
Simple Agent, Complex Environment: Efficient
Reinforcement Learning with Agent State

Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou
Presenter: Jing Dong

University of Michigan, Ann Arbor

March 24, 2021

Motivation

Simulated environment

1 Data are generally available.

Real environments

1 The environment complexity is often much greater than what
can be handled with available data.

Motivation

Can we design an agent to be efficient in a range of environment,
where the environment may be more complex than the
agent-environment interface complexity?

Agent-environment interface

Agent input

• Available actions A,

• Possible observations O,

• Agent states S,

• Agent state update function f : S ×A×O −→ S,

• Reward function r : S ×A×O −→ [0, 1],

• initial agent state s0 ∈ S,

Agent-environment interface

History Ht = {Ai ,Oi}i∈t

Agent State and Policy

Consider two class of policy

• P based on current history

• P̃ based on the current agent state

Clearly, P̃ ⊆ P.

However,

1 History is unbounded,

2 policies in P̃ require as input only the agent state, which can
be updated incrementally and only demands a fixed amount of
memory and per-timestep computation.

Performance measure and regret

Performance Measure
Performance of each policy π can be measured in terms of the
expected average per-period reward

λπ = lim
T−→∞

inf Eπ[(1/T)
T+1∑
t=0

Rt+1] .

Regret

Regret(T) =
T−1∑
t=0

(λ∗ − Rt+1) ,

where λ∗ = supπ∈P λπ

Main result

E[Regret(T)] = O((
√
SA + τπ̃∗)T 4/5 + SAT 1/5 + ∆T) ,

1 τπ̃∗ reward averaging time, which represents the time scale
over which realized rewards should be averaged to accurately
estimate λπ̃∗ ,

2 ∆ is a measure of achievable error in predicting optimal
expected discounted return, with sufficiently large discount
factors, based on agent state instead of history.

Main result

E[Regret(T)] = O((
√
SA + rπ̃∗)T 4/5 + SAT 1/5 + ∆T) .

Agent is assured to operate reliably in arbitrarily complex
environments. Notably, the regret bound does NOT depend on

1 the number of possible environment states,

2 environment dynamics,

3 reward averaging times of other policies,

4 mixing times of statistics beyond reward.

Main result

E[Regret(T)] = O((
√
SA + rπ̃∗)T 4/5 + SAT 1/5 + ∆T) .

1 First result guaranteeing that an agent achieves near-optimal
average reward in time polynomial in the number of agent
states and actions and the reward averaging time of the
optimal policy in the reference class;

2 First result demonstrating that a policy that achieves
near-optimal average reward can be computed in time
polynomial in the number of agent states and actions and an
upper bound on reward averaging times.

Formal problem statement

Environment
The environment is epresented by tuple (A,O, ρ), where A is a
finite set of actions, O is a set of observations, and ρ is a
conditional observation distribution.

After selecting action At , agent has access to the history
Ht = {Ai ,Oi}i∈t . Let Ht be the set of all histories with duration t
and H = ∪∞t=0Ht be the set of histories with finite duration, which
is saying that the number of action and observations in each
history is finite.

The transition to the next observation is governed by ρ.
Specifically, the next observations takes value o ∈ O with
probability ρ(o|Ht ,At). For all o ∈ O and any h ∈ H, s ∈ A,
ρ(o|h, a) ≥ 0 and

∑
o∈O ρ(o|h, a) = 1.

Formal problem statement

Agent

The agent takes inputs as a tuple (S, f , r ,S0), where S is a finite
set of agent states, f : S ×A×O −→ S is the agent state update
function, r : S ×A×O −→ [0, 1] is the reward function and
S0 ∈ S is the initial agent state.

The agent state evolves as

St+1 = f (St ,At ,Ot+1) .

Formal problem statement

Agent

The agent state update function can also be redefined with a
function that takes history as input

ψf (h) = f (. . . f (f (S0,A0,O1),A1,O2) . . . ,At−1,Ot) .

Policy

A policy π takes history h ∈ H and assigns a probability to each
action a ∈ A such that

∑
a∈A = 1.

Since an agent maintains agent state but not history in its memory,
it can only execute policies for which action probabilities depend on
history through agent state. We denote the set of such policies by

P̃ = {π ∈ P : ψf (h1) = ψf (h2) −→ πh1 = πh2} .

Value functions

The history value functions are defined as

V γ
π (h) = Eπ[

∞∑
t=0

γtRt+l+1|Hl = h] ,

where l is the duration of h. Similarly, we have

Qγ
π (h, a) = Eπ[

∞∑
t=0

γtRt+l+1|Hl = h,Al = a] .

Reward averaging time

Regardless of the initial history, as long as the agent follows policy
π for τπ/ε time steps, the expected average reward during this
period lies in [λπ − ε, λπ + ε]. Formally, the reward averaging time
is defined by

τπ = sup
h∈H,T

|E[
l+T−1∑
t=l

Rt+1|Hl = h]− λπ · · ·T | .

Note
This implies that if λπ = λπ∗ , then E[Regre(T , π)] ≤ τπ

Algorithm

env.reset(h) resets the environment such that the initial history is
h. Such a method is not always available in practice. The reason
that we have it here is to demonstrate that our result holds
regardless of the initial history, as long as the agent starts from the
corresponding agent state.

Regret Bound

Theorem 2
If we run Algorithm 2 with

β =
4
√

log(4T)

(1− γ)3/2
,

then for all T ≥ 1 and initial history h ∈ H, we have that

E[
T−1∑
l=0

V∗(Hl)− Vπl (Hl)]

≤ 17

(1− γ)3/2
·
√
SAT log(4T) +

13∆

1− γ
· T +

SA
(1− γ)2

,

where

∆ = sup{|V∗(h1)− V∗(h2)|h1, h2 ∈ H, ψf (h1) = ψf (h2)}

Regret Bound: Notation

Let Vt(s) be the value of agent state s at time t immediately
before action At is taken and we use Vt(h) as a shorthand for
Vt(ψf (h)). Similarly, we use Qt(s, a) and Qt(h, a).
Further, for each t ≥ 0, let πt be the policy such that for each
h, a ∈ H ×A,

(πt)h(a) = E[πalgh (a)|Ht] .

Therefore we have

E[Vπalg (Ht)] = E[E[Vπalg (Ht)|Ht]] = E[Vπt (Ht)] ,

and

E[Vπt (Ht)] = E[E[
∞∑
l=0

γ lRt+l+1|Ht]] =
∞∑
l=0

γ l · E[Rt+l+1]

Regret Bound: Some derivation
After some algebraic manipulations, we can have

T−1∑
t=0

Vπt (Ht)− Vπalg (Ht) =
1

1− γ
(
T−1∑
t=0

Vt(Ht)− Q∗(Ht ,At))

+
γ

1− γ
(VT (HT)− Vπalg (Ht+1))

− γ

1− γ
(
T−1∑
t=0

Vt+1(Ht+1)− V∗(Ht+1))

+
γ

1− γ
(
T−1∑
t=0

(PV∗(Ht ,At)− V∗(Ht+1))

+
γ

1− γ
(
T−1∑
t=0

(PVπalg (Ht ,At)− Vπalg (Ht+1)) ,

(1)

where PV (Ht ,At) = EHt+1∼P(Ht ,At)V (Ht).

Regret Bound: Probability Bound

Regret Bound: Notation

Before we move on...
For agent state s ∈ S and action a ∈ A, let tn(s, a) be the
timestep corresponding to the n-th selection of action a in agent
state s. We have that

ψf (Htn(s,a)) = s, Atn(s,a) = a .

Set t0(s, a) to be 0 for all (s, a) and let nt(s, a)be the number of
times that action a is selected in agent state s prior to, and not
including, timestep t, i.e.

nt(s, a) = max{n : tn(s, a) < t} .

Further, we define Q̂n(h, a) to denote Qtn(ψf (h),a)(h, a). Note that

Q̂n(Ht ,At) = max
a∈A

Qtn(Ht ,At)(Ht , a) = Vtn(Ht ,At)(Ht) .

Regret Bound: Proof Sketch

Let event G be the event where lemma 3 holds, we have the
following inequality conditioned on G

Vt(Ht)− Q∗(Ht ,At) ≤αnt(Ht ,At)(Q0(Ht ,At)− Q∗(Ht ,At))]

+ ∆ +
3β√

nt(Ht ,At)

+ γ ·
nt(Ht ,At)∑

i=1

αi
nt(Ht ,At)

· (Vti (Ht ,At)(Hti (Ht ,At)+1)

− V∗(Hti (Ht ,At)+1)) .

Regret Bound: Proof Sketch

Because Q∗(Ht ,At) ≤ V∗(Ht),

Vt(Ht)− V∗(Ht) ≤α0
nt(Ht ,At)

· (Q̂0(Ht ,At)− Q∗(Ht ,At)

+ ∆ +
3β√

nt(Ht ,At)

+ γ ·
nt(Ht ,At)∑

i=1

αi
nt(Ht ,At)

· (Vti (Ht ,At)(Hti (Ht ,At)+1)

− V∗(Hti (Ht ,At)+1)) .

Regret Bound: Proof Sketch

Similar to the Q learning proof, we can show that

Vt(Ht) ≥ V∗(Ht)−
∆

1− γ
.

Therefore we have that

T−1∑
t=0

α0
nt(Ht ,At)

· (Q̂0(Ht ,At)− Q∗(Ht ,At)

≤ 1

1− γ
·
T−1∑
t=0

I(nt(Ht ,At) = 0)

≤ SA
1− γ

.

Regret Bound: Proof Sketch

Let Xt = Vt(Ht)− V∗(Ht) + ∆
1−γ , we have that

T−1∑
t=0

Xt ≤
T−1∑
t=0

Vt(Ht)− Q∗(Ht ,At)

≤ SA
1− γ

+ 2∆T +
3β√

nt(Ht ,At)

+ γ ·
T−1∑
t=1

nt(Ht ,At)∑
i=1

αi
nt(Ht ,At)

· Xti (Ht ,At)+1 . (2)

The first inequality holds since Q∗(Ht ,At) ≤ V∗(Ht)

Regret Bound: Proof Sketch

Utilizing results from [CZS+], we have the following lemma.

Regret Bound: Proof Sketch

By using the property of the step sizes, we have that

·
T−1∑
t=1

nt(Ht ,At)∑
i=1

αi
nt(Ht ,At)

· Xti (Ht ,At)+1 ≤
3− γ

2

T−1∑
t=0

Xt .

Combining with (2), we have

(1− γ · 3− γ
2

)
T−1∑
t=0

Xt ≤
SA

1− γ
+ 2∆T +

3β√
nt(Ht ,At)

.

Regret Bound: Proof Sketch

After some algebraic manipulations, we have

T−1∑
t=0

1√
nt(Ht ,At)

≤ 2
√
SAT .

Therefore

(1− γ · 3− γ
2

)
T−1∑
t=0

Xt ≤
SA

1− γ
+ 2∆T + 6β

√
SAT .

Regret Bound: Proof Sketch

Because

1− γ · 3− γ
2
≥ 1− γ

2
.

we have

T−1∑
t=0

Xt ≤
2SA

(1− γ)2
+

4∆T

1− γ
+

6β

1− γ
.

Regret Bound: Proof Sketch

Thus,

Vt(Ht)− Q∗(Ht) ≤
SA

(1− γ)
+ 2∆ · T + 6β

√
SAT

+
(3− γ)

2

T−1∑
t=0

(Xt −
∆

1− γ
) .

Regret Bound: Proof Sketch

By the decomposition that we had (1), we obtain

T−1∑
t=0

Vt(Ht)− Vπalg (Ht) ≤3/2
T−1∑
t=0

Xt +
1

(1− γ)2
+
SA

1− γ

+ 2∆T + 6β
√
SAT

+
γ

1− γ
(
T−1∑
t=0

PV∗(Ht ,At)− V∗(Ht+1))

+
γ

1− γ
(
T−1∑
t=0

PVπalg (Ht ,At)− Vπalg (Ht+1))

Regret Bound: Proof Sketch

By using the Hoeffding inequality on the last two terms and
conditioned on event G, we have

E[
T−1∑
t=0

Vt(Ht)− Vπt (Ht)] =E[
T−1∑
t=0

Vt(Ht)− Vπalg (Ht)]

≤E[
T−1∑
t=0

Vt(Ht)− Vπalg (Ht)|G]

≤ 17

(1− γ)5/2

√
SAT 2T

δ

+
13∆

1− γ
T +

6SA
(1− γ)2

Substituting δ = 1/(2T) gives us the final answer.

Averaged return

Averaged return: Proof Sketch

The first equality is because of

E[Vπalg (Ht)] = E[E[Vπalg (Ht)|Ht]] = E[Vπt (Ht)] ,

and the second inequality is because of

E[Vπt (Ht)] = E[E[
∞∑
l=0

γ lRt+l+1|Ht]] =
∞∑
l=0

γ l · E[Rt+l+1] ,

and Lemma 1.

Averaged return: Proof Sketch

Since |λπ − Rt | ≤ 1,

Averaged return: Proof Sketch

This enables us to show that,

Averaged return: Proof Sketch

Leveraging the result from Theorem 2, that

Averaged return: Proof Sketch

Optimistic Q learning

Optimistic Q learning

Each epoch in Algorithm 1 is equivalent to the discounted
Q-learning subroutine (Algorithm 2) with a different discount
factor.
One more step in the proof is required, this is left to interested
audience.

