > M 3(A)s3n3 .

4 4 min
Finally, in the data rich regime when d < n'/3s%/% we choose ¢ = 1/d/(ns?) such that the
exponential term is a constant, and then

—4
max(Rg(n), Rz(n)) > Rg(n) + Ry(n) > eXp(47)v dn. O
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Upper Bound

Algorithm 1 Explore the sparsity then commit (ESTC)

L:

A

Input: time horizon n, action set .4, exploration length nq, regularization parameter A1 ;
Solve the optimization problem in Eq. (4.1) and denote the solution as jz.
fort=1,---,n;do

Independently pull arm A; according to i and receive a reward: Y; = (A, 0) + ns.
end for
Calculate the Lasso estimator [Tibshirani, 1996]:

ny

—~ . 1 5
6,, = argmin (— Z (Ve — (A, 0))” + )\1||0||1). 4.2)
fert MM AT
fort =n; +1tondo R
Take greedy actions A; = argmin_c 4 (0., x).
end for
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Upper Bound

Theorem 4.2. Consider the sparse linear bandits described in Eq. (2.1) and assume the action set .A

spans R?. Suppose Ry is an upper bound of maximum expected reward such that max ¢ 4 (x, ) <
Rinax. In Algorithm 1, we choose

1 = 0% (5% log(2d)) /P R (2/ Oy (A)) 2, 4.3)
and A; = 44/log(d)/n1. Then the following regret upper bound holds,
1 2 2 2
Rg(n) < (2log(2d) Rinax)3C, 33 (A)s3n3 + 3nRpax exp(—ciny). 4.4)
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Upper Bound

Step 1: regret decomposition. Suppose Rax is an upper bound of maximum expected reward such
that max,e 4(z, 0) < Rmax. We decompose the regret of ESTC as follows:

n

Ro(n) =Eo[ Y (82" = AL)]

t=1

- Ee[i(a,x* — A+ zn: (0, 2" _At>}

t=ni1+1

SE@PMRH}&X—I— z": <0—§n1,x*—At>+ z”: <§n1,x*—At>}.

t=ni1+1 t=ni1+1

RQ(TL) S Eg [2n1RmaX —+ i: <9 — §n1 , m* _ At>:|

t:n1 +1

< Eo[2i R+ Y (0= 0], [l2" - A,

t:n1 +1

13 /17



Upper Bound

Step 2: sparse learning

~ 2 252 (log(2d) + log(n1))
6, = 67]], < 5= \/ o

with probability at least 1 — exp(—ny).
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Upper Bound

Step 3: optimize the length of exploration. Define an event £ as follows:

1/2 N ’2 ] N
&= {0E.5.3 > S |, 07, < 2 \/29 (og(2d) + log(ru))y,

ny

We know that P(€) > 1 — 3exp(—ecinq). Note that ||2* — 4|l < 2. According to Eq. (B.15), we
have

Ro(n) < By [(zanm + 5 =Bl - At”m) 11(5)] + Ry P(E°)

t=n1+1

< niRpax + (n —nyp)

4 \/282(10g(2d) + log(n1)) 9 4 31 Runas expl(—c1n1)

Cmin ni

with probability at least 1 — 8. By choosing 1, = n2/3(s2 log(2d))Y/3Ra2l3(2/C,
2

2,13, we have

R, < (sn)?3(log(2d))/3RL/3. (C

s

)3 £ 3nRiay exp(—ciny ).
min

We end the proof.
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Improved Algorithm

Algorithm 2 Restricted phase elimination

1:

—_

I G B AR U e

Input: time horizon n, action set A, exploration length no, regularization parameter Ag;
Solve the optimization problem Eq. (4.1) and denote the solution as fi.
fort=1,--- ,nydo
Independently pull arm A, according to 7i and receive a reward: Y, = (A, 0) + n.
end for
Calculate the Lasso estimator 6’,12 as in Eq. (4.2) with As.
Identify the support: S = supp(ﬁ 2)-
fort = ny + 1ton do R
Invoke phased elimination algorithm for linear bandits on S.
end for
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experiments
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