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Linear Bandit Problem

▶ Action space: A
▶ Feature map: ϕ : A → Rd

▶ Mean reward of action a ∈ A is ϕ(a)T θ
▶ θ ∈ Θ ⊂ Rd is unknown.
▶ Goal: Learn to solve maxa∈A ϕ(a)

T θ
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Convergence to Optimality - Regret

▶ The agent can learn without exploring every possible action.
The work of Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010), and
Abbasi-Yadkori et al. (2011) yields tight regret bounds of order

d
√
T

▶ Bounds exhibit no dependence on the number of actions
▶ What about more general model classes?
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A General Bandit Problem

▶ We want to solve
max
a∈A

fθ(a)

▶ Know fθ ∈ F = {fp : ρ ∈ Θ}
▶ Beliefs about θ ∈ Θ may be encoded in terms of prior distribution.
▶ Agent sequentially chooses actions A1, A2, . . .

▶ Choosing action At yields random reward with mean fθ (At).
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A General Bandit Problem

▶ Evaluate the performance up to time T by regret:

Regret(T ) =

T∑
t=1

[ fθ (A
∗)︸ ︷︷ ︸

optimal action

− fθ (At)︸ ︷︷ ︸
selected action

]
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Theoretical Gaurantees

Provide upper bounds on expected regret of Order up to some logarithmic factor√
dimE

(
F , T−1

)︸ ︷︷ ︸
Eluder dimension

log (N (F , α, ‖ · ‖∞) /δ)︸ ︷︷ ︸
log-covering number

T

▶ Log-covering number:
– Sensitivity to statistical over-fitting.
– Closely related to concepts from statistical learning theory.

▶ Eluder dimension:
– How does sampling one action reduce uncertainty about others?
– How effectively the value of unobserved actions can be inferred from observed samples?
– A new notion the paper introduce.
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Theoretical Gaurantees
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▶ Bound holds for Thompson Sampling and a general UCB algorithm.
▶ Matches the best bounds available for UCB algorithms when specialized to linear or

generalized linear models.
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What about VC dimension?

▶ Define S = {x1, . . . , xn} . Consider a binary function class H and the “projection” set

HS = Hx1,...,xn
= {(h (x1) , . . . , h (xn) : h ∈ H}

▶ Growth Function: The growth function is the maximum number of ways into which n
points can be classified by the function class:

GH(n) = sup
x1,...,xn

|HS |

▶ VC Dimension:
dimVC(H) = max{n : GH(n) = 2n}

▶ VC dimension of a function class H is the cardinality of the largest set that it can shatter.
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What about VC Dimension?

▶ A = {a1, . . . , an}
▶ F = {f1, . . . , fn}
▶ fi(a) = 1 [a = ai]

A noiseless prediction problem: Suppose At drawn uniformly from A,
▶ dimVC(F) = 1

▶ Prediction error converges to 1/n in constant time.
(e.g. predicting 0 or use f1 every time.)
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What about VC Dimension?

▶ A = {a1, . . . , an}
▶ F = {f1, . . . , fn}
▶ fi(a) = 1 [a = ai]

A multiarmed bandit problem: Suppose fθ drawn uniformly from F . then until the optimal
action is identified, Regret scales linearly with n.
(a) Regret per round is 1
(b) At most a single function is ruled out per round

Eluder dimension 13 / 90



Defining Eluder Dimension - Intutitive explanation

▶ Elude (verb)
▶ evade or escape from (a danger, enemy, or pursuer), typically in a skillful or cunning way.

”he managed to elude his pursuers by escaping into an alley”
▶ (of an idea or fact) fail to be grasped or remembered by (someone).

”the logic of this eluded most people”

▶ A politician want to elude the reporters!
▶ The politician sequentially presents information to

reporters.
▶ But each piece of information must be novel to the

reporters.
▶ How long can he continue?
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Defining Eluder Dimension - notion of (in)dependence

Eluder principle: An action a is independent of {a1, . . . , an} if two functions that make
similar predictions at {a1, . . . , an} could differ significantly at a.

Eluder dimension 15 / 90



Defining Eluder Dimension - notion of (in)dependence

Definition 1 ((F , ϵ)-independence).
a ∈ A is ϵ-independent of {a1, . . . , an} ⊆ A
with respect to F iff
▶ ∃f, f̃ ∈ F satisfying

(1)
√∑n

i=1

(
f (ai)− f̃ (ai)

)2

≤ ϵ

satisfies f(a)− f̃(a) > ϵ.

Definition 2 ((F , ϵ)-dependence).
a ∈ A is ϵ-dependent of {a1, . . . , an} ⊆ A with
respect to F iff
▶ ∀f, f̃ ∈ F satisfying

(1)
√∑n

i=1

(
f (ai)− f̃ (ai)

)2

≤ ϵ

satisfies f(a)− f̃(a) ≤ ϵ.

Figure: x5 is ({f1, f2} , 1)-independent of {x1, .., x4}
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Defining Eluder Dimension - notion of (in)dependence

▶ Let us get some understanding via the notion of linear dependence in linear algebra!
▶ Claim:

(
F :=

{
〈θ, ϕ(·)〉, θ ∈ Rd

}
, 0
)
-dependence ⇐⇒ linear dependence in Rd.

▶ a ∈ A is 0-dependent of {a1, . . . , an} ⊆ A with respect to F

⇐⇒ ∀θ, θ̃ ∈ Rd, 〈θ − θ̃, ai〉 = 0,∀i ∈ [n]⇒ 〈θ − θ̃, a〉 = 0

⇐⇒ ∀θ ∈ Rd, 〈θ, ai〉 = 0,∀i ∈ [n]⇒ 〈θ, a〉 = 0

⇐⇒ ∀θ ∈ Rd, θ ∈ Span(a1, . . . , an)
⊥ ⇒ 〈θ, a〉 = 0

⇐⇒ a ∈
(
Span(a1, . . . , an)

⊥)⊥ = Span(a1, . . . , an)

▶ ⇐⇒ a ∈ A is linearly dependent of {a1, . . . , an} ⊆ A.
▶ This ϵ-approximate extension is advantageous as it captures both nonlinear dependence

and approximate dependence.
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Defining Eluder Dimension

The eluder dimension is the length of the longest independent sequence.

Definition 3 (Eluder dimension).
dimE(F , ϵ) is the length of the longest sequence of elements in A such that, for some
ϵ′ ≥ ϵ, every element is (F , ϵ′)-independent of its predecessors.
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Eluder Dimension - Non-increasing in tolerance ϵ

▶ Property. dimE(F , ϵ) ≥ dimE(F , ϵ+ ϵ0),∀ϵ0 > 0.
▶ Proof (My understanding):

If for some ϵ′ ≥ ϵ+ ϵ0, every element is (F , ϵ′)-independent of its predecessors,
▶ then of course, for the above found ϵ′, we have ϵ′ ≥ ϵ+ ϵ0 > ϵ, every element is

(F , ϵ′)-independent of its predecessors

▶ Therefore, conclude dimE(F , ϵ) is at least the same as dimE(F , ϵ+ ϵ0).
▶ Useful in the main proof.
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Understand Eluder Dim via comparison with VC Dim - Classical Def

▶ Define S = {x1, . . . , xn} . Consider a binary function class H and the “projection” set

HS = Hx1,...,xn = {(h (x1) , . . . , h (xn) : h ∈ H}

▶ Growth Function: The growth function is the maximum number of ways into which n
points can be classified by the function class:

GH(n) = sup
x1,...,xn

|HS |

▶ VC Dimension:
dimVC(H) = max{n : GH(n) = 2n}

▶ VC dimension of a function class H is the cardinality of the largest set that it can shatter.
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Understand Eluder Dim via comparison with VC Dim - New Def

Definition 4 (VC-independence).
An action a is VC-independent of Ã ⊆ A if for any f, f̃ ∈ F , there exists some f ∈ F , which
agrees with f on a and with f̃ on Ã; that is, f(a) = f(a) and f(ã) = f̃(ã) for all ã ∈ Ã.

Definition 5 (VC-dependence).
An action a is VC-dependent of Ã ⊆ A if for any f ∈ F , there exists f, f̃ ∈ F , such that f
cannot simultaneously agrees with f on a and with f̃ on Ã; that is, f(a) 6= f(a) or
f(ã) 6= f̃(ã) for all ã ∈ Ã.

Remark 1.
By this definition, an action a is said to be VC-dependent on Ã if knowing the values f ∈ F
takes on Ã could restrict the set of possible values at a.
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Understand Eluder Dim via comparison with VC Dim - New Def

Definition 6 (Alternative definition of dimVC).
The VC dimension of a class of binary-valued functions H with domain A is the largest
cardinality of a set Ã ⊆ A such that every a ∈ Ã is VC-independent of Ã\{a}.

Remark 2 (Equivalence to classical definition of dimVC in binary output setting).

▶ If H can shatter Ã, it is trivial to see every a ∈ Ã is VC-independent of Ã \ {a}.
▶ Conversely, we need to prove if every a ∈ Ã is VC-independent of Ã \ {a}, then H can

shatter Ã.
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Understand Eluder Dim via comparison with VC Dim - New Def

Conversely, prove if every a ∈ Ã is VC-independent of Ã \ {a}, then H can shatter Ã.
▶ My constructive proof: Let us first assume there exists function f0, f1 ∈ H s.t. for all
a ∈ Ã, f1(a) = 1 and f0(a) = 0.

▶ W.l.o.g. let Ã = {a1, · · · , an}.
▶ Pick a = a1, f = f0, f̃ = f1, by definition of VC-independence, there must exists f01 ∈ H

s.t. f01(a1) = f0(a1) = 0 and f01(Ã \ {a1}) = f1(Ã \ {a1}) = 1.
▶ Similarly, pick a = a1, f = f1, f̃ = f0, there must exists f10 ∈ H s.t. f10(a1) = 1 and
f10(Ã \ {a1}) = 0. Now, a1 is shattered.

▶ Recursively, pick f ∈ {f0, f1} and f̃0 ∈ {f01, f10, f0, f1}, and let a = a2 ∈ Ã \ {a1}, there
must exists f001, f101, f110, f010 ∈ H. Now, a1 and a2 is shattered.

▶ And finally we see H can shatter Ã by recursively find f{0,1}n ∈ H, i.e. Ã is shattered.
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Understand Eluder Dim via comparison with VC Dim

▶ A = {a1, . . . , an}
▶ F = {f1, . . . , fn}
▶ fi(a) = 1 {a = ai}

▶ In the above example, any two actions are VC dependent because knowing the label of one
action could completely determine the value of the other action.

▶ However, this only happens if the sampled action has label 1.
▶ If it has label 0, one cannot infer anything about the value of the other action.
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Understand Eluder Dim via comparison with VC Dim

▶ stronger requirement: guarantee one ������could will gain useful information through
exploration.

Definition 7 (strong-dependence).
An action a is strongly dependent on a set of actions Ã ⊆ A if any two functions f, f̃ ∈ F that
agree on Ã agree on a; that is, the set {f(a) : f(ã) = f̃(ã),∀ã ∈ Ã} is a singleton. An action
a is weakly independent of Ã if it is not strongly dependent on Ã.

▶ a is strongly dependent on Ã if knowing the values of f on Ã completely determines the
value of f on a.

▶ ϵ-Eluder dimension: Strong + ϵ-Approximate dependence
– focusing on the possible difference f(a)− f̃(a) between two functions that approximately

agree on Ã.
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Eluder dimension 25 / 90



Outline

Background
Eluder dimension
Regret upper bound via eluder dimension for general function classes

UCB and TS algorithm
Proof Sketch
Proof of Key Theorem - Potential Function and Potential Lemma

Specialization to common function classes
Confidence parameter for common function classes
Eluder dimension for common function classes

Discussion
Missing proofs

Regret upper bound via eluder dimension for general function classes 26 / 90



Outline

Background
Eluder dimension
Regret upper bound via eluder dimension for general function classes

UCB and TS algorithm
Proof Sketch
Proof of Key Theorem - Potential Function and Potential Lemma

Specialization to common function classes
Confidence parameter for common function classes
Eluder dimension for common function classes

Discussion
Missing proofs

Regret upper bound via eluder dimension for general function classes 27 / 90



Optimism in the face of uncertainty

Act according to an ”optimistic” model of the environment
▶ Confidence set Ft ← subset of f ∈ F that are statistically plausible given data.
▶ Play At ∈ argmax

a∈A

{
supf∈Ft

f(a)
}
.
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Optimism in the face of uncertainty

Act according to an ”optimistic” model of the environment
▶ Ft ← subset of f ∈ F that are statistically plausible given data.
▶ Play At ∈ argmax

a∈A

{
supf∈Ft

f(a)
}
.

There is a huge literature on this approach:
▶ Bandit problems with independent arms

– (Lai-Robins, 1985 ), (Lai, 1987 ), (Auer, 2002), (Audibert, 2009)....
▶ Bandit problems with dependent arms

– (Rusmevichientong-Tsitsiklis 2010), (Filippi et. al, 2010), (Srinivas et. al, 2012)...
▶ Reinforcement Learning

– (Kearns-Singh, 2002), (Bartlett-Terwari, 2009), (Jaksch et. al 2010)...
▶ Monte Carlo Tree Search

– (Kocsis-Szepesvári, 2006)...
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A posterior sampling strategy

”Thompson sampling” & ”probability matching”:
▶ Sample each action according to the posterior probability it is optimal:

πt = P (A∗
t ∈ · | Ht) ,

where A∗
t is a random variable that satisfies A∗

t ∈ argmaxa∈A fθ(a).
▶ Practical implementations typically operate by, at each time t, sampling an index θ̂t ∈ Θ

from the distribution P (θ ∈ · | Ht) and then generating an action At ∈ argmaxa fθ̂(a).

The paper Learning to Optimize via Posterior Sampling
▶ establishes a close connection with optimistic algorithms.
▶ implies the analysis also bounds the Bayesian regret of TS.
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Proof Sketch

√
dimE

(
F , T−1

)︸ ︷︷ ︸
Eluder dimension

log (N (F , α, ‖ · ‖∞) /δ)︸ ︷︷ ︸
log-covering number

T

(1) Regret decomposition for Optimism and Posterior Sampling;
– Upper bound regret by summation of confidence intervals at queried action sequence.

(2) Build generic confidence sets Ft ⊂ F ;
– Size of Ft depends on the log-covering number of F .

(3) Key step: Measure the rate at which confidence intervals (bonus) shrink ⇒ Regret
rate.
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Proof Sketch

√
dimE

(
F , T−1

)︸ ︷︷ ︸
Eluder dimension

log (N (F , α, ‖ · ‖∞) /δ)︸ ︷︷ ︸
log-covering number

T

(1) Regret decomposition for Optimism and Posterior Sampling;
(2) Build generic confidence sets Ft ⊂ F ;
(3) Measure the rate at which confidence intervals (bonus) shrink. (Potential lemma)

– If bonus at one action is large, then this action must be
dependent on few (≤) disjoint subsequences.

– Depends on the eluder dimension of F . After some
finite time, action should be dependent on at least (≥)
some disjoint subsequences.

– Therefore, bonus cannot be large forever.

disjoint sub-histories large bonus
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Proof Sketch - Big Picture
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Proof Sketch - Big Picture

▶ Moved to appendix: missing proofs
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Regret decomposition

▶ UCB sequence U = {Ut | t ∈ N} adapted to filtration {Ht | t ∈ N}.
▶ UCB regret decomposition: Consider a UCB algorithm, At ∈ argmaxa∈At

Ut(a) and
A∗

t ∈ argmaxa∈At
fθ(a). We have the following simple regret decomposition:

fθ (A
∗
t )− fθ

(
At

)
= fθ (A

∗
t )− Ut

(
At

)
+ Ut

(
At

)
− fθ

(
At

)
≤ [fθ (A

∗
t )− Ut (A

∗
t )] +

[
Ut

(
At

)
− fθ

(
At

)]
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Regret decomposition

▶ UCB sequence U = {Ut | t ∈ N} adapted to filtration {σ(Ht) | t ∈ N}.
▶ PS regret decomposition: Consider a PS algorithm, conditioned on Ht, the optimal

action A∗
t and the action At selected by posterior sampling are identically distributed, and

Ut is deterministic.
– Hence E [Ut (A

∗
t ) | Ht] = E [Ut (At) | Ht] .

– And we have regret decomposition,

E [fθ (A
∗
t )− fθ (At)] = E [E [fθ (A

∗
t )− fθ (At) | Ht]]

= E [E [Ut (At)− Ut (A
∗
t ) + fθ (A

∗
t )− fθ (At) | Ht]]

= E [E [Ut (At)− fθ (At) | Ht] + E [fθ (A
∗
t )− Ut (A

∗
t ) | Ht]]

= E [Ut (At)− fθ (At)] + E [fθ (A
∗
t )− Ut (A

∗
t )]

Regret upper bound via eluder dimension for general function classes 37 / 90



Regret decoposition - Comparison

▶ Assume fθ takes values in [0, C]. Compare decomposition for UCB and PS,

Regret
(
T, πU , θ

) a.s.
≤

T∑
t=1

[
Ut

(
At

)
− fθ

(
At

)]
+ C

T∑
t=1

1 (fθ (A
∗
t ) > Ut (A

∗
t ))

BayesRegret
(
T, πPS

)
≤ E

T∑
t=1

[Ut (At)− fθ (At)] + C

T∑
t=1

P (fθ (A
∗
t ) > Ut (A

∗
t ))

▶ Important difference: the regret bound of πU depends on the specific UCB sequence U
used by the UCB algorithm in question,

▶ whereas the bound of πPS applies simultaneously for all UCB sequences.
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Regret decoposition - Comparison

▶ Assume fθ takes values in [0, C]. Compare decomposition for UCB and PS,

BayesRegret
(
T, πU

)
≤ E

T∑
t=1

[
Ut

(
At

)
− fθ

(
At

)]
+ C

T∑
t=1

P (fθ (A
∗
t ) > Ut (A

∗
t ))

BayesRegret
(
T, πPS

)
≤ E

T∑
t=1

[Ut (At)− fθ (At)] + C

T∑
t=1

P (fθ (A
∗
t ) > Ut (A

∗
t ))

▶ While the Bayesian regret of a UCB algorithm depends critically on the specific choice of
confidence sets,

▶ posterior sampling depends on the best-possible choice of confidence sets.
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Regret decoposition - Comparison

▶ Assume fθ takes values in [0, C]. Compare decomposition for UCB and PS,

BayesRegret
(
T, πU

)
≤ E

T∑
t=1

[
Ut

(
At

)
− fθ

(
At

)]
+ C

T∑
t=1

P (fθ (A
∗
t ) > Ut (A

∗
t ))

BayesRegret
(
T, πPS

)
≤ E

T∑
t=1

[Ut (At)− fθ (At)] + C

T∑
t=1

P (fθ (A
∗
t ) > Ut (A

∗
t ))

▶ This is a crucial advantage when there are complicated dependencies among actions, as
designing and computing with appropriate confidence sets presents significant challenges.

▶ This difficulty is likely the main reason that posterior sampling significantly outperforms
UCB algorithms in the simulations.
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Simuluation results
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Confidence sets and width

▶ Assumption 1. For all f ∈ F and a ∈ A, f(a) ∈ [0, C].
▶ Assumption 2. For all t ∈ N, Rt − fθ (At) conditioned on (Ht, θ, At) is σ-sub-Gaussian.
▶ Construct a set Ft ⊂ F of functions that are statistically plausible at time t.
▶ Let wF (a) := supf∈F f(a)− inff∈F f(a) denote the width of F at a.
▶ Remark: while the analysis of posterior sampling will make use of UCBs, the actual

performance of posterior sampling does not depend on UCBs used in the analysis.
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Confidence bounds and regret

Proposition 1 (Bound regret in terms of the confidence width at selected actions).
Fix any sequence {Ft : t ∈ N}, where Ft ⊂ F is measurable with respect to σ (Ht). Then for
any T ∈ N,

Regret
(
T, πU , θ

) a.s.
≤

T∑
t=1

wFt

(
At

)
+ C1 (fθ /∈ Ft)

BayesRegret
(
T, πPS

)
≤ E

[
T∑

t=1

wFt (At) + C1 (fθ /∈ Ft)

]
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Confidence bounds

▶ Least square: L2,t(f) =
∑t−1

1 (f (At)−Rt)
2 is the cumulative squared prediction error.

▶ The confidence sets constructed here are centered around least squares estimates
f̂LS
t ∈ argminf∈F L2,t(f).

▶ The sets take the form Ft :=

{
f ∈ F :

∥∥∥f − f̂LS
t

∥∥∥
2,Et

≤
√
βt

}
▶ βt is an appropriately chosen confidence parameter
▶ the empirical 2-norm ‖ · ‖2,Et is defined by ‖g‖22,Et

=
∑t−1

1 g2 (Ak) .

– Hence ∥f − fθ∥22,Et
measures the cumulative discrepancy between the previous predictions

of f and fθ.
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Confidence bounds

Proposition 2 (High-probability bounds).
Define the confidence parameter,

β∗
t (F , δ, α) := 8σ2log (N (F , α, ‖ · ‖∞) /δ) + 2αt

(
8C +

√
8σ2 ln (4t2/δ)

)
.

For all δ > 0 and α > 0, if

Ft =

{
f ∈ F :

∥∥∥f − f̂LS
t

∥∥∥
2,Et

≤
√
β∗
t (F , δ, α)

}
for all t ∈ N, then

P

(
fθ ∈

∞⋂
t=1

Ft

)
≥ 1− 2δ
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The shrink rate of confidence width - Key theorem

Proposition 3 (Potential Function).

If (βt ≥ 0 | t ∈ N) is a nondecreasing sequence and Ft :=

{
f ∈ F :

∥∥∥f − f̂LS
t

∥∥∥
2,Et

≤
√
βt

}
,

then for all T ∈ N and ϵ > 0,

T∑
t=1

1 (wFt (At) > ϵ) ≤
(
4βT
ϵ2

+ 1

)
dimE(F , ϵ).
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The shrink rate of confidence width - Key theorem

Lemma 8 (Potential Lemma).

If (βt ≥ 0 | t ∈ N) is a nondecreasing sequence and Ft :=

{
f ∈ F :

∥∥∥f − f̂LS
t

∥∥∥
2,Et

≤
√
βt

}
,

then for all T ∈ N,

T∑
t=1

wFt (At) ≤ 1 + dimE

(
F , T−1

)
C + 4

√
dimE (F , T−1)βTT .
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Final results

Proposition 4.
For all T ∈ N, α > 0 and δ ≤ 1/2T ,

E
[
Regret

(
T, πU , θ

) ∣∣ θ] ≤ 1 +
[
dimE

(
F , T−1

)
+ 1
]
C + 4

√
dimE (F , T−1)β∗

T (F , α, δ)T

BayesRegret
(
T, πPS

)
≤ 1 +

[
dimE

(
F , T−1

)
+ 1
]
C + 4

√
dimE (F , T−1)β∗

T (F , α, δ)T
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Proof of proposition 3 (Potential Function)

Step 1 If wt (At) > ϵ, then At is ϵ-dependent on fewer than 4βT /ϵ
2 disjoint subsequences of

(A1, . . . , At−1) for T > t.

Step 2 In any action sequence (a1, . . . , aτ ) , there is some element aj that is ϵ-dependent on at
least τ/d− 1 disjoint subsequences of (a1, . . . , aj−1) , where d := dimE(F , ϵ).

Step 3 Now, consider taking (a1, . . . , aτ ) to be the subsequence (At1 , . . . , Atτ ) of (A1, . . . , AT )

consisting of elements At for which wFt (At) > ϵ, i.e. wFtj

(
Atj

)
> ϵ, ∀j = 1 . . . τ .

– By step 1, each Atj is ϵ-dependent on fewer than 4βT /ϵ
2 disjoint subsequences of(

A1, . . . , Atj−1

)
.

– It follows that each aj is ϵ-dependent on fewer than 4βT /ϵ
2 disjoint subsequences of

(a1, . . . , aj−1).
– Combining Step 2, we have τ/d− 1 ≤ 4βT /ϵ

2. It follows that τ ≤
(
4βT /ϵ

2 + 1
)
d. Done.
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Proof of proposition 3 - Step 1

Step 1 If wt (At) > ϵ, then At is ϵ-dependent on fewer than 4βT /ϵ
2 disjoint subsequences of

(A1, . . . , At−1) for T > t.

– wFt (At) > ϵ =⇒ ∃f, f ∈ Ft, f (At)− f (At) > ϵ.

– By definition, since f (At)− f (At) > ϵ, if At is ϵ-dependent on a subsequence
(Ai1 , . . . , Aik ) of (A1, . . . , At−1) , then

∑k
j=1

(
f
(
Aij

)
− f

(
Aij

))2
> ϵ2.

– It follows that, if At is ϵ-dependent on K disjoint subsequences of (A1, . . . , At−1) , then
∥f − f∥22,Et

> Kϵ2.
– By the triangle inequality, we have

∥f − f∥2,Et ≤
∥∥∥f − f̂LS

t

∥∥∥
2,Et

+
∥∥∥f − f̂LS

t

∥∥∥
2,Et

≤ 2
√

βt ≤ 2
√

βT

– Then K < 4βT /ϵ
2.
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Proof of proposition 3 - Step 2 Intuition

Step 2 In any action sequence (a1, . . . , aτ ) , there is some element aj that is ϵ-dependent on at
least τ/d− 1 disjoint subsequences of (a1, . . . , aj−1) , where d := dimE(F , ϵ).

▶ Let us again get some intuition from linear algebra! (F linear function class and ϵ = 0)
▶ ϵ-dependency now become linear dependency.
▶ W.l.o.g let τ = Kd+ 1. Sampling basis of Rd one by one:

a1 = e1, a2 = e2, . . . , ad = ed, . . . , aid+j = ej , . . . , aτ = e1

▶ Form every round of sampled basis Bi = {a(i−1)d+1, . . . , a(i)d} as a subsequence,
i = 1, . . . ,K

▶ then aτ is linearly dependent on all previous constructed disjoint subsequences, which is
K > τ/d− 1
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Proof of proposition 3 - Step 2 Formal constructive proof

Step 2 In any action sequence (a1, . . . , aτ ) , there is some element aj that is ϵ-dependent on at
least τ/d− 1 disjoint subsequences of (a1, . . . , aj−1) , where d := dimE(F , ϵ).

– For an integer K satisfying Kd+ 1 ≤ τ ≤ Kd+ d, we will construct K disjoint
subsequences B1, . . . , BK .

– First let Bi = (ai) for i = 1, . . . ,K. If aK+1 is ϵ-dependent on each subsequence
B1, . . . , BK , our claim is established.

– Otherwise, select a subsequence Bi s.t. aK+1 is ϵ-independent and append aK+1 to Bi.

– Repeat this process for elements with indices j > K + 1 until aj is ϵ-dependent on each
subsequence or j = τ .

– In the latter scenario (j = τ),
∑

i |Bi| ≥ Kd,

– and since each element of a subsequence Bi is ϵ-independent of its predecessors, |Bi| = d.
– In this case, aτ must be ϵ-dependent on each subsequence.
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Proof of Lemma 8 (Potential Lemma)

▶ Write d = dimE

(
F , T−1

)
and wt = wt (At).

▶ Reorder the sequence (w1, . . . , wT )→ (wi1 , . . . , wiT ) , where wi1 ≥ wi2 ≥ · · · ≥ wiT .

▶ ∑T
t=1 wFt

(At) =
∑T

t=1 wit =

T∑
t=1

wit1
{
wit ≤ T−1

}
+

T∑
t=1

wit1
{
wit > T−1

}
≤ 1 +

T∑
t=1

wit1
{
wit ≥ T−1

}
▶ We know wit ≤ C. In addition,

wit > ϵ⇐⇒
T∑

k=1

1 (wFk
(Ak) > ϵ) ≥ t.

▶ By Proposition 3 (Potential Function), this can only occur if
t <

(
(4βT ) /ϵ

2 + 1
)
dimE(F , ϵ).
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Proof of Lemma 8 (Potential Lemma)

▶ For ϵ ≥ T−1,dimE(F , ϵ) ≤ dimE

(
F , T−1

)
= d, since dimE (F , ϵ) is non-increasing in

tolerance ϵ.
▶ Therefore, when wit > ϵ ≥ T−1, t <

(
(4βT ) /ϵ

2 + 1
)
d, which implies

ϵ <
√
(4βT d) /(t− d).

▶ This shows that if wit > T−1, for ϵ ≥ T−1, taking ϵ ↑ wit , then

wit ≤ min
{
C,
√

(4βT d) /(t− d)
}
.

▶ Therefore,

T∑
t=1

wit1
{
wit > T−1

}
≤ dC+

T∑
t=d+1

√
4dβT
t− d

≤ dC+2
√
dβT

∫ T

t=0

1√
t
dt = dC+4

√
dβTT .
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Remark - confidence parameter β∗

β∗
t (F , δ, α) := 8σ2log (N (F , α, ‖ · ‖∞) /δ) + 2αt

(
8C +

√
8σ2 ln (4t2/δ)

)
.

▶ (FINITE FUNCTION CLASSES). When F is finite, β∗
t (F , δ, 0) = 8σ2 log(|F|/δ).

▶ (LINEAR MODELS). Consider a d-dimensional linear model fρ(a) := 〈ϕ(a), ρ〉.
– Fix γ = supa∈A ∥ϕ(a)∥ and s = supρ∈Θ ∥ρ∥.
– Hence, for all ρ1, ρ2 ∈ F , we have ∥fρ1 − fρ2∥∞ ≤ γ ∥ρ1 − ρ2∥ .
– An α-covering of F can therefore be attained through an (α/γ)-covering of Θ ⊂ Rd.
– Such a covering requires O

(
(1/α)d

)
elements, and it follows that,

logN (F , α, ∥ · ∥∞) = O(d log(1/α)).
– If α is chosen to be 1/t2, the second term in β∗

t tends to zero, and therefore,
β∗
t

(
F , δ, 1/t2

)
= O(d log(t/δ)).
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Remark - confidence parameter β∗

β∗
t (F , δ, α) := 8σ2log (N (F , α, ‖ · ‖∞) /δ) + 2αt

(
8C +

√
8σ2 ln (4t2/δ)

)
.

▶ (GENERALIZED LINEAR MODELS). Consider the case of a d -dimensional generalized
linear model fθ(a) := g(〈ϕ(a), θ〉), where g is an increasing Lipschitz continuous function.

– Fix g, γ = supa∈A ∥ϕ(a)∥ and s = supρ∈Θ ∥ρ∥.
– Then, the previous argument shows logN (F , α, ∥ · ∥∞) = O(d log(1/α)).
– Again, choosing α = 1/t2 yields a confidence parameter β∗

t

(
F , δ, 1/t2

)
= O(d log(t/δ)).
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Remark - relate β∗ to Kolmogorov dimension

Definition 9 (Kolmogorov dimension).
The Kolmogorov dimension of a function class F is given by

dimK(F) = lim sup
α↓0

log (N (F , α, ‖ · ‖∞))

log (1/α)
. Example : dimK

(
Rd
)
= d

▶ β∗
t (F , δ, α) := 8σ2 log (N (F , α, ‖ · ‖∞) /δ) + 2αt

(
8C +

√
8σ2 ln (4t2/δ)

)

β∗
t

(
F , 1/t2, 1/t2

)
= 8σ2

[
log
(
N
(
F , 1/t2, ‖ · ‖∞

))
log (t2)

+ 1

]
log
(
t2
)
+ 2

t

t2

(
8C +

√
8σ2 ln (4t2δ)

)
= 16 (1 + o(1) + dimK(F)) log t

▶ lim supt→∞ log
(
N
(
F , 1/t2, ‖ · ‖∞

))
/ log

(
t2
)
= dimK(F).
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Equivelant definition of eluder dimension

▶ The ϵ-eluder dimension of a class of functions F is the length of the longest sequence
a1, . . . , aτ such that for some ϵ′ ≥ ϵ

wk := sup

(fρ1
− fρ2

) (ak) :

√√√√k−1∑
i=1

(fρ1
− fρ2

)
2
(ai) ≤ ϵ′, ρ1, ρ2 ∈ Θ

 > ϵ′

for each k ≤ τ
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Eluder dim for Finite action spaces

▶ Any action is ϵ′-dependent on itself since

sup

{
(fρ1
− fρ2

) (a) :

√
(fρ1
− fρ2

)
2
(a) ≤ ϵ′ρ1, ρ2 ∈ Θ

}
≤ ϵ′

Therefore, for all ϵ > 0, the ϵ-eluder dimension of A is bounded by |A|
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Eluder dim for Linear model

Proposition 5.
Suppose Θ ⊂ Rd and fθ(a) = θTϕ(a). Assume there exist constants γ and S such that for all
a ∈ A and ρ ∈ Θ, ‖ρ‖2 ≤ S, and ‖ϕ(a)‖2 ≤ γ. Then

dimE(F , ϵ) ≤ 3d(e/(e− 1)) ln
{
3 + 3((2S)/ϵ)2

}
+ 1

▶ To simplify the notation, define wk as in previous page, ϕk = ϕ (ak) , ρ = ρ1 − ρ2, and
Φk =

∑k−1
i=1 ϕiϕ

T
i .

▶ In this case,
∑k−1

i=1 (fρ1
− fρ2

)
2
(ai) = ρTΦkρ, and by the triangle inequality ‖ρ‖2 ≤ 2S.

▶ The proof follows by bounding the number of times wk > ϵ′ can occur.
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Eluder dim for Linear model - Proof Sketch

Step 1. If wk ≥ ϵ′, then ϕTk V −1
k ϕk ≥ 1

2 where Vk := Φk + λI and λ = (ϵ′/(2S))
2.

Step 2. If wi ≥ ϵ′ for each i < k, then detVk ≥ λd
(
1 + 1

2

)k−1 and det
Vk ≤

((
γ2(k − 1)

)
/d+ λ

)d.
Step 3. Complete proof by solving k with the upper and lower bound of detVk.
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Eluder dim for Linear model - Proof

Step 1. If wk ≥ ϵ′, then ϕTk V −1
k ϕk ≥ 1

2 where Vk := Φk + λI and λ = (ϵ′/(2S))
2.

▶ We find

wk ≤ max
{
ρTϕk : ρTΦkρ ≤ (ϵ′)

2
, ρT Iρ ≤ (2S)2

}
≤ max

{
ρTϕk : ρTVkρk ≤ 2 (ϵ′)

2
}
=
√
2 (ϵ′)

2 ‖ϕk‖V −1
k

.

▶ The second inequality follows because any ρ that is feasible for the first maximization
problem must satisfy ρTVkρ ≤ (ϵ′)

2
+ λ(2S)2 = 2 (ϵ′)

2
.

▶ The third inequality follows by Cauchy-Schwarz inequality.
▶ By this result, wk ≥ ϵ′ implies ‖ϕk‖2V −1

k
≥ 1/2
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Eluder dim for Linear model - Proof

Step 2. If wi ≥ ϵ′ for each i < k, then detVk ≥ λd
(
3
2

)k−1 and det Vk ≤
((
γ2(k − 1)

)
/d+ λ

)d.
▶ Since Vk = Vk−1 + ϕkϕ

T
k , using the matrix determinant lemma,

detVk = detVk−1

(
1 + ϕTt V

−1
k ϕt

)
≥ detVk−1

(
3

2

)
≥ · · · ≥ det[λI]

(
3

2

)k−1

= λd
(
3

2

)k−1

▶ Recall that det Vk is the product of the eigenvalues of Vk, whereas trace [Vk] is the sum.
▶ By AM-GM inequality, detVk is maximized when all eigenvalues are equal. This implies

detVk ≤ ((trace [Vk]) /d)
d ≤

((
γ2(k − 1)

)
/d+ λ

)d
.
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Eluder dim for Linear model - Proof

Step 3. Manipulating the result of Step 2 shows k must satisfy the inequality:(
3
2

)(k−1)/d ≤ α0[(k − 1)/d] + 1, where α0 = γ2/λ = (2Sγ/ϵ′)
2
. Let

B(x, α) = max
{
B : (1 + x)B ≤ αB + 1

}
.

▶ The number of times wk > ϵ′ can occur is bounded by dB (1/2, α0) + 1

▶ Note that any B ≥ 1 must satisfy the inequality ln{1 + x}B ≤ ln{1 + α}+ lnB. Since
ln{1 + x} ≥ x/(1 + x), using the transformation of variables y = B[x/(1 + x)] gives

y ≤ ln{1 + α}+ ln
1 + x

x
+ ln y ≤ ln{1 + α}+ ln

1 + x

x
+
y

e

=⇒ y ≤ e

e− 1

(
ln{1 + α}+ ln

1 + x

x

)
▶ This implies B(x, α) ≤ ((1 + x)/x)(e/(e− 1))(ln{1 + α}+ ln((1 + x)/x)).
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Elliptical potential lemma

▶ Let A1, A2, · · · be a sequence of vectors in Rd that satisfy ‖At‖2 ≤ 1 for all t ≥ 1. For a
fixed constant λ with λ ≥ 1, define the sequence of covariance matrices {Σt}t≥0 as
follows:

Σ−1
1 := λId , Σ−1

t := λId +
t−1∑
τ=1

AτA
⊤
τ

▶ The elliptical potential lemma then asserts that

T∑
t=1

A⊤
t ΣtAt ≤ 2 log

detΣ1

detΣT+1
≤ 2d log

(
1 +

T

λd

)
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Information theoretic perspective of the elliptical potential lemma

▶ Suppose Rt = θ⊤At +N (0, 1) and D = (A1, R1, . . . , At−1, Rt−1)

▶ Information gain of the new observation At, Rt,

I (θ;At, Rt | D) = H(θ | D)−H(θ | D, At, Rt)

= (1/2)E
[
log

det (Σt)

det(Σt+1)
| D
]
, where Σ−1

t+1 = Σ−1
t +AtA

⊤
t

= (1/2)E
[
log det

(
I +Σ

1/2
t AtA

⊤
t Σ

1/2
t

)
| D
]

= (1/2)E
[
log
(
1 +A⊤

t ΣtAt

)
| D
]

▶ Mutual information between the model parameter and history observations:

I (θ;A1, R1, · · · , AT , RT ) = (1/2)E
[
log

detΣ1

detΣT+1

]
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Eluder dim for Generalized linear models

Proposition 6.
Suppose Θ ⊂ Rd and fθ(a) = g

(
θTϕ(a)

)
where g(·) is a differentiable and strictly increasing

function. Assume that there exist constants h, h̄, γ, and S such that for all a ∈ A and
ρ ∈ Θ, 0 < h ≤ g′

(
ρTϕ(a)

)
≤ h̄, ‖ρ‖2 ≤ S, and ‖ϕ(a)‖2 ≤ γ. Then

dimE(F , ϵ) ≤ 3dr2(e/(e− 1)) ln
{
3r2 + 3r2((2Sh̄)/ϵ)2

}
+ 1

▶ Similar to the linear case.
Step 1. If wk ≥ ϵ′, then ϕTk V −1

k ϕk ≥ 1/
(
2r2
)

where Vk := Φk + λI and λ = (ϵ′/(2Sh))
2.

Step 2. If wi ≥ ϵ′ for each i < k, then det Vk ≥ λd
(
3
2

)k−1 and det Vk ≤
((
γ2(k − 1)

)
/d+ λ

)d
.

Step 3. Complete proof by comparing the lower and upper bound of detVk to solve k.
Specialization to common function classes 71 / 90



Eluder dim for Generalized linear models

Step 1. If wk ≥ ϵ′, then ϕTk V −1
k ϕk ≥ 1/

(
2r2
)

where Vk := Φk + λI and λ = (ϵ′/(2Sh))
2.

▶ By definition wk ≤ max
{
g
(
ρTϕk

)
:
∑k−1

i=1 g
(
ρTϕ (ai)

)2 ≤ (ϵ′)
2
, ρT Iρ ≤ (2S)2

}
.

▶ By the uniform bound on g′(·) this is less than
max

{
h̄ρTϕk : h2ρTΦkρ ≤ (ϵ′)

2
, ρT Iρ ≤ (2S)2

}
≤ max

{
h̄ρTϕk : h2ρTVkρ ≤ 2 (ϵ′)

2
}
=√

2 (ϵ′)
2
/r2 ‖ϕk‖V −1

k
.
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Eluder dim for Generalized linear models

Step 2. If wi ≥ ϵ′ for each i < k, then det Vk ≥ λd
(
3
2

)k−1 and det Vk ≤
((
γ2(k − 1)

)
/d+ λ

)d
.

Step 3. The above inequalities imply k must satisfy
(
1 + 1/

(
2r2
))(k−1)/d ≤ α0[(k − 1)/d], where

α0 = γ2/λ.
▶ Therefore, as in the linear case, the number of times wk > ϵ′ can occur is bounded by
dB
(
1/
(
2r2
)
, α0

)
+ 1.

▶ Plugging these constants into the earlier bound
B(x, α) ≤ ((1 + x)/x)(e/(e− 1))(ln{1 + α}+ ln((1 + x)/x)) and using 1 + x ≤ 3/2,

yields the result.
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Conclusion

▶ MABs (RL) / Online Learning require fundamentally different notions of model complexity.
▶ Huge value in having a unified conceptual understanding.
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Other notion of complexity for online (sequential) learning

▶ Sequential Rademacher Complexity
▶ A. Rakhlin and K. Sridharan. Online non-parametric regression. In Conference on Learning

Theory, pages 1232-1264, 2014.
▶ A. Rakhlin and K. Sridharan. On martingale extensions of vapnik-chervonenkis theory with

applications to online learning. In Measures of Complexity, pages 197-215. Springer, 2015.
▶ A. Rakhlin, K. Sridharan, and A. Tewari. Sequential complexities and uniform martingale

laws of large numbers. Probability Theory and Related Fields, 161(1-2):111-153, 2015.

Discussion 76 / 90



Eluder dimension and its relation to RL
▶ Eluder Dimension applied to model-based RL [Osband and Van Roy 14’, Szepesvari and

Mengdi Wang et al. 20’]
▶ Eluder Dimension applied to value-based RL [WSY20]
▶ Bellman Rank [JKALS17]
▶ Bellman Eluder Dimension [JLM21]

reactive PSRs
reactive POMDPs
low Bellman

rank
tabular MDPs
linear MDPs

low Eluder
dimension

generalized
linear MDPs

low Bellman Eluder dimension

LQRs

Figure: A schematic summarizing relations among families of RL problems
Discussion 77 / 90



Outline

Background
Eluder dimension
Regret upper bound via eluder dimension for general function classes

UCB and TS algorithm
Proof Sketch
Proof of Key Theorem - Potential Function and Potential Lemma

Specialization to common function classes
Confidence parameter for common function classes
Eluder dimension for common function classes

Discussion
Missing proofs

Missing proofs 78 / 90



Proof of Proposition 2

Lemma 10 (Concentration).
For any δ > 0 and f : A 7→ R, with probability at least 1− δ,

L2,t(f) ≥ L2,t (fθ) +
1

2
‖f − fθ‖22,Et

− 4σ2 log(1/δ)

simultaneously for all t ∈ N.

Lemma 11 (Discretization error).
If fα satisfies ‖f − fα‖∞ ≤ α, then with probability at least 1− δ,∣∣∣∣12 ‖fα − fθ‖22,Et

− 1

2
‖f − fθ‖22,Et

+ L2,t(f)− L2,t (f
α)

∣∣∣∣ ≤ αt [8C +
√

8σ2 ln (4t2/δ)
]
∀t ∈ N
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Proof of Proposition 2

▶ Let Fα ⊂ F be an α-cover of F in the sup norm in the sense that, for any f ∈ F , there is
an fα ∈ Fα such that ‖fα − f‖∞ ≤ ϵ.

▶ By a union bound, with probability at least 1− δ,

L2,t (f
α)− L2,t (fθ) ≥

1

2
‖fα − fθ‖2,Et

− 4σ2 log (|Fα| /δ) ∀t ∈ N, f ∈ Fα

▶ Therefore, with probability at least 1− δ for all t ∈ N and f ∈ F

L2,t(f)− L2,t (fθ) ≥
1

2
‖f − fθ‖22,Et

− 4σ2 log (|Fα| /δ)

+ min
fα∈Fα

{
1

2
‖fα − fθ‖22,Et

− 1

2
‖f − fθ‖22,Et

+ L2,t(f)− L2,t (f
α)

}
︸ ︷︷ ︸

Discretization error

.
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Proof of Proposition 2

▶ Lemma 11 (Discretization error) asserts that with probability at least 1− δ, the
discretization error is bounded for all t by αηt, where ηt := t

[
8C +

√
8σ2 ln (4t2/δ)

]
.

▶ Since the least squares estimate f̂LS
t has lower squared error than fθ by definition, we find

with probability at least 1− 2δ

1

2

∥∥∥f̂LS
t − fθ

∥∥∥2
2,Et

≤ 4σ2 log (|Fα| /δ) + αηt

▶ Equivalently,∥∥∥f̂LS
t − fθ

∥∥∥
2,Et

≤
√
8σ2 log (N (F , α, ‖ · ‖∞) /δ) + 2αηt

def
=
√
β∗
t (F , δ, α)
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Proof of Lemma 10 for proposition 2 - Exponential martingale

▶ Consider random variables (Zn | n ∈ N) adapted to the filtration (Hn : n = 0, 1, . . .) .

▶ Assume E [exp {λZi}] is finite for all λ.
▶ Define the conditional mean µi = E [Zi | Hi−1] .

▶ We define the conditional cumulant generating function of the centered random variable
[Zi − µi] by ψi(λ) = logE [exp (λ [Zi − µi]) | Hi−1]. Let

Mn(λ) = exp

{
n∑

i=1

λ [Zi − µi]− ψi(λ)

}

Lemma 12 (Exponential martingale).
(Mn(λ) | n ∈ N) is a martingale, and EMn(λ) = 1

Lemma 13 (Martingale exponential inequality).
For all x ≥ 0 and λ ≥ 0,P (

∑n
1 λZi ≤ x+

∑n
1 [λµi + ψi(λ)] ,∀n ∈ N) ≥ 1− e−x.
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Proof of Lemma 10 for proposition 2

▶ We set Ht−1 to be the σ-algebra generated by (Ht, At, θ) .

▶ By assumptions, ϵt := Rt − fθ (At) satisfies E [ϵt | Ht−1] = 0, and
E [exp {λϵt} | Ht−1] ≤ exp

{(
λ2σ2

)
/2
}

a.s. for all λ.
▶ Define Zt = (fθ (At)−Rt)

2 − (f (Ai)−Rt)
2

▶ By definition,
∑T

1 Zt = L2,T+1 (fθ)− L2,T+1(f).

▶ Some calculation shows that Zt = − (f (At)− fθ (At))
2
+ 2 (f (At)− fθ (At)) ϵt.

Therefore the conditional mean and conditional cumulant generating function satisfy,
µt = E [Zt | Ht−1] = − (f (At)− fθ (At))

2

ψt(λ) = logE [exp (λ [Zt − µt]) | Ht−1]

= logE [exp (2λ (f (At)− fθ (At)) ϵt) | Ht−1] ≤
(2λ [f (At)− fθ (At)])

2
σ2

2
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Proof of Lemma 10 for proposition 2

▶ Applying Lemma 11 shows that, for all x ≥ 0, λ ≥ 0

P

(
t∑

k=1

λZk ≤ x− λ
t∑

k=1

(f (Ak)− fθ (Ak))
2
+
λ2

2
(2f (Ak)− 2fθ (Ak))

2
σ2∀t ∈ N

)
≥ 1−e−x

▶ Or rearranging terms

P

(
t∑

k=1

Zk ≤
x

λ
+

t∑
k=1

(f (Ak)− fθ (Ak))
2 (

2λσ2 − 1
)
∀t ∈ N

)
≥ 1− e−x

▶ Choosing λ = 1/
(
4σ2
)
, x = log(1/δ), and using the definition of

∑t
1 Zk implies

P
(
L2,t(f) ≥ L2,t (fθ) +

1

2
‖f − fθ‖22,Et

− 4σ2 log(1/δ),∀t ∈ N
)
≥ 1− δ
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Proof of Lemma 11 for proposition 2

▶ Since any two functions in f, fα ∈ F satisfy ‖f − fα‖∞ ≤ C, it is enough to consider
α ≤ C. We find∣∣∣(fα)2 (a)− (f)2(a)

∣∣∣ ≤ max
−α≤y≤α

∣∣(f(a) + y)2 − f(a)2
∣∣ = 2f(a)α+ α2 ≤ 2Cα+ α2

▶ which implies∣∣∣(fα(a)− fθ(a))2 − (f(a)− fθ(a))2
∣∣∣ = ∣∣[(fα) (a)2 − f(a)2]+ 2fθ(a) (f(a)− fα(a))

∣∣
≤ 4Cα+ α2∣∣∣(Rt − f(a))2 − (Rt − fα(a))2
∣∣∣ = ∣∣2Rt (f

α(a)− f(a)) + f(a)2 − fα(a)2
∣∣

≤ 2α |Rt|+ 2Cα+ α2
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Proof of Lemma 11 for proposition 2

▶ Summing over t, we find that the left-hand side of Lemma 11 is bounded by

t−1∑
k=1

(
1

2

[
4Cα+ α2

]
+
[
2α |Rk|+ 2Cα+ α2

])
≤ α

t−1∑
k=1

(6C + 2 |Rk|)

▶ Because ϵk is sub-Gaussian, P
(
|ϵk| >

√
2σ2 ln(2/δ)

)
≤ δ. By a union bound,

P
(
∃k ∈ [t− 1] s.t. |ϵk| >

√
2σ2 ln (4t2/δ)

)
≤ δ

2

t−1∑
k=1

1

t2
≤ δ

▶ Since |Rk| ≤ C + |ϵk|, this shows that with probability at least 1− δ the discretization
error is bounded for all t by αηt, where ηt := t

[
8C + 2

√
2σ2 ln (4t2/δ)

]
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Proof of Lemma 12 for Lemma 10

▶ By definition,

E [M1(λ) | H0] = E [exp {λ [Z1 − µ1]− ψ1(λ)} | H0] = E [exp {λ [Z1 − µ1]} | H0] / exp {ψ1(λ)} = 1

▶ Then, for any n ≥ 2,

E [Mn(λ) | Hn−1] = E

[
exp

{
n−1∑
i=1

λ [Zi − µi]− ψi(λ)

}
exp {λ [Zn − µn]− ψn(λ)} | Hn−1

]

= exp

{
n−1∑
i=1

λ [Zi − µi]− ψi(λ)

}
E [exp {λ [Zn − µn]− ψn(λ)} | Hn−1]

= exp

{
n−1∑
i=1

λ [Zi − µi]− ψi(λ)

}
=Mn−1(λ)
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Proof of lemma 13 for Lemma 10

▶ For any λ,Mn(λ) is a martingale with EMn(λ) = 1. Therefore, for any stopping time
τ,EMτ∧n(λ) = 1. For arbitrary x ≥ 0, define τx = inf {n ≥ 0 |Mn(λ) ≥ x} and note
that τx is a stopping time corresponding to the first time Mn crosses the boundary at x.

▶ Then EMτr∧n(λ) = 1 and by Markov’s inequality,

xP (Mτx∧n(λ) ≥ x) ≤ EMτx∧n(λ) = 1

▶ Note that the event {Mτx∧n(λ) ≥ x} =
⋃n

k=1 {Mk(λ) ≥ x} .
▶ So we have shown that for all x ≥ 0 and n ≥ 1

P

(
n⋃

k=1

{Mk(λ) ≥ x}

)
≤ 1

x
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Proof of lemma 13 for Lemma 10
▶ For all x ≥ 0 and n ≥ 1

P

(
n⋃

k=1

{Mk(λ) ≥ x}

)
≤ 1

x

▶ Taking the limit as n→∞, and applying the monotone convergence theorem shows
P (
⋃∞

k=1 {Mk(λ) ≥ x}) ≤ 1/x, or

P

( ∞⋃
k=1

{Mk(λ) ≥ ex}

)
≤ e−x.

▶ Recall Mn(λ) = exp {
∑n

i=1 λ [Zi − µi]− ψi(λ)}, then

P

( ∞⋃
n=1

{
n∑

i=1

λ [Zi − µi]− ψi(λ) ≥ x

})
≤ e−x. □
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